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Abstract. Attention mechanisms have been widely used in Visual Ques-
tion Answering (VQA) solutions due to their capacity to model deep
cross-domain interactions. Analyzing attention maps ofers us a perspec-
tive to ind out limitations of current VQA systems and an opportunity
to further improve them. In this paper, we select two state-of-the-art
VQA approaches with attention mechanisms to study their robustness
and disadvantages by visualizing and analyzing their estimated atten-
tion maps. We ind that both methods are sensitive to features, and si-
multaneously, they perform badly for counting and multi-object related
questions. We believe that the indings and analytical method will help
researchers identify crucial challenges on the way to improve their own
VQA systems.
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1 Introduction

Visual question answering (VQA) attracts increasing attentions in both com-
puter vision and natural language processing community. The goal of VQA is to
answer questions based on the information of any given image. As deep learn-
ing witnessed a series of remarkable success in artiicial intelligence, VQA also
made tremendous progress [1, 15, 6] over past few years such as several bench-
mark datasets, e.g., VQA 2.0 [2], CLEVR [4] and Visual Genome [7], and tons
of approaches, e.g., MFB [15] and BAN [5].

VQA is usually formulated as a classiication task with diferent answers as
candidate categories. The current mainstream pipeline is to irstly extract image
and question representations with Convolutional Neural Network and Recurrent
Neural Network, respectively. Then, a lot of fusion methods such as early fusion
[18] and bilinear pooling [15, 6, 1, 5] are adopted to combine two-stream features.
In addition, attention is playing an increasingly important role as the mecha-
nism encourages deep cross-domain interactions without introducing substan-
tial parameters. There are two main branches to add attention to VQA system:
⋆ This work was done while the author was a research intern in ByteDance AI Lab.
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uni-attention and co-attention. Uni-attention merely considers question-guided
visual attentions. In contrast, co-attention additionally takes image-guided ques-
tion attentions into account to jointly model the multimodal correlations [9, 10,
5].

Although much progress has been made, few works lie on deep analysis on
the inluence of diferent attention mechanisms. In this paper, we dive into two
state-of-the-art methods: multi-model factorized pooling (MFB) [15] and bilinear
attention network (BAN) [5] to discover their inherent limitations. Both meth-
ods adopt the popular bilinear pooling to perform multimodal fusion. However,
MFB only performs question-guided visual attention (uni-attention) while BAN
extends co-attention into bilinear attention to enable more image and language
interactions. We conduct all our experiments on VQA 2.0 dataset with a more
balanced answer distribution than VQA 1.0 [16] and Visual Genome dataset. In
addition, it covers more relations of real-world objects compared with CLEVR
dataset full of synthetic images. In order to make a deeper understanding of
both methods, we propose to directly delve into their attention maps. Observing
whether estimated attentions relate to real answers could relect the robustness
and limitations of corresponding approaches.

To summarize, we present three key observations after thorough experiments
on both approaches:

- The performance is sensitive to selected features. Representations based on
object proposals are better than image-level features.

- Attention distribution becomes much more inaccurate for questions related
to multiple objects.

- Counting problem is not well solved by soft attention mechanism.

In terms of each observation, we also analyze main reasons behind these phe-
nomenons and claim that similar limitations probably exist in most of methods
with attention mechanisms. We believe that these indings will inspire researchers
to design more efective methods. Furthermore, our analytical method is hope-
ful to ofer researchers an opportunity to identify potential roadblocks when
debugging their VQA systems.

2 Multimodal Factorized Bilinear Pooling Revisited

Since bilinear pooling [12] allows abundant multimodal cross-channel interac-
tions, the fusion method has been widely used in VQA systems compared to
simple summation and concatenation operators. To further reduce the number
of parameters in bilinear pooling, multimodal factorized bilinear Pooling (MFB)
[15] decomposes the weight matrix as two low-rank matrices.

Speciically, given a question vector x ∈ R
m and an image feature vector

y ∈ R
n, each output channel of MFB pooling is formulated as:

pool(x, y)i = xT Wiy + bi = xT UiVT
i y + bi = I(UT

i x ◦ VT
i y) + bi (1)
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where I ∈ R
k is a vector of all elements ones, Wi ∈ R

m×n is the weight matrix
and Ui ∈ R

m×k and Vi ∈ R
n×k are two factorized matrices.

The whole pipeline of MFB for VQA can be summarized as follows. First, an
overall question representation x̂ ∈ R

m is obtained by a self-attention manner
with weights αx. Then, the weighted question feature guilds the visual attention
on the image as follows:

αy = softmax({WT
p pool(x̂, yj)}), ŷ =

∑

j

α
y
j yj (2)

where yj is an image feature vector and Wp ∈ R
m×1. Finally, attention weighted

language feature x̂ and visual feature ŷ are fused together as f = pool(x̂, ŷ) for
further prediction.

3 Bilinear Attention Revisited

Co-attention based model jointly integrates question-guided visual attention and
visual-guided question attention together. To further consider every pair of mul-
timodal features, BAN [5] extends co-attention into bilinear attention. The fused
feature can be deineds as:

fi = (XT Ũ)Ti A(YT Ṽ)i (3)

where Ũ ∈ R
m×k, Ṽ ∈ R

n×k, X ∈ R
m×θ, Y ∈ R

n×γ , and A ∈ R
θ×γ is the

bilinear attention map that sums to 1 as follows:

A = softmax((I· pT ) ◦XT U)VTY ) (4)

where I ∈ R
θ is a vector with all elements ones, p ∈ R

k, and softmax is applied
element-wisely. Then the fused feature f can be used for further classiication.

MFB and BAN represent popular attempts in uni-attention and co-attention
directions, respectively. A thorough analysis for both methods is also expected to
shed light on similar limitations of other approaches with attention mechanisms.

4 Deep Study

In this section, we will present detailed analysis for our key observation results.
As shown above, we investigate MFB [15] and BAN [5] to make a thorough
study. All experiments are conducted on VQA2.0 benchmark, where we train on
train split with 82,783 images and 443,757 questions, and evaluate on val split
with 40,503 images and 214,354 questions totally. Each question is annotated
with 10 answers by crowdsourcing. In order to give an intuitive demonstration,
we report visualizations of image attention vectors αy in MFB and the bilinear
attention maps A in BAN.
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Fig. 1. Visualization of MFB with diferent visual features. From left to right are the
original images, the MFB attention weights of Faster-RCNN proposals and the MFB
attention map of the ResNet-152 feature map. The most salient boxes (numbered in
the top-left corner of each bounding box and x-axis of the grids) are visualized in both
images.

4.1 Object feature & Image feature

Visual object features have been proven efective in VQA task [13, 5] compared
with image-level features. However, the reason behind the performance gain has
not been well investigated. In this work, we delve deeper into this from the
attention perspective.

In our experiments, we select top-36 Faster-RCNN proposals [11] and ResNet-
152 last feature map before pool5 [3] as object features (36× 2, 048) and image
features (196 × 2, 048), respectively. We set the batch size to 64 and the di-
mension of hidden states to 1024 in BAN. To simplify experiments, we do not
integrate counting module [17]. Unlike the original implementation, we augment
300-dimensional random initialized word embedding instead of 300-dimensional
computed word embedding to each 300-dimensional Glove word embedding. The
performance comparison on the VQA 2.0 validation set is shown in Table 1.
Unsurprisingly, we achieve better performance with object features for both
methods compared with image-level features. In addition, we found that a more
accurate attention distribution can be obtained for object features compared
with image features. For example in Fig. 1, given a question about ire hydrant,
we can see that MFB with object proposals focuses on the correct entity while
image-level representation directs attentions to snow regions. Due to the inac-
curate attention distribution, the model with image features predicts a wrong
answer, white. Similarly when “Is his tail braided?” is asked, the tail proposal
is highlighted for the method with object-level representations as opposed to
arbitrary emphasis with a single feature map.

Although it is diicult to measure the negative efect of features quantita-
tively on attention maps over the entire dataset, we hypothesize that inaccurate
attention maps take a large amount of responsibility for decline in performance.
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Table 1. Detailed performance comparison on VQA 2.0 validation set

Feature type Methods Overall Other Number Yes/No

ResNet-152 feature map MFB[15] 60.94 52.93 38.48 79.28
BAN[5] 59.52 51.19 38.92 77.64

Faster-RCNN proposals MFB[15] 65.19 57.17 44.37 82.98
BAN[5] 64.3 55.7 45.45 82.16

We analyse that object proposals have much more speciic semantic meanings
compared with feature maps and thus the corresponding relations between words
and visual features are easier to learn, which leads to a more accurate attention
distribution and further performance boost.

4.2 Single object & Multiple objects

Based on how many objects are necessary to infer inal answers, questions in
VQA2.0 can be roughly divided into single object, e.g., “what is the color of
the dog?” and multiple objects, e.g., “what color is the book on the desk?”. In
our experiment, we conduct the comparison for both kinds of questions. The
observation shows that the attention distribution is much more inaccurate for
questions related to multiple objects. For example in Fig. 2, both models incor-
rectly focus on the laptop used by the woman in (a), which implies that the
relation between the woman and the laptop are not well captured and modeled.
Additionally, relative positions are not well integrated by both models. We can
see in Fig. 2, both models make predictions (white and yellow) based on the
person on the left and the person on the middle respectively in (b). In a word,
the estimated attention maps cannot learn relative positions. Moreover, spatial
locations are crucial to infer the what question in (c). Both models concentrate
on the wrong objects in other positions, e.g, sink and toilet.

It is worth noting that current attention mechanisms learn attention distribu-
tions by only comparing visual and question representations and object features
ignore their own locations in images.

However, without well-captured object relations or position information, mod-
els are unable to set these visually or semantically similar objects apart when
the questions are related to multiple objects or multiple instances exist in an
image. The confusion causes an inaccurate attention distribution which leads
to a signiicant accuracy drop between single-object questions and those with
multiple objects, which constitutes the main hurdle for current VQA systems.

In order to reduce the performance gap, it could be a crucial step to ex-
plicitly consider object relation and position. In particular, graph-based neural
networks might be an efective way to handle unstructured object correlations
[14, 8]. Object relations modeling is still an open question and worth further
explorations.
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Fig. 2. Visualization of MFB and BAN on questions related to multiple objects. From
left to right are the original images, MFB attention vectors and BAN bilinear attention
maps. The most salient boxes (numbered in the top-left corner of each bounding box
and x-axis of the grids) are visualized in both images.

4.3 Counting problem

Counting problem is a special case of questions related to multiple objects. As
mentioned in [17], due to that soft-attention mechanism normalizes the attention
weights, which leads to the loss of counting-related information. Soft attention
is replaced by the gate strategy in [17] and then overlapping object proposals
are processed in a diferentiable manner.

In this work, we show that poor results can also be obtained even with an
accurate attention distribution. For example in Fig. 3, both models focus their
attention on multiple detected objects, namely, motorcycles in (a), vehicles in
(b) and clocks in (c). However, detected objects are obviously visually similar
and thus the weighted average of these visual features is probably similar to one
of them, which means cues for counting are lost during soft attention process
regardless of attention distributions. The limitations probably exist in a large
amount of VQA systems. Therefore, in order to improve the counting perfor-
mance essentially, additional structures or more lexible attention mechanisms
might be needed.

5 Conclusions

To facilitate further research on the VQA task, we delve into two state-of-the-art
methods MFB [15] and BAN [5] on VQA 2.0 dataset by visualizing and analysing
their estimated attention maps. We form three main observations. Firstly, the
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Fig. 3. Visualization of MFB and BAN on counting problems. From left to right are
the original images, MFB attention vectors and BAN bilinear attention maps. The
most salient boxes (numbered in the top-left corner of each bounding box and x-axis
of the grids) are visualized in both images. Both models give the wrong answer, 1.

performance improvement with Faster-RCNN proposals is probably related to a
more accurate attention distribution. Second, the attention distribution is much
more inaccurate for questions related to multiple objects. Finally, counting prob-
lem is not well solved by soft attention mechanism due to the attention weight
normalization. We believe that these observation results can help future VQA
research and analysing attention maps will also assist researchers to debug their
own VQA systems.
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