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Abstract. All the existing image steganography methods use manually
crafted features to hide binary payloads into cover images. This leads to
small payload capacity and image distortion. Here we propose a convolu-
tional neural network based encoder-decoder architecture for embedding
of images as payload. To this end, we make following three major con-
tributions: (i) we propose a deep learning based generic encoder-decoder
architecture for image steganography; (ii) we introduce a new loss func-
tion that ensures joint end-to-end training of encoder-decoder networks;
(iii) we perform extensive empirical evaluation of proposed architecture
on a range of challenging publicly available datasets (MNIST, CIFAR10,
PASCAL-VOC12, ImageNet, LFW) and report state-of-the-art payload
capacity at high PSNR and SSIM values.
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1 Introduction

In the field of information security steganography and steganalysis are considered
as two important techniques [6, 10]. Steganography is used to conceal secret
information (i.e. a message, a picture or a sound) also known as payload into
another non-secret object (that can be an image, a sound or a text message) also
known as cover object, such that both the secret message as well as its content
remain invisible .

In image steganography, most of the work has been done to hide a specific
text message into a cover image. Thus the focus of all the existing techniques has
been finding either noisy regions or low-level image features such as edges [7],
textures [4], etc., in cover image for embedding maximum amount of secret
information without distorting the original image.

In this work, we propose a novel and completely automatic steganography
method for hiding one image to another. For this, we design a deep learning net-
work that automatically identifies the best features from both cover and payload
images to merge information. The biggest advantage of our this approach is that
its generic and can be used with any type of images, to validate this we test our
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approach on variety of publicly available datasets including ImageNet, MNIST,
CIFAR10, LFW and PASCAL-VOC12.

Overall our main contributions are as follows: (i) we propose a deep
learning based generic encoder-decoder architecture for image steganography; (ii)
we design a new loss function that ensures joint end-to-end training of encoder-
decoder networks; (iii) we perform extensive empirical evaluation of proposed
architecture on range of challenging publicly available datasets and report state-
of-the-art payload capacity at high PSNR and SSIM values. Specifically, using
our proposed algorithm we can reliably embed a unary channel image (m × n

pixels) into a color image (m×n× 3 pixels). Our experiments show that we can
achieve this payload of 33% (on average 8 bpp) with the average PSNR values of
32.9 db (SSIM =0.96) for cover and 36.6 db (SSIM=0.96) for recovered payload
image.
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Fig. 1. Pictorial representation of encoder and decoder networks architecture. Top
row in encoder network represents the guest branch while bottom row represents host
branch.

2 Methodology

We train end-to-end a pair of encoder and decoder Convolutional Neural Net-
works (CNNs) for creating the hybrid image from pair of input images, and
recovering the payload image from input hybrid image – c.f. Figure 1 for ar-
chitecture details. Here, we make use of observation that CNN layers learns a
hierarchy of image features from low-level generic to high-level domain specific
features. Thus our encoder identifies specific features from cover image to hide
the details from the payload images, while decoder learns to separate those hid-
den features from the “hybrid” image.

Specifically, the encoder network takes two images (i.e. a “host” cover image
and a “guest” payload image) as input and produces a single hybrid output
image. Thus, the goal of encoder network is to produce a hybrid image, that
remains visually identical to the host image but should also contain the guest
image content in it. The decoder network takes as input the encoder produced
hybrid image and recovers the guest image from it. The goal of decoder network
is to recover the guest image from the input hybrid that remains visually similar
to input guest image of encoder.

Let Ih and Ig represent input host and guest images to encoder, while Oe and
Od represent the output hybrid image and output decoder image respectively,
then the complete loss function for encoder and decoder network can be written
as:

L(Ig, Ih) = α||Ih −Oe||
2 + β||Ig −Od||

2 + λ(||We||
2 + ||Wd||

2) (1)
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Here We and Wd represent the learned weights for the encoder and decoder
networks respectively while α and β are controlling parameters for encoder and
decoder. The first term in loss function defines encoder loss and the second one
decoder loss.

2.1 Encoder Architecture

The encoder network at the input end has two parallel branches named as guest
branch and host branch. Guest branch receives the input guest image Ig and
uses a sequence of convolution and ReLU layers to decompose the input image
into low-level (edges, colors, textures, etc.) and high level features. Host branch
receives the input host image Ih and uses a sequence of convolution and ReLU
layers (except the last layer which does not include ReLU layer) to decompose the
input image into a hierarchy of feature representations and merge the extracted
representations of guest image into host image.

Precisely, for merging the information from guest image, encoder concate-
nates the extracted feature maps from each alternating layer of guest branch
(starting from input) to the corresponding output features maps of host branch.
This procedure is repeated up to a layer of depth k (we found k = 7 as the best
parameter), at this point we completely merge the guest branch features into
host branch and guest branch cease to exist. After merging a further sequence of
convolution and ReLU layers are used before the final convolution layer which
produces as output hybrid image Oe.

2.2 Decoder Architecture

Our decoder network receives the encoder produced hybrid image Oe as input
and runs it through sequence of convolution and ReLU layers (except the last
layer which does not include ReLU) to recover the concealed representation Od

of guest image Ig.
We also experimented with other design choices, however in our initial ex-

periments this architecture comes out as the best choice. During training both
encoder and decoder are trained end-to-end using the joint loss function – c.f.

Eq. (1). However during testing both encoder and decoder are used in disjoint
manner.

3 Experiments and Results

In this section, we report our experimental settings. We also report quantita-
tive and qualitative results of our algorithm on a diverse set of publicly avail-
able datasets, that is on ImageNet [1], CIFAR10 [8], MNIST [9], LFW [5] and
PASCAL-VOC12 [2].

We randomly divided each dataset sample images into three datasets: train-
ing, validation and testing. All the configurations have been done using validation
set and we report the final performance on test set.
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No.
Cover
Image

Payload
Image

No. of
Epochs

Avg.
bpp

Encoder
PSNR (db)

Decoder
PSNR (db)

Payload
%

SSIM
Encoder

SSIM
Decoder

1 CIFAR10 MNIST 50 7 32.9 32.0 29.1 0.87 0.85

2 CIFAR10 CIFAR10 50 8 30.9 29.9 33.3 0.98 0.96

3 ImageNet ImageNet 50 8 29.6 31.3 33.3 0.88 0.88

4 ImageNet ImageNet 150 8 32.9 36.6 33.3 0.96 0.96

Table 1. Comparison of bpp, PSNR and SSIM values for different runs of our algorithm
on different datasets.

No.
Cover
Image

Payload
Image

Avg.
bpp

Encoder
PSNR (db)

Decoder
PSNR (db)

Payload
%

SSIM
Encoder

SSIM
Decoder

1 PASCAL-VOC12 PASCAL-VOC12 8 33.7 35.9 33.3 0.96 0.95

2 LFW LFW 8 33.7 39.9 33.3 0.95 0.96

3 PASCAL-VOC12 LFW 8 33.8 37.7 33.3 0.96 0.95

Table 2. Bpp, PSNR and SSIM values of our ImageNet trained algorithm on different
datasets.

For payload, we randomly select an image from the corresponding dataset
and either convert it to gray-scale or just choose a single channel from the RGB
channels. For cover, we randomly select an RGB image from the corresponding
dataset.

For all experiments we use the same encoder and decoder architecture as
explained in Sec. 2. However each input image is zero-centered. Encoder and de-
coder weights are randomly initialized using Xavier initialization [3]. For learning
these weights we use Adam optimizer with a fixed learning rate of 1E-4 and a
batch size of 32 where regularization parameter was set to 0.0001 and α = β = 1.
During each epoch, we disjointly sample images for cover and payload usage from
the training set. All the filters in CNN layers are applied with stride of single
pixel and using same padding.

We use Peak Signal to Noise Ratio (PSNR), Structural SIMilarity (SSIM) in-
dex and bits per pixel (bpp) to report the perceptual quality of images produced
and embedding capacity of our algorithm.

For our initial experiment, we used cover images (32×32×3) from CIFAR10
while payload images were taken (28 × 28 × 1) from MNIST dataset. For this
experiment, we were able to hide approximately 29.1% payload (i.e. 7 bpp) in
our cover images with average PNSR of 32.85 db and 32.0 db for encoder and
decoder networks produced images respectively – c.f. Table 1. These results
show that using our algorithm, we can successfully hide a huge payload with
reasonably high PNSR and SSIM values. According to our best of knowledge,
no one has been able to report such results on this dataset.

However, MNIST is a relatively simple dataset as majority of pixels in each
image belong to plain background (white color) class. Thus, we conducted an-
other experiment on CIFAR10 dataset – CIFAR10 being dataset of natural
classes contains much larger variation in image foreground and background re-
gions – with identical experimental settings.

In this experiment, both cover (32×32×3) and payload images (32×32×1)
were randomly and disjointly sampled from CIFAR10 training batch. In this
experiment we were able to hide a payload of 33.3% (i.e. 8 bpp) in our cover
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images with average PNSR of 30.9 db and 29.9 db for encoder and decoder
networks produced images respectively.

From our these experiments, we can conclude that our proposed algorithm is
extremely generic and one can, using the same architecture, reliably guarantee
huge payloads and acceptable PNSR values for complex images as well – c.f.

Table 1. For both these experiments we ran our algorithm for 50 epochs.
To further consolidate our findings and to evaluate our algorithm’s embed-

ding capacity and reconstruction performance on images of large size, we de-
signed another experiment using ImageNet dataset. A subset of 8,000 images
was randomly chosen from one million images. These selected images were then
divided into two disjoints sets: training (6,000 images) and testing (2,000 im-
ages) – no validation set was used here since we reuse the earlier experiments
settings. To allow uniform sized images as cover and payload all of these images
were then resized to 300× 300 pixels. For our initial version of this experiment
and to ensure a fair comparison with other results, we first ran our algorithm
for 50 epochs.

For randomly sampled cover (300×300×3) and guest images (300×300×1)
from our ImageNet test dataset, we were able to hide a payload of 33.3% (i.e. 8
bpp) in our cover images with average PNSR of 29.6 db and 31.3 db for encoder
and decoder networks produced images respectively. As we were able to hide
high payload for similar PNSR values to earlier experiments for this complex
dataset as well, so we further explored different experimental settings.

Our final model on ImageNet was trained for 150 epochs further improving
the PNSR values for encoder and decoder to 32.92 db (SSIM =0.96) and 36.58 db
(SSIM =0.96) respectively from 29.6 db and 31.3 db while maintaining similar
payload capacity of 33.3% (on average 8 bpp) – c.f. Table 1.

To further evaluate the generalization capacity of our algorithm, we ran the
ImageNet trained algorithm on sample of 1,000 unseen images from PASCAL-
VOC12 [2] and Labelled Faces in Wild (LFW) [5] datasets. Table 2 shows the
results of our this experiment. Here, even though our algorithm is trained on
different dataset, it is still being able to achieve high payload capacity at high
PNSR and SSIM values which shows the generalization capabilities of our pro-
posed algorithm.

Figure 2 shows a sample of result images from LFW, PASCAL-VOC12 and
ImageNet datasets. Here once again we can verify using qualitative analysis that
our method is being able to conceal and recover unseen complex payload images.

Therefore, given this quantitative and qualitative analysis, we can conclude
that our algorithm is generic and robust to complex backgrounds and variations
in objects appearance, thus can be reliably used for image steganography.

4 Conclusions

In this paper, we have presented a novel CNN based encoder-decoder architecture
for image steganography. In comparison to earlier methods, which only consider
binary representation as payload our algorithm directly takes an image as pay-
load and uses a pair of encoder-decoder networks to embed and robustly recover
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Fig. 2. Sample results of our algorithm on LFW (top row), PASCAL-VOC12 (middle
row) and ImageNet (bottom row) images. In each subfigure, first column represents the
cover image Ih, second the payload Ig, third the hybrid image Oe and fourth column
represents the recovered guest image Od.

it from the cover image. According to our best of knowledge, no such earlier work
exists and we are the first one to introduce this method for image-in-image hid-
ing using deep neural networks. We have performed extensive experiments and
empirically proven the superiority of our proposed method by showing excellent
results with strong payload capacity on a wide range of wild-image datasets.
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