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Abstract. The goal of this work is to automatically apply generated im-
age keywords as text representations, to optimize medical image classifi-
cation accuracies of body regions. To create a keyword generative model,
a Long Short-Term Memory (LSTM) based Recurrent Neural Network
(RNN) is adopted, which is trained with preprocessed biomedical im-
age captions as text representation and visual features extracted using
Convolutional Neural Networks (CNN). For image representation, deep
convolutional activation features and Bag-of-Keypoints (BoK) features
are extracted for each radiograph and combined with the automatically
generated keywords. Random Forest models and Support Vector Ma-
chines are trained with these multimodal image representations, as well
as just visual representation, to predict body regions. Adopting multi-
modal image features proves to be the better approach, as the prediction
accuracy for body regions is increased.
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1 Introduction

To build classification systems capable of reliable performance, adequate image
representation is necessary. Adopting multimodal image features presented in
[10, 12, 13], proves to achieve higher classification accuracies for biomedical im-
ages, as this contributes towards sufficient image representation. However, some
classification tasks such as ImageCLEF 2015 Medical Clustering Task [8], as well
as real clinical cases, lack corresponding text representations.

Hence, this paper utilizes automatic generated keywords proposed in [14] to
substitute as text representation for the classification of radiographs into body
regions, focusing on a different feature extraction method. The obtained key-
words are combined with visual features for multi modal image representation.
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The generated text information can also be further applied for semantic tagging
and image retrieval purposes.

We show that by adopting a multi-modal image representation and classifica-
tion method described in subsections 2.2 and 2.3, the overall prediction accuracy
is increased as shown in section 3, by evaluating the model performance on a
dataset presented in subsection 2.1.

2 Material and Methods

2.1 Dataset

The Medical Clustering Task was held at ImageCLEF 2015, an evaluation cam-
paign organized by the CLEF Initiative . For this task, 750 high resolution x-
ray images collected from a hospital in Dhaka, Bangladesh [1] were distributed.
The training set included 500 images and test set 250 images, with annotations
of the following classes: 'Body’, "Head-Neck’, "Upper-Limb, 'Lower-Limb’ and
"True-Negative’. An excerpt of the x-rays is displayed in figure 1.

Body Head-Neck Upper-Limb Lower-Limb

Fig. 1. An excerpt of images from the CVC digital x-ray dataset, Medical Clustering
task, ImageCLEF 2015. Original data is available from www.cverbd.org.

For the creation of the keyword generative model, the dataset distributed
for the ImageCLEF Caption Prediction Task [7] was applied and is presented in
[14].

2.2 Image Representation

For visual representation, two methods are applied for comparison purposes:
Deep convolutional activation features (DeCaf) [6] and Bag-of-Keypoints [5]
computed with dense SIFT descriptors [11]. The deep visual features are the
average pool layer of the deep learning system Inception_V3 [18], which is pre-
trained on ImageNet [15]. The activation features were extracted using the neural

! http://www.clef-initiative.eu/
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network API Keras 2.2.0 [4]. The Bag-of Keypoints visual features were created
using the VLFEAT library [19].

To obtain multi-modal image representation, text information was created.
The keyword generative model proposed in [14] was used to automatically create
keywords for all 750 images, belonging to training and test sets. Furthermore, a
compact text representation was achieved by applying vector quantization on a
Bag-of-Words [17] codebook and Term Frequency-Inverse Document Frequency
(T-IDF) [16].

2.3 Classification Models

Random forest (RF) [2] models with 1,000 trees were created as image classifi-
cation models. These RF-models were trained using either visual or multi-modal
image representations. Principal Component Analysis (PCA) [9] was applied to
reduce computational time, feature dimension and noise. The vector size for vi-
sual features was reduced from 2,048 to 50, and from 150 to 50 for the text
features. For comparison, multi-class Support Vector Machines (SVM) [3] using
the same multi-modal image representations as the RF models, were modeled
with the following parameters: kernel = radial basis function, cost parameter =
10 and gamma = 1/num_of_features.

3 Results

The achieved prediction accuracies using either visual or multi-modal image rep-
resentation are listed in table 1. For comparison purposes, the different classifier
setups used for training are shown in the first column.

Table 1. Prediction accuracies obtained using the different visual and text repre-
sentations, as well as classifier setup. Evaluation was done on ImageCLEF Medical
Clustering test set with 250 x-rays.

Classifier Setup Accuracy | Image Representation
Random Forest + BoK 65.60 % Visual
Support Vector Machines + BoK 66.40 % Visual
Random Forest + DeCaf 74.00 % Visual
Support Vector Machines + DeCaf 72.89 % Visual
Random Forest + BoK + BoW (TF-IDF) 71.09 % Visual + Text
Support Vector Machines + BoK + BoW (TF-IDF) | 69.13 % Visual + Text
Random Forest + DeCaf + BoW (TF-IDF) 77.20 % Visual + Text
Support Vector Machines + DeCaf + BoW (TF-IDF) | 76.35 % Visual + Text
Best group ImageCLEF 2015 Med Clustering Task [1]| 75.20 % Visual




4 O. Pelka et al.

Figure 2 displays a word cloud created with the automatically generated
keywords from the ImageCLEF Medical Clustering Training Set.
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Fig. 2. Word cloud of automatically generated keywords for images in the ImageCLEF
2015 Medical Clustering Training Set.

4 Discussion

Adopting multi-modal representations for classification task proves to obtain
higher prediction accuracies, as listed in Table 1. This is the case for both Ran-
dom Forest and Support Vector Machines classification models. The prediction
rate is optimized by applying DeCaf as visual representation, in comparison to
the traditional Bag-of-Keypoints features. It can be seen from fig. 2, that the gen-
erated keywords contribute to a more adequate representation, as information
on body regions achieved.

5 Conclusions

An approach for optimizing prediction accuracies using deep convolutional acti-
vation features combined with automatically generated keywords was presented.
Following the results shown in Table 1, using multimodal image representations
achieves higher classification accuracies than just visual features. This is observed
for the different classification models and visual feature extraction method. As
the prediction models trained with deep convolutional activation features out-
perform those trained with traditional Bag-of-Keypoints, continuous work can
be based on evaluating several image enhancement techniques.
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