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Abstract. Here we show neural network based methods, which combine
multimodal sequential inputs effectively and classify the inputs into mul-
tiple categories. Two key ideas are 1) to select informative frames among
a sequence using attention mechanism and 2) to utilize correlation infor-
mation between labels to solve multi-label classification problems. The
attention mechanism is used in both modality (spatio) and sequential
(temporal) dimensions to ignore noisy and meaningless frames. Further-
more, to tackle fundamental problems induced by independently pre-
dicting each label in conventional multi-label classification methods, the
proposed method considers the dependencies among the labels by de-
composing joint probability of labels into conditional terms. From the
experimental results (5th in the Kaggle competition), we discuss how
the suggested methods operate in the YouTube-8M Classification Task,
what insights they have, and why they succeed or fail.
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1 Introduction

We focus on finding neural network based methods capable of learning large-
scale multimodal sequential data, which are videos collected from YouTube, and
classifying the data into multiple categories. To tackle this challenging goal, we
postulate three subproblems as follows: 1) combining multimodal inputs effec-
tively, 2) modeling temporal inputs, and 3) using correlation information be-
tween labels to resolve multi-label classification problem. Specifically, only two
modalities, e.g., image and audio, are considered as the multimodal inputs in
this work.

In this work we make the following two contributions. First, we explore
spatio-temporal aggregation of visual and auditory features by designing new
gate modules. Compared to existing methods for learning spatio-temporal in-
puts, such as NetVLAD[2], GRU[6] and LSTM][10], the suggested method can
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find different importance weight between the temporally neighboring frames.
Second, we use correlation information between labels to resolve multi-label clas-
sification problem. While the simple binary relevance (BR) method approaches
this problem by treating multiple targets independently, the suggested method
focuses on exploiting the underlying label structure or inherent relationships.

We evaluate our method on the YoutTube-8M dataset containing about 6.1M
videos and 3862 labels. The proposed method shows significant performance im-
provement over the baseline models, and finally our ensemble model is ranked 5th
out of about 400 teams in the 2nd YouTube-8M Video Understanding Challenge
3

The remainder of the paper is organized as follows. In the next section, we
summarize previous research, including papers from the 1st YouTube-8M work-
shop related to multimodal, sequential learning and multi-label classification.
Then, suggested methods and modules are shown in section 3. In section 4,
YouTube-8M dataset is described and the experimental results are shown. In
section 5, we show the ensemble model submitted to the Kaggle competition.
Finally, we conclude with a discussion about why the methods are successful or
not.

2 Related Work

We summarize previous research related to this work in terms of the following
topics: multimodal learning, temporal aggregation and large-scale multi-label
classification.

2.1 Multimodal Learning

Multimodal learning has been widely used to define representations of multi-
modal inputs to project unimodal features together into a multimodal space. The
simplest method is concatenation of individual unimodal features (Figure 1(a)).
As neural networks has become a popular method for learning unimodal fea-
tures, it has been considered more popular to concatenate the unimodal features
learned from each neural network(Figure 1(b)). Instead of naive concatenation,
each unimodal feature from neural networks projects into a joint representation
space with additional networks (Figure 1(c)).

For the Kaggle competition, preprocessed visual and audio features for each
frame are distributed to participants. Visual features are extracted using Inception-
V3 image annotation model[20] and audio features are extracted using a VGG-
inspired acoustic model[9].

In the last YouTube-8M competition, almost all of the participants tried to
concatenate these visual and audio feature vectors via either 1)early fusion or
2)late fusion. The early fusion method concatenates two feature vectors before
being fed into a frame level model which deals with both modalities. On the

3 https://www.kaggle.com/c/youtube8m-2018/leaderboard
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Fig. 1. Multimodal learning with joint representations

other hand, late fusion means that visual and audio features are concatenated
after having been processed by two frame level models which deal with each
modality. Na et al[14] tried to learn multimodal joint representation using mul-
timodal compact bilinear pooling[8]. However, they reported that their newly
joint features performed significantly worse than simple feature concatenation.

2.2 Temporal Aggregation

In terms of neural network architectures, many problems with sequential inputs
are resolved by using Recurrent Neural Networks (RNNs) and their variants as
it naturally takes sequential inputs frame by frame. However, as RNN-based
methods take frames in (incremental) order, the parameters of the methods are
trained to capture patterns in transitions between successive frames, making
it hard to find long-term temporal dependencies through overall frames. For
this reason, their variants, such as Long Short-Term Memory (LSTM, [10]) and
Gated Recurrent Units (GRU, [6, 4]), have made the suggestion of ignoring noisy
(unnecessary) frames and maintaining the semantic flow by turning switches on
and off.

Recently, a number of researches shed new light on Bag-of-Visual-Words
(BoVW) techniques[16, 19] in order to construct a set of visual descriptors from
image data, such as VLAD[3] and DBoF methods[l]. BoVW-based methods
have been expanded to the temporal domain, that is, the visual descriptors
are extracted from not only an image, but from a sequence of images|[2]. After
constructing a set of spatio-temporal visual descriptors, a representative vector
of a sequence is constructed by applying pooling methods over the set (averaging
operations over the descriptors).

2.3 Multi-Label Classification

Multi-label classification is a supervised learning problem where each instance
has two or more labels. It is more challenging than single-label classification
since combinations of labels grow exponentially.

The most common approach to multi-label classification is Binary Rele-
vance(BR), which decomposes the multi-label learning task into a number of
independent binary learning tasks. This approach can reduce the search space
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from O(2™) as combinations of labels to O(n) as the number of labels n. How-
ever, this decomposition makes BR models incapable of exploiting dependencies
and correlations between labels.

Classifier Chain (CC) overcomes such disadvantages of basic BR models by
passing label information between each BR classifier along a chain[17]. CC treats
multi-label classification as a sequential prediction problem, which resembles fol-
lowing a single path in a binary tree in a greedy manner. Probabilistic Classifier
Chains (PCC) is an extension of CC and probability theory. PCC estimates
the entire joint distribution of the labels and constructs a perfect binary tree
required to find the optimal path[7]. Nam et al[15] applied Recurrent Neural
Networks (RNNs) to model the sequential prediction problem. The key idea of
the approach is to model the joint probability of positive labels, not the entire
joint distribution.

3 The Model

In this section, several methods used for the YouTube-8M competition are in-
troduced. Basically, we tried to find better representations of the multimodal
inputs using attention mechanisms, which can capture the correlations between
modalities. Furthermore, we suggest a new multi-label classification method that
reflects our investigation of the statistics of the label set.

3.1 Multimodal Representation Learning with Attention

Here, we show three multimodal representation learning methods. Before feeding
visual vectors x,, and audio vectors x, into temporal aggregation methods, a new
vector Xy is learned using the following methods.

1. Element-wise summation after a linear transformation
Xaezp — anxa + b'ua (]_)
Xf = Xy + Xaemp (2)

2. Temporal attention on x, guided by x,,

X =%, + softmax(xIWZttXé;%:H%)XZ_%:H% (3)

zp
3. Temporal attention on x, guided by x,
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(4)

Method 1 is a simple element-wise summation. Since x,, and x, have different
feature vector sizes, a linear transformation is applied to x, to match the size.

With method 2, temporal correlations between a visual vector x,, and neigh-
boring w audio inputs XZ_%:H% are trained by learning an attention matrix
Watt By using the temporal attention methods, the latter aggregation methods
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can focus on a subset of sequential inputs which are relevant to each other and
ignore irrelevant and noisy parts of the input sequence. Furthermore, the tempo-
ral attention method, which gives different importance weights to the temporally
neighboring audio inputs, summarizes the audio inputs based on the weights and
assigns a new vector to the corresponding vector, can be interpreted as an align-
ing method. Although the distributed dataset is already aligned, the sequences
of each modality may involve different semantic streams. Applying temporal at-
tention to those sequences can be helpful in resolving the disentanglement in the
semantic flows, as it could give a chance to be matched with the neighboring
frames.

Similarly, temporal correlations between an audio vector and neighboring
visual vectors are trained with method 3.

These three methods are summarized in Figure 2.

(a) (b) (c)
-2 it 3 ERL t42 Moving Window — Maoving Window —
X t—2 t—1 t t+1 t+2 t—2 t—1 t t+1 t+2
v
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Fig. 2. (a): Element-wize summation after a linear transformation (b): Image guided
attention mechanism (c): Audio guided attention mechanism

3.2 Conditional Inference using Label Dependency for Multi-Label
Classification

The objective of the multi-label classification is to maximize likelihood of condi-
tional probability p(y|z) where x € X and y € {y1,¥2,...,yq} with y; € {0, 1}:

L(0;ylx) = T pwr, y2, - yglz;0) (5)
zeX

As discussed in section 2.3, The BR method simply hypothesizes that the prob-
abilities of each labels are independent given x:

q

p(yle) = [[ p(vil=) (6)

i=1

The BR method is simple and shows a reasonable performance, but it cannot
reflect correlation between labels due to its independence assumption. To avoid
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losing information of dependencies between labels, the joint probability can be
factorized and obtained in a chaining manner.

q

pylz) = [ [ pyilz, y<i) (7)

i=1

Most of the chaining approaches model the chaining property via building g¢-
classifier for each term of RHS in equation 7 [7,15,18]. More specifically, the
function f; is learned on an augmented input space X x {0, 1}*~! which is taking
Y« as additional attributes to determine the probability of y;. Then the p(y|z)
can be obtained as follows:

q

plylz) = I] file, y<i) (®)

i=1

However, to estimate the above probability, 29-combinations of labels need
to be searched or specific order of labels must be pre-defined. Instead, we learn
a single function f to map from a given x and an additional label information [
toy (f: X x L = y), where the [ is a vector {0,1} and represents previously
observed labels with 1 values.

In detail, at first, conditional probabilities over all labels y given x are pre-
dicted by function f, and then a label which is the most probable to 1 is chosen
as a first observed label. Next, given the same x and previously predicted labels
[, conditional probabilities are again predicted and the second observed label is
chosen in a same manner. This procedure is iteratively performed and the num-
ber of iterative step is selected based on empirical performances. Figure 3(a)
illustrates the mechanism with five labels and two iterative steps.

For function f, the neural network architecture is designed to capture the
dependencies among x, observed y, and predicted y. It provides a richer repre-
sentation with low-rank bilinear pooling [11] followed by context gate mechanism
[13] which is shown in Figure 3(b).
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Fig. 3. (a): An illustration of the conditional inference procedure on 5-labels and 2-
steps situation. (b): Core neural network architecture of conditional inference.
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4 Experiments

4.1 Youtube-8M Dataset

The YouTube-8M dataset consists of 6.1M video clips collected from YouTube.
The average length of the clips is 230.2 seconds and the maximum/minimum
lengths are 303, 1 seconds respectively (statistics of the 3.9M training clips).
From each clip, image sequences and audio signals are extracted. Visual features
are extracted using Inception-V3 image annotation model[20] and audio features
are extracted using a VGG-inspired acoustic model[9]. After preprocessing steps
including PCA-ed and quantization, a 1024-dimensional image vector and a 128-
dimensional audio vector are obtained for every second.

Each clip of the dataset is annotated with multiple labels. The average num-
ber of labels annotated for a clip is 3.0, and the maximum and the minimum are
23 and 1 respectively, out of 3862 possible labels. In the YouFurthermore, the
number of examples per label is not uniformly distributed. As a specific exam-
ple, 788,288 clips are annotated with GAME, while only 123 clips are annotated
with Cylinder. More than half of the total labels (2086 of 3862 labels) contain
less than 500 clips.

4.2 Training Details

Adam optimizer[12] with two parameters, i.e., a learning rate of 0.001 and a
learning rate decay of 0.95, is utilized to train models. We also find it helpful to
set the gradient clipping value to 5.0 for Bi-directional LSTM models and to 1.0
for NetVLAD models.

4.3 Experimental Results

Effects of Spatio-Temporal Attention First of all, the effectiveness of the
suggested attention methods in Section 3.1 is verified. The quantitative results
are summarized in Table 1. After applying the temporal attention methods to
the original inputs, it is fed into Bi-directional LSTM(BLSTM) models with one
layer and a cell per layer. Each output of the LSTM steps undergoes average
pooling.

The table shows that models that selectively combine the features with at-
tention values perform better than a naive BLSTM model. It is interesting to
note that giving an attention to current audio features is not helpful. It may
be possible that the label set of the YouTube-8M dataset is constructed to clas-
sify the video with ”visual cues” rather than ”auditory cues”, meaning that the
audio features may contain irrelevant information to predict the labels.

Effects of Conditional Inference To evaluate the effect of conditional in-
ference mechanism for multi-label classification, comparative experiments are
conducted with baseline models using video-level features. As shown in Table
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Table 1. Validation Accuracy with Various Attention Methods with BLSTM

Attention Method Window Size w Accuracy (GAP)
None None 0.858

Image Guided Attention 5 0.86071

Image Guided Attention 9 0.86078

Image Guided Attention 13 0.85920

Image Guided Attention all 0.86129

Audio Guided Attention 5 0.85670

2, the proposed mechanism outperforms other variant baseline models. In addi-
tion, the GAP score increases as the number of steps increases, and it begins
to decrease after the fourth step. It can be interpreted as the number of step
hyper-parameter can be derived by average number of labels in a instance.

Table 2. Experimental results of conditional inference modules with video-level fea-
tures

Attention Method Accuracy (GAP)
Logistic model 0.7942
Mixture of expert (# of expert: 2)  (0.8282
Mixture of expert (# of expert: 3)  0.8296
Mixture of expert (# of expert: 4)  0.8305
Mixture of expert (# of expert: 6)  0.8324
Conditional Inference(# of steps: 1) 0.8385
Conditional Inference(# of steps: 2) 0.8398
Conditional Inference(# of steps: 3) 0.8407
Conditional Inference(# of steps: 4) 0.8410
Conditional Inference(# of steps: 5) 0.8403

5 The Final Ensemble Model

Unfortunately, it was hard to find the optimal combination of the suggested
methods described in Section 3. In this section, the final model that ranked 5th
in the final leaderboard of the Kaggle competition is described, which may not
be directly related to the methods in Section 3.

Based on the three criteria (Figure 4), we designed basic modules. As basic
modules for temporal aggregation, vanilla RNN, GRU, LSTM, BLSTM, hierar-
chical RNN[5] and NetVLAD are tested with various methods on multimodal
learning and MLC methods suggested in Section 3. Various number of layers,
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Criteria Methods

Concatenate, Element-wise summation,

Attention, Differential Features, Bilinear Pooling
LSTM, GRU, Bidirectional LSTM, Hierarchical RNN,
NetVLAD, CBHG

Logistic Regression, Mixture of Experts,

Class Chaining, Conditional Inference

Multimodal Inputs

Temporal Aggregation

Classification Modules

Layer Normalization, Skip Connection, Dropout,

Additional Modules Gradient Clipping

Fig. 4. Various methods with three criteria which are postulated to solve this compe-
tition and additional options for the methods.

hidden states, and well-known techniques such as dropout, zoneout and skip-
connection are tested with the temporal aggregation models. Among more than
100 experimental results with the possible combinations of those techniques, six
of the experiments were selected for the final ensemble model by using a beam
search method with a validation dataset.

The final six models selected for the final ensemble model are as follows:

. MC-BLSTM-MoE2

. MA-BLSTM-MoE2

. MC-BLSTM-CG-MoE2

. MC-NetVLAD-diff-C64-MoE4
. MS-NetVLAD-C64-MoE4

. MC-NetVLAD-C128-MoE4

S U W N

where MC, MA, MS represent the methods to construct multimodal representa-
tion. MC represents an early fusion with a concatenation, MA and MS represent
method 3 and 2 in section 3.1 respectively. For the attention methods, we set
the window size to 5 based on the empirical performance. CG represents the
context gating method[13], C stands for cluster size, and MoF is the number of
experts.

diff means that the differential feature is concatenated. As the NetVLAD
model could lose the temporal relationship between successive frames, the dif-
ferences x/; ¢ between the frames are concatenated to original inputs.

2 X Xt _ thl _ Xt+1
Xflz'ff = [Xt : B) ] 9)

The logits of the six models are combined with different weight values(ensemble
weights), which are learned by a single-layer neural network, and the exact values
are 0.21867326, 0.22206327, 0.13936463, 0.16840834, 0.14120385, and 0.11028661.

The final test accuracy of the ensemble model is 0.88527, which is ranked at
5th in the final leader board.
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We should note that there was a strict constraint on the final model size
with 1GB, so the models are searched with this constraints, and the sizes of the
selected models are 162M, 163M,168M, 138M, 136M, and 200M.

6 Conclusion

Even though the suggested methods in Section 3 could not be selected for the
final ensemble model, we think that the newly suggested attention and MLC
method might be helpful to improve the performance if we can find more suit-
able model architectures with more intensive exploring. From the competition
point of view, we observe that the ensemble method dramatically improves the
performance. Performances of Net VLAD models alone were not better than those
of BLSTM models. But the ensemble of NetVLAD and BLSTM outperformed
the ensemble of BLSTM models alone.
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