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Abstract. We introduce modifications to state-of-the-art approaches to
aggregating local video descriptors by using attention mechanisms and
function approximations. Rather than using ensembles of existing archi-
tectures, we provide an insight on creating new architectures. We demon-
strate our solutions in the ”The 2nd YouTube-8M Video Understanding
Challenge”, by using frame-level video and audio descriptors. We obtain
testing accuracy similar to the state of the art, while meeting budget
constraints, and touch upon strategies to improve the state of the art.
Model implementations are available in
https://github.com/pomonam/LearnablePoolingMethods.
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1 Introduction

The problem of summarizing local descriptors is highly investigated and encom-
passes many domains in machine learning such as image retrieval. The goal of
aggregating local descriptors is to construct a single global descriptor that en-
codes useful information. Although progress exists in the context of local video
descriptor aggregation [2], [12], few works adequately provide solutions for dif-
ferentiable descriptor aggregation, such as NetBoW [12] and SMK [14], [16].

Aggregation of local descriptors extends to the task of video classification.
Many existing models focus on learning temporal relations within a video. In
particular, recurrent neural networks (RNN) with the help of Long Short Term
Memory (LSTM) or gated rectified units (GRU) can capture the long-term tem-
poral patterns in between frames. In this paper, however, we question the useful-
ness of learning temporal relationships in video classification. This is also largely
motivated by the work of NetVLAD [2] and attention clusters [11], producing a
dominant result compared to recurrent methods [18], [3].

Despite the success of NetVLAD for the task of video understanding [12],
many design choices are left unexplained. For example, the individual contri-
bution of cluster center residuals to the global representation is unclear. The
model also exhibits several weaknesses. For instance, the global representation
generated by NetVLAD is projected to a significantly lower dimensional space
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for classification, which we suspect is difficult for a single layer to manipulate.
To accommodate these issues, inspired by [5], [17], we propose a model capable
of learning inter-feature relationships before and after the NetVLAD layer.

2 Related Work

In this section, we outline previous works that heavily influenced the creation of
our learnable pooling architectures

2.1 Attention Mechanisms

Our work is largely inspired by [11], where for a given set of local descriptors, an
attention representation is created via a simple weighted sum of local descriptors.
These weights are computed as a function of the local descriptors to exclusively
obtain information from useful descriptors in the attention representation. This
attention representation is termed an attention cluster, and multiple clusters are
concatenated to form a final global representation. A novel shifting operation,
as in Equation (1), enables each attention cluster to diverge from each other,
while keeping scale invariance. Below is the output of a single attention cluster;
X is a matrix of local descriptors, a is a vector of attention weights, computed
via a simple two layer, feed-forward network.

ψk(X) =
α · aX+ β√

N ‖α · aX+ β‖2
(1)

Although the above mechanism has the capacity to learn the training data,
the model heavily overfits, and fails to generalize well. We hypothesize that as
you are computing a weighted sum of input descriptors, slight changes in the
distribution of inputs will have a large negative impact on performance. Intu-
itively, to avoid this problem, internal embeddings should be summed instead,
and these internal embeddings should be a function of the inputs, to improve
generalization.

Following the above logic is the work by A Vaswani et al [17], whom achieved
state-of-the-art performance for machine translation tasks, using a novel atten-
tion mechanism termed Transformer. In the context of their work, local embed-
dings are projected to query, key and value spaces. The similarity of keys (K)
to queries (Q) is then used to provide weights to the internal embedding vectors
(as in Equation (2)) that are passed to feed forward networks. Both [11] and [17]
use dot product attention for attention-based representations. However, atten-
tion clusters intend to provide a straight-forward global representation, whereas
a Transformer creates a new attention-based encoding of equal dimensionality.
Our use of Transformers is covered in detail within Section 3.

Attention(Q,K, V ) = softmax(
QKT

α
)V (2)
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2.2 Differentiable Pooling

The work of [12] provides a useful baseline for a video classification model, as
it provides the highest known accuracy of any single architecture, as of the
”Google Cloud & YouTube-8M Video Understanding Challenge”. The authors
utilized NetVLAD [2], along with a novel network block that is comparable to
residual blocks [7], known as gating. Gating has the effect of re-weighting the
importance of features detected, and decisions made based on these features.

VLAD itself summarizes a set of local descriptors by presenting these descrip-
tors via a distribution [8]. This distribution is encoded in the sum of distances to
cluster centres. Specifically, looking at Equation (3), aj refers to the cluster soft
similarity of descriptor xk to the jth cluster center, introduced by NetVLAD to
avoid non-differentiable hard assignments. Here, xk − cj refers to a single dis-
tance of a local descriptor to a cluster centre. This is a sound technique that is
used in many areas [6], [20], while achieving state of the art performance in the
benchmarks such as [15].

V LAD(i, j) =

N∑

k=1

aj(xk) (xk(i)− cj(i)) (3)

Despite the success and prominence of VLAD, numerous design choices in
[12] are left unexplained. For instance, the cluster similarities, aj , are computed
via a simple linear transformation, where each local video descriptor is compared
via dot product with a key per cluster centre, followed by a softmax layer. It
is a straightforward idea to consider multiple keys per cluster centre, or to use
multiple temporally close local descriptors per cluster similarity prediction.

Further on the notion of design choices, another weakness arises in the ar-
chitecture after the NetVLAD block. Aside from the use of gating, all outputs
of the NetVLAD module are simply squeezed and/or projected to a low dimen-
sional space for classification, this is too demanding of a task for a single layer
to perform optimally. A final criticism is that this model does not attempt to
leverage inter-feature relationships prior to the use of the NetVLAD module.

2.3 Regularized Aggregation

Following the success of VLAD is the work of [9]. The authors split the problem
of local descriptor pooling into problems of local descriptor embedding and ag-
gregation. We specifically utilize the ideas for local descriptor embeddings. The
work of [9] creates a new embedding technique by focusing on overcoming pit-
falls when using NetVLAD, by L2 normalizing the distances from cluster centers
(residuals) before summing to help give an equal contribution to each residual.
These embeddings are known as Triangulation embeddings, or T-embeddings.
Further, the authors suggest whitening the residuals by removing a bias and de-
correlating the residuals per cluster center, for a given local descriptor, before
summing.
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We do utilize the above two ideas. However, the suggestion of using demo-
cratic weights before summing [9] is avoided. The use of democratic weights is
intended to give each local descriptor an equal contribution to the similarity of
the class they belong to. Nevertheless, it is not clear how to make an easily par-
allelizable implementation of the Sinkhorn scaling algorithm to obtain a solution
for these weights. The use of weights is described in Equation (4), where X is
the set of local descriptors belonging to a given class, and φi is an embedding
per local descriptor, as displayed in Equation (5). In Equation (6), Σ is the co-
variance matrix of R(X), where R(X) is a random variable representing R(xi)
in the set of X, per class. A single R(xi) is the concatenation of normalized
residuals to K cluster centers for a single local descriptor, as in (6).

ψ(X) =

N∑

i=1

λiφi (4)

φi(xi) = Σ
−1/2(R(xi)− E[R(X)]) (5)

R(xi) = [r1(xi), . . . , rK(xi)] (6)

2.4 Function Approximations

The work of [5] builds upon [19], which intends to provide an encoding per im-
age, for the sake of image classification, using a weighted sum of local tangents
at anchor points. Despite the dissimilarity of use cases for VLAD and tangent
encoding, the authors of [5] provide a mathematical formulation, to describe how
given a certain set of cluster similarity weights, tangent encoding is a general-
ization of VLAD.

As tangent encoding is a technique to linearly approximate a high dimen-
sional function [5], the authors naturally extend VLAD to a second order ap-
proximation to obtain a unique local descriptor embedding, while incorporating
ideas from other methods such as [9] for aggregation. An embedding per local de-
scriptor is described in Equation (7), where φi(xi) is the concatenation of three
vectors, per cluster center j. The aj(xi) can be thought of as cluster similarities,
as in Equation (3).

What is newly introduced to VLAD is the flattened vector of aj(xi)·F (vi,jvTi,j)
(in this equation F (·) is the flattening operation), this provides the second order
approximation of our hypothetical function, derived from a Taylor expansion [5].
In addition, objective functions are provided to help regularize the learning of
weights, so as to ensure a valid function approximation, this is further discussed
in Section 3.3.

φi(xi) = [aj(xi); aj(xi) · vi,j ; aj(xi) · F (vi,jvTi,j)]Kj=1 (7)

vi,j = (xi − cj) (8)
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3 Learnable Pooling Architectures

In this section, we describe the architecture of our proposed learnable, pool-
ing methods, for the purpose of video classification. As inputs to our pooling
methods, we have audio and video features already extracted at the frame level
per second of video, from the ”YouTube-8M Dataset” [1]. Our pooling methods
aggregate all local descriptors per frame into a single global representation that
describes a video, with possible post-processing afterwards. The final global video
descriptor is then passed to a Mixture-of-Experts (MoE) [13] for classification,
where probabilities are output across possible video labels.

3.1 Attention Enhanced NetVLAD

Our first approach is to use a transformer encoder before and after a NetVLAD
module, as in Figure 1. Our local descriptor pooling is based largely on the work
of [12]. As motivated in Section 2.2, NetVLAD with context gating is the current
(completely differentiable) state of the art for video pooling, as per benchmarks
[15], and the result of the ”Google Cloud & YouTube-8M Video Understanding
Challenge”. Similarly, we have already motivated the use of Transformers in
Section 2.1.

The first block is a mapping of f1 : IRN×F → IRN×F , where N is the number
of frame features sampled, and F is the feature size. The first transformer oper-
ates on the level of frames. As we uniformly sample frames per video as input,
information relating to the relative positions of local descriptors inherently exists
within the attention mechanism.

AUDIO/ VIDEO 
FEATURES 

Transformer 
Encoder NetVLAD Transformer 

Encoder 
Fully  

Connected 
Context 
Gating 

INPUTS LOCAL DESCRIPTOR POOLING CLASSIFICATION

Fig. 1. A block diagram of an attention enhanced NetVLAD model. A modified Trans-
former Encoder [17] is placed before and after the NetVLAD module.

The second block is a mapping f2 : IRC×F → IRC×F , where C is the number
of NetVLAD cluster centers. The second block operates on the level of clusters.
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Our belief is that using separate query/key/value projection per cluster (as per
the Transformer encoder), should be easier to learn than a single fully connected
layer, that must perform the function of attention, decision making and dimen-
sionality reduction all at once. We effectively spread the responsibility of these
crucial functions across multiple layers, increasing the capacity of the initial work
of [12].

The Transformer Encoder in Figure 1 refers to the work of [17], with batch
normalization added to inner layers within the Multi-Head Attention block, to
make learning a simpler process.

3.2 NetVLAD with Attention Based Cluster Similarities

AUDIO/ VIDEO 
FEATURES 

Transformer 
Encoder 

INPUTS INSIDE NETVLAD

Compute
Cluster

Residuals 

Transformer 
Encoder (*) 

Computed 
Cluster 

Similarities 

Scale 
and 
Sum 

L2 Norm 
(Cluster) 

L2 Norm 
(Overall) 

Fig. 2. A block diagram of a modified NetVLAD module. A pair of modified Trans-
former Encoders [17] is used to compute cluster similarities.

Along with the aforementioned Transformer based model, we propose the
following model, using modified NetVLAD modules. As in Figure 2, the first
Transformer encoder is a mapping of g1 : IRN×F → IRN×F , whereas the second
encoder is modified to be a mapping from g2 : IRN×F → IRC×F .

Similar to Section 3.1, we argue that determining cluster similarities per lo-
cal descriptor via a simple dot product with one key per cluster, followed by a
softmax, is too demanding of a task (although it is simple to learn). Further-
more, cluster similarity is a task well suited for a Transformer-based attention
mechanism, as the goal is simply to remember what input descriptors are highly
correlated to (or similar) to which cluster centers, by using keys that are de-
pendent on the inputs themselves. In addition, by using a Transformer, our
prediction of input descriptor similarity to a cluster now receives information
from other input descriptors, further improving the capacity of the initial work
of [12].

The Transformer Encoder (*) in Figure 2 is similar to the Transformer en-
coder discussed in Section 3.1, however, the final feed forward layer projects to
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a dimension of size C instead of F, and hence, the final residual connection is
removed.

3.3 Regularized Function Approximation Approach

Given our heavy reliance on NetVLAD [2] in our previous two models, our final
model attempts to address issues that lie within NetVLAD and adaptations. The
work of [9] already provides useful suggestions regarding possible pitfalls when
using NetVLAD, by L2 normalizing the distances from cluster centers (residuals)
before summing, as well as whitening these residuals. Unfortunately, we do not
make use of democratic weights for aggregation of intermediate T-embeddings,
as proposed in [9], as even simplified versions of the Sinkhorn scaling algorithm
(with assumptions made) are slow to train with.

To account for the discriminative power lost by missing democratic weights,
we unite the works of [9], [5] and [19], as illustrated in Figure 3. By adding second
order terms, we now introduce more useful information in our global representa-
tion by adding multiplicative residual terms. To the point, these multiplicative
terms cannot be computed by a simple linear transformation that follows our
global representation, as is the case in [12].

Notice that for the second order terms, we first project the inputs to a lower
space, as the second order cluster residuals are elements of IRB×N×C×F×F , where
B is the batch size, N is the number of local descriptors per video, C is the number
of clusters and F is the input feature size. This is too large to fit even on multiple
high-end commercial GPUs, given a feature size of 1024 (video features). Also
note that as we perform a simple linear projection, as well as separate cluster
centre and similarity computations for these squeezed features, it is expected
that performance is to be lost.

Furthermore, we do not utilize the suggested regularizer terms within cost
functions, as in [5]. The reason being that regularization requires tuning in order
to provide a valid contribution. Given the large amount of time required to train
this model, we avoid additional regularization terms. Although regularizer terms
such as in [5], or in [4] (for the sake of cluster center sparsity), may be necessary
to overcome generalization issues discussed in Section 4.

4 Experiments

Herein, we provide implementation details for experiments performed on models
found in Section 3. All of the aforementioned models can be found in
https://github.com/pomonam/LearnablePoolingMethods, with complete docu-
mentation and easily usable modules.

4.1 Training Details

The Youtube-8M dataset is split into training (70%), validation (20%) and test-
ing (10%). For the sake of accuracy, we utilize both training and validation
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AUDIO/ VIDEO 
FEATURES 

INPUTS INSIDE NETVLAD

Compute
Cluster

Residuals 

Computed 
Cluster 

Similarities 
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L2 Norm 
(Cluster) 

L2 Norm 
and  
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Concat 
Project to  
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Space 

Compute
Cluster
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Similarities 
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Order 
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Fig. 3. A block diagram of the second order, function approximation based model. In
addition to the usual NetVLAD implementation, we add residual normalization and
whitening, along with second order terms based on projected input features.

portions of the Youtube-8M dataset for training, while leaving out a random 2%
of data for the sake of local validation testing.

All transformer related experiments are trained using the Adam optimizer
[10] with an initial learning rate of 0.0003 and a batch size of 32 (64 in all)
on two NVIDIA P100 GPUs. All function approximation related experiments
are performed using a batch size of 4 (32 in all) on eight NVIDIA K80 GPUs.
For each video, we utilized uniform sampling of 256 frames, to be able evenly
select features consistently, while maintaining temporal consistency, for the sake
of attention-based models.

We did not train many of our models exhaustively due to time and resource
constraints while participating in this competition. We stop training early after
roughly 3 epochs (270k steps). For complete implementation details, visit our
GitHub repository.

4.2 Testing Results

In the ”The 2nd YouTube-8M Video Understanding Challenge”, models are
evaluated using the Global Average Precision (GAP) metric. In Equation (9),
p(i) and r(i) refer to the precision and recall of the top i predictions, respectively.

GAP =

20∑

k=1

p(i) ∗ r(i) (9)

Our results are encouraging, but currently, do not improve the state of the
art. Our largest issue for the models listed in Table 1, as well as other models
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Table 1. A collection of the highest testing scores, as determined by Global Average
Precision (GAP). Second Order refers to Section 3.3, Attention Enhanced refers to
Section 3.1 and Attention NetVLAD refers to Section 3.2

Name Training Steps Batch Size Public Test GAP

Baseline NetVLAD 270k 80 0.870
Second Order 270k 32 0.865
Attention Enhanced 270k 64 0.856
Attention NetVLAD 220k 64 0.867

that exist in our GitHub repository, is the problem of generalization and/or
overfitting, which is a relatively poorly understood topic. During training, we
clearly have the capacity to learn training regularities, however, we inevitably
overfit, even when experimenting with common techniques such as dropout and
early stop.

Despite our misfortune, it is possible to extend our second order models
by creating a parallelizable Sinkhorn scaling algorithm to make use of crucial
democratic weights, or by avoiding the stage of projecting input features into a
low dimensional space (given hardware resources for such a model). In addition,
exploration of other regularization techniques, such as regularizer cost functions
from Section 3.3 are promising.

5 Conclusions

In this paper, we made modifications to the state-of-the-art approaches for ag-
gregating local video descriptors. We drew a connection between NetVLAD and
Transformers to learn cluster similarities per local descriptors. In addition, we
had some encouraging results using a function approximation approach. These
techniques increased model capacity compared to the state of the art. Experi-
mental results demonstrate that the testing accuracy is similar to that of the
state of the art. Due to the time constraints of the competition, we did not fully
investigate parameter tuning or overfitting issues. We plan to explore regular-
ization costs, as well as other avenues discussed for accuracy improvement.
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