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Abstract. Canonical correlation analysis (CCA) is a statistical learning
method that seeks to build view-independent latent representations from
multi-view data. This method has been successfully applied to several
pattern analysis tasks such as image-to-text mapping and view-invariant
object/action recognition. However, this success is highly dependent on
the quality of data pairing (i.e., alignments) and mispairing adversely
affects the generalization ability of the learned CCA representations.
In this paper, we address the issue of alignment errors using a new vari-
ant of canonical correlation analysis referred to as alignment-agnostic
(AA) CCA. Starting from erroneously paired data taken from differ-
ent views, this CCA finds transformation matrices by optimizing a con-
strained maximization problem that mixes a data correlation term with
context regularization; the particular design of these two terms mitigates
the effect of alignment errors when learning the CCA transformations.
Experiments conducted on multi-view tasks, including multi-temporal
satellite image change detection, show that our AA CCA method is
highly effective and resilient to mispairing errors.

Keywords: Canonical Correlation Analysis · Learning Compact Rep-
resentations · Misalignment Resilience · Change Detection

1 Introduction

Several tasks in computer vision and neighboring fields require labeled datasets
in order to build effective statistical learning models. It is widely agreed that
the accuracy of these models relies substantially on the availability of large
labeled training sets. These sets require a tremendous human annotation ef-
fort and are thereby very expensive for many large scale classification problems
including image/video-to-text (a.k.a captioning)[1–4], multi-modal information
retrieval [5], multi-temporal change detection [6, 7], object recognition and seg-
mentation [8, 9], etc. The current trend in machine learning, mainly with the
data-hungry deep models [1, 2, 10–12], is to bypass supervision, by making the
training of these models totally unsupervised [13], or at least weakly-supervised
using: fine-tuning [14], self-supervision [15], data augmentation and game-based
models [16]. However, the hardness of collecting annotated datasets does not
only stem from assigning accurate labels to these data, but also from aligning
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them; for instance, in the neighboring field of machine translation, successful
training models require accurately aligned bi-texts (parallel bilingual training
sets), while in satellite image change detection, these models require accurately
georeferenced and registered satellite images. This level of requirement, both on
the accuracy of labels and their alignments, is clearly hard-to-reach; alternative
models, that skip the sticky alignment requirement, should be preferred.

Canonical correlation analysis (CCA) [17–20] is one of the statistical learning
models that require accurately aligned (paired) multi-view data1; CCA finds –
for each view – a transformation matrix that maps data from that view to a
view-independent (latent) representation such that aligned data obtain highly
correlated latent representations. Several extensions of CCA have been intro-
duced in the literature including nonlinear (kernel) CCA [21], sparse CCA [22–
24], multiple CCA [25], locality preserving and instance-specific CCA [26, 27],
time-dependent CCA [28] and other unified variants (see for instance [29, 30]);
these methods have been applied to several pattern analysis tasks such as image-
to-text [31], pose estimation [21, 26] and object recognition [32], multi-camera
activity correlation [33, 34] and motion alignment [35, 36] as well as heteroge-
neous sensor data classification [37].

The success of all the aforementioned CCA approaches is highly dependent

on the accuracy of alignments between multi-view data. In practice, data are
subject to misalignments (such as registration errors in satellite imagery) and
sometimes completely unaligned (as in muti-lingual documents) and this skews
the learning of CCA. Excepting a few attempts – to handle temporal deforma-
tions in monotonic sequence datasets [38] using canonical time warping [36] (and
its deep extension [39]) – none of these existing CCA variants address alignment
errors for non-monotonic datasets2. Besides CCA, the issue of data alignment
has been approached, in general, using manifold alignment [40–42], Procrustes
analysis [43] and source-target domain adaption [44] but none of these methods
consider resilience to misalignments as a part of CCA design (which is the main
purpose of our contribution in this paper). Furthermore, these data alignment
solutions rely on a strong “apples-to-apples” comparison hypothesis (that data
taken from different views have similar structures) which does not always hold
especially when handling datasets with heterogeneous views (as text/image data
and multi-temporal or multi-sensor satellite images). Moreover, even when data
are globally well (re)aligned, some residual alignment errors are difficult to han-
dle (such as parallax in multi-temporal satellite imagery) and harm CCA (as
shown in our experiments).

In this paper, we introduce a novel CCA approach that handles misaligned
data; i.e., it does not require any preliminary step of accurate data alignment.
This is again very useful for different applications where aligning data is very
time demanding or when data are taken from multiple sources (sensors, modal-

1 Multi-view data stands for input data described with multiple modalities such as
documents described with text and images.

2 Non-monotonic stands for datasets without a “unique” order (such as patches in
images).
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ities, etc.) which are intrinsically misaligned3. The benefit of our approach is
twofold; on the one hand, it models the uncertainty of alignments using a new
data correlation term and on the other hand, modeling alignment uncertainty
allows us to use not only decently aligned data (if available) when learning CCA,
but also the unaligned ones. In sum, this approach can be seen as an extension
of CCA on unaligned sets compared to standard CCA (and its variants) that
operate only on accurately aligned data. Furthermore, the proposed method is
as efficient as standard CCA and its computationally complexity grows w.r.t the
dimensionality (and not the cardinality) of data, and this makes it very suitable
for large datasets.

Our CCA formulation is based on the optimization of a constrained objective
function that combines two terms; a correlation criterion and a context-based
regularizer. The former maximizes a weighted correlation between data with a
high cross-view similarity while the latter makes this weighted correlation high
for data whose neighbors have high correlations too (and vice-versa). We will
show that optimizing this constrained maximization problem is equivalent to
solving an iterative generalized eigenvalue/eigenvector decomposition; we will
also show that the solution of this iterative process converges to a fixed-point.
Finally, we will illustrate the validity of our CCA formulation on different chal-
lenging problems including change detection both on residually and strongly

misaligned multi-temporal satellite images; indeed, these images are subject to
alignment errors due to the hardness of image registration under challenging
conditions, such as occlusion and parallax.

The rest of this paper is organized as follows; section 2 briefly reminds the
preliminaries in canonical correlation analysis, followed by our main contribu-
tion: a novel alignment-agnostic CCA, as well as some theoretical results about
the convergence of the learned CCA transformation to a fixed-point (under some
constraints on the parameter that weights our regularization term). Section 3
shows the validity of our method both on synthetic toy data as well as real-
world problems namely satellite image change detection. Finally, we conclude
the paper in section 4 while providing possible extensions for a future work.

2 Canonical Correlation Analysis

Considering the input spaces Xr and Xt as two sets of images taken from two
modalities; in satellite imagery, these modalities could be two different sensors, or
the same sensor at two different instants, etc. Denote Ir = {ui}i, It = {vj}j as
two subsets of Xr and Xt respectively; our goal is learn a transformation between
Xr and Xt that assigns, for a given u ∈ Xr, a sample v ∈ Xt. The learning of this
transformation usually requires accurately paired data in Xr ×Xt as in CCA.

3 Satellite images – georeferenced with the Global Positioning System (GPS) – have
localization errors that may reach 15 meters in some geographic areas. On high
resolution satellite images (sub-metric resolution) this corresponds to alignment er-
rors/drifts that may reach 30 pixels.
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2.1 Standard CCA

Assuming centered data in Ir, It, standard CCA (see for instance [19]) finds two
projection matrices that map aligned data in Ir × It into a latent space while
maximizing their correlation. Let Pr, Pt denote these projection matrices which
respectively correspond to reference and test images. CCA finds these matrices
as (Pr,Pt) = argmaxA,B tr(A′CrtB), subject to A′CrrA = Iu, B

′CttB = Iv;
here Iu (resp. Iv) is the du×du (resp. dv×dv) identity matrix, du (resp. dv) is the
dimensionality of data in Xr (resp. Xt), A

′ stands for transpose of A, tr is the
trace, Crt (resp. Crr, Ctt) correspond to inter-class (resp. intra-class) covariance
matrices of data in Ir, It, and equality constraints control the effect of scaling
on the solution. One can show that problem above is equivalent to solving the
eigenproblem CrtC

−1
tt CtrPr = γ2CrrPr with Pt = 1

γ
C−1

tt CtrPr. In practice,
learning these two transformations requires “paired” data in Ir×It, i.e., aligned
data. However, and as will be shown through this paper, accurately paired data
are not always available (and also expensive), furthermore the cardinality of
Ir and It can also be different, so one should adapt CCA in order to learn
transformation between data in Ir and It as shown subsequently.

2.2 Alignment Agnostic CCA

We introduce our main contribution: a novel alignment agnostic CCA approach.
Considering {(ui,vj)}ij as a subset of Ir × It (cardinalities of Ir, It are not
necessarily equal), we propose to find the transformation matrices Pr, Pt as

max
Pr,Pt

tr(U′PrP
′
tVD)

s.t. P′
rCrrPr = Iu and P′

tCttPt = Iv,
(1)

the non-matrix form of this objective function is given subsequently. In this
constrained maximization problem, U, V are two matrices of data in Ir, It
respectively, and D is an (application-dependent) matrix with its given entry
Dij set to the cross affinity or the likelihood that a given data ui ∈ Ir aligns with
vj ∈ It (see section 3.2 about different setting of this matrix). This definition of
D, together with objective function (1), make CCA alignment agnostic; indeed,
this objective function (equivalent to

∑

i,j〈P
′
rui,P

′
tvj〉Dij) aims to maximize

the correlation between pairs (with a high cross affinity of alignment) while
it also minimizes the correlation between pairs with small cross affinity. For a
particular setting of D, the following proposition provides a special case.

Proposition 1. provided that |Ir| = |It| and ∀ui ∈ Ir, ∃!vj ∈ It such that
Dij = 1; the constrained maximization problem (1) implements standard CCA.

Proof. considering the non-matrix form of (1), we obtain

tr(U′PrP
′
tVD) =

∑

i,j

〈P′
rui,P

′
tvj〉Dij , (2)
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considering a particular order of It such that each sample ui in Ir aligns with a
unique vi in It we obtain

tr(U′PrP
′
tVD) =

∑

i,j

〈P′
rui,P

′
tvj〉1{i=j}

=
∑

i

〈P′
rui,P

′
tvi〉

= tr(P′
r(
∑

i

uiv
′
i)Pt)

= tr(P′
rCrtPt),

(3)

with Crt being the inter-class covariance matrix and 1{} the indicator function.
Since the equality constraints (shown in section 2.1) remain unchanged, the
constrained maximization problem (1) is strictly equivalent to standard CCA
for this particular D �

This particular setting of D is relevant only when data are accurately paired and
also when Ir, It have the same cardinality. In practice, many problems involve
unpaired/mispaired datasets with different cardinalities; that’s why D should
be relaxed using affinity between multiple pairs (as discussed earlier in this sec-
tion) instead of using strict alignments. With this new CCA setting, the learned
transformations Pt, and Pr generate latent data representations φt(vi) = P′

tvi,
φr(uj) = P′

ruj which align according to D (i.e., ‖φr(vi)− φt(uj)‖2 decreases if
Dij is high and vice-versa). However, when multiple entries {Dij}j are high for
a given i, this may produce noisy correlations between the learned latent rep-
resentations and may impact their discrimination power (see also experiments).
In order to mitigate this effect, we also consider context regularization.

2.3 Context-based regularization

For each data ui ∈ Ir, we define a (typed) neighborhood system {Nc(i)}
C
c=1

which corresponds to the typed neighbors of ui (see section 3.2 for an example).
Using {Nc(.)}

C
c=1, we consider for each c an intrinsic adjacency matrixWc

u whose
(i, k)th entry is set as Wc

u,i,k ∝ 1{k∈Nc(i)}. Similarly, we define the matrices
{Wc

v}c for data {vj}j ∈ It; extra details about the setting of these matrices are
again given in experiments.

Using the above definition of {Wc
u}c, {W

c
v}c, we add an extra-term in the

objective function (1) as

max
Pr,Pt

tr(U′PrP
′
tVD) + β

C
∑

c=1

tr
(

U′PrP
′
tVWc

vV
′PtP

′
rUWc′

u

)

s.t. P′
rCrrPr = Iu and P′

tCttPt = Iv.

(4)

The above right-hand side term is equivalent to

β
∑

c

∑

i,j

〈P′
rui,P

′
tvj〉

∑

k,ℓ

〈P′
ruk,P

′
tvℓ〉W

c
u,i,kW

c
v,j,ℓ
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the latter corresponds to a neighborhood (or context) criterion which considers
that a high value of the correlation 〈P′

rui,P
′
tvj〉, in the learned latent space,

should imply high correlation values in the neighborhoods {Nc(i)×Nc(j)}c. This
term (via β) controls the sharpness of the correlations (and also the discrimi-
nation power) of the learned latent representations (see example in Fig. 2). Put
differently, if a given (ui,vj) is surrounded by highly correlated pairs, then the
correlation between (ui,vj) should be maximized and vice-versa [45, 46].

2.4 Optimization

Considering Lagrange multipliers for the equality constraints in Eq. (4), one may
show that optimality conditions (related to the gradient of Eq. (4) w.r.t Pr, Pt

and the Lagrange multipliers) lead to the following generalized eigenproblem

KrtC
−1
tt KtrPr = γ2CrrPr

with Pt = 1
γ
C−1

tt KtrPr,
(5)

here Ktr = K′
rt and

Ktr = VDU′ + β
∑

c VWc
vV

′PtP
′
rUWc′

u U
′

+ β
∑

c VWc′

v V
′PtP

′
rUWc

uU
′.

(6)

In practice, we solve the above eigenproblem iteratively. For each iteration τ , we
fix Pr

(τ), Pt
(τ) (in Ktr, Krt) and we find the subsequent projection matrices

Pr
(τ+1), Pt

(τ+1) by solving Eq. (5); initially, Pr
(0), Pt

(0) are set using projection
matrices of standard CCA. This process continues till a fixed-point is reached.
In practice, convergence to a fixed-point is observed in less than five iterations.

Proposition 2. let ‖.‖1 denote the entry-wise L1-norm and 1vu a dv×du matrix
of ones. Provided that the following inequality holds

β < γmin ×

(

∑

c

∥

∥Ec 1vu F′
c

∥

∥

1
+
∑

c

∥

∥Gc 1vu H′
c

∥

∥

1

)−1

(7)

with γmin being a lower bound of the positive eigenvalues of (5),Ec = VWc
vV

′C−1
tt ,

Fc = UWc
uU

′C−1
rr , Gc = VWc′

v V
′C−1

tt and Hc = UWc′

u U
′C−1

rr ; the problem
in (5), (6) admits a unique solution P̃r, P̃t as the eigenvectors of

K̃rtC
−1
tt K̃trPr = γ2CrrPr

Pt =
1
γ
C−1

tt K̃trPr,
(8)

with K̃tr being the limit of

K
(τ+1)
tr = Ψ

(

K
(τ)
tr

)

, (9)

and Ψ : Rdv×du → R
dv×du is given as

Ψ(Ktr) = VDU′ + β
∑

c VWc
vV

′PtP
′
rUWc′

u U
′

+ β
∑

c VWc′

v V
′PtP

′
rUWc

uU
′,

(10)
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with Pt, Pr, in (10), being functions of Ktr using (5). Furthermore, the matrices

K
(τ+1)
tr in (9) satisfy the convergence property

∥

∥K
(τ+1)
tr − K̃tr

∥

∥

1
≤ Lτ

∥

∥K
(τ+1)
tr −K

(0)
tr

∥

∥

1
, (11)

with L = β
γmin

(
∑

c

∥

∥Ec 1vu F′
c

∥

∥

1
+
∑

c

∥

∥Gc 1vu H′
c

∥

∥

1

)

.

Proof. see appendix

Note that resulting from the extreme sparsity of the typed adjacency matrices
{Wc

u}c, {W
c
v}c, the upper bound about β (shown in the sufficient condition in

Eq. 7) is loose, and easy to satisfy; in practice, we observed convergence for all
the values of β that were tried in our experiments (see the x-axis of Fig. 2).

3 Experiments

In this section, we show the performance of our method both on synthetic and
real datasets. The goal is to show the extra gain brought when using our align-
ment agnostic (AA) CCA approach against standard CCA and other variants.

3.1 Synthetic Toy Example

In order to show the strength of our AA CCA method, we first illustrate its
performance on a 2D toy example. We consider 2D data sampled from an “arc”
as shown in Fig. 1(a); each sample is endowed with an RGB color feature vector
which depends on its curvilinear coordinates in that “arc”. We duplicate this
dataset using a 2D rotation (with an angle of 1800) and we add a random
perturbation field (noise) both to the color features and the 2D coordinates (see
Fig. 1). Note that accurate ground-truth pairing is available but, of course, not
used in our experiments.
We apply our AA CCA (as well as standard CCA) to these data, and we show
alignment results; this 2D toy example is very similar to the subsequent real data
task as the goal is to find for each sample in the original set, its correlations and
its realignment with the second set. From Fig. (1), it is clear that standard
CA fails to produce accurate results when data is contaminated with random
perturbations and alignment errors, while our AA CCA approach successfully
realigns the two sets (see again details in Fig. 1).

3.2 Satellite Image Change Detection

We also evaluate and compare the performance of our proposed AA CCA method
on the challenging task of satellite image change detection (see for instance [47,
6, 48–50]). The goal is to find instances of relevant changes into a given scene
acquired at instance t1 with respect to the same scene taken at instant t0 < t1;
these acquisitions (at instants t0, t1) are referred to as reference and test images
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Fig. 1. This figure shows the realignment results of CCA; (a) we consider 100 examples
sampled from an “arc”, each sample is endowed with an RGB feature vector. We
duplicate this dataset using a 2D rotation (with an angle of 1800) and we add a random
perturbation field both to the color features and 2D coordinates. (b) realignment results
obtained using standard CCA; note that original data are not aligned, so in order to
apply standard CCA, each sample in the first arc-set is paired with its nearest (color
descriptor) neighbor in the second arc-set. (c) realignment results obtained using our
AA CCA approach; again data are not paired, so we consider a fully dense matrix D
that measures the cross-similarity (using an RBF kernel) between the colors of the first
and the second arc-sets. In these toy experiments, β (weight of context regularizer) is
set to 0.01 and we use an isotropic neighborhood system in order to fill the context
matrices {Wc

u}
C
c=1, {W

c
v}

C
c=1 (with C = 1) and a given entry Wc

u,i,k is set to 1 iff uk

is among the 10 spatial neighbors of ui. Similarly, we set the entries of {Wc
v}

C
c . For a

better visualization of these results, better to view/zoom the PDF of this
paper.

respectively. This task is known to be very challenging due to the difficulty to
characterize relevant changes (appearance or disappearance of objects4) from
irrelevant ones such as the presence of cars, clouds, as well as registration er-

rors. This task is also practically important; indeed, in the particular important
scenario of damage assessment after natural hazards (such as tornadoes, earth
quakes, etc.), it is crucial to achieve automatic change detection accurately in
order to organize and prioritize rescue operations.

JOPLIN-TORNADOES11 Dataset. This dataset includes 680928 non over-
lapping image patches (of 30 × 30 pixels in RGB) taken from six pairs of (ref-
erence and test) GeoEye-1 satellite images (of 9850 × 10400 pixels each). This
dataset is randomly split into two subsets: labeled used for training5 (denoted
Lr ⊂ Ir, Lt ⊂ It) and unlabeled used for testing (denoted Ur = Ir\Lr and
Ut = It\Lt) with |Lr| = |Lt| = 3000 and |Ur| = |Ut| = 680928 − 3000. All
patches in Ir (or in It), stitched together, cover a very large area – of about 20
× 20 km2 – around Joplin (Missouri) and show many changes after tornadoes

4 This can be any object so there is no a priori knowledge about what object may
appear or disappear into a given scene.

5 From which a subset of 1000 is used for validation (as a dev set).
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that happened in may 2011 (building destruction, etc.) and no-changes (includ-
ing irrelevant ones such as car appearance/disappearance, etc.). Each patch in
Ir, It is rescaled and encoded with 4096 coefficients corresponding to the output
of an inner layer of the pretrained VGG-net [51]. A given test patch is declared
as a “change” or “no-change” depending on the score of SVMs trained on top
of the learned CCA latent representations.
In order to evaluate the performances of change detection, we report the equal
error rate (EER). The latter is a balanced generalization error that equally
weights errors in “change” and “no-change” classes. Smaller EER implies better
performance.

Data Pairing and Context Regularization. In order to study the impact of
AA CCA on the performances of change detection – both with residual and rela-
tively stronger misalignments – we consider the following settings for comparison
(see also table. 1).

– Standard CCA: patches are strictly paired by assigning each patch, in the
reference image, to a unique patch in the test image (in the same location),
so it assumes that satellite images are correctly registered. CCA learning
is supervised (only labeled patches are used for training) and no-context

regularization is used (i.e, β = 0). In order to implement this setting, we
consider D as a diagonal matrix with Dii = ±1 depending on whether
vi ∈ Lt is labeled as “no-change” (or “change”) in the ground-truth, and
Dii = 0 otherwise.

– Sup+CA CCA: this is similar to “standard CCA”with the only difference
being β which is set to its “optimal” value (0.01) on the validation set (see
Fig. 2).

– SemiSup CCA: this setting is similar to “standard CCA” with the only
difference being the unlabeled patches which are now added when learn-
ing the CCA transformations, and Dii (on the unlabeled patches) is set to
2κ(vi,ui)−1 (score between −1 and +1); here κ(., .) ∈ [0, 1] is the RBF sim-
ilarity whose scale is set to the 0.1 quantile of pairwise distances in Lt ×Lr.

– SemiSup+CA CCA: this setting is similar to “SemiSup CCA” but context
regularization is used (with again β set to 0.01).

– Res CCA: this is similar to “standard CCA”, but strict data pairing is
relaxed, i.e., each patch in the reference image is assigned to multiple patches
in the test image; hence,D is no longer diagonal, and set asDij = κ(vi,uj) ∈
[0, 1] iff (vi,uj) ∈ Lt × Lr is labeled as “no-change” in the ground-truth,
Dij = κ(vi,uj) − 1 ∈ [−1, 0] iff (vi,uj) ∈ Lt × Lr is labeled as “change”
and Dij = 0 otherwise.

– Res+Sup+CA CCA: this is similar to “Res CCA”with the only difference
being β which is again set to 0.01.

– Res+SemiSup CCA: this setting is similar to “Res CCA” with the only
difference being the unlabeled patches which are now added when learning
the CCA transformations; on these unlabeled patches Dij = 2κ(vi,uj)− 1.
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Fig. 2. This figure shows the evolution of change detection performances w.r.t β on
labeled training/dev data as well as the unlabeled data. These results correspond to
the baseline Sup+CA CCA (under the regime of strong misalignments); we observe
from these curves that β = 0.01 is the best setting which is kept in all our experiments.

– Res+SemiSup+CA CCA: this setting is similar to “Res+SemiSup CCA”
but context regularization is used (i.e., β = 0.01).

Context setting: in order to build the adjacency matrices of the context (see
section 2.3), we define for each patch ui ∈ Ir (in the reference image) an
anisotropic (typed) neighborhood system {Nc(i)}

C
c=1 (with C = 8) which cor-

responds to the eight spatial neighbors of ui in a regular grid [52]; for instance
when c = 1, N1(i) corresponds to the top-left neighbor of ui. Using {Nc(.)}

8
c=1,

we build for each c an intrinsic adjacency matrix Wc
u whose (i, k)th entry is set

as Wc
u,i,k ∝ 1{k∈Nc(i)}; here 1{} is the indicator function equal to 1 iff i) the

patch uk is neighbor to ui and ii) its relative position is typed as c (c = 1 for
top-left, c = 2 for left, etc. following an anticlockwise rotation), and 0 otherwise.
Similarly, we define the matrices {Wc

v}c for data {vj}j ∈ It.

Impact of AA CCA and Comparison. Table. 2 shows a comparison of
different versions of AA CCA against other CCA variants under the regime of
small residual alignment errors. In this regime, reference and test images are first
registered using RANSAC [53]; an exhaustive visual inspection of the overlapping
(reference and test) images (after RANSAC registration) shows sharp boundaries
in most of the areas covered by these images, but some areas still include residual
misalignments due to the presence of changes, occlusions (clouds, etc.) as well
as parallax. Note that, in spite of the relative success of RANSAC in registering
these images, our AA CCA versions (rows #5–8) provide better performances
(see table. 2) compared to the other CCAs (rows #1–4); this clearly corroborates
the fact that residual alignment errors remain after RANSAC (re)alignment (as
also observed during visual inspection of RANSAC registration). Put differently,
our AA CCA method is not an opponent to RANSAC but complementary.
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Pairing CCA Learning Context Regularization Designation

strict supervised no Standard CCA
strict supervised yes Sup+CA CCA
strict semi-sup no SemiSup CCA
strict semi-sup yes SemiSup+CA CCA

relaxed supervised no Res CCA
relaxed supervised yes Res+Sup+CA CCA
relaxed semi-sup no Res+SemiSup CCA
relaxed semi-sup yes Res+SemiSup+CA CCA

Table 1. This table shows different configurations of CCA resulting from different
instances of our model. In this table, “Sup” stands for supervised, “SemiSup” for semi-
supervised, “CA” for context aware and “Res” for resilient.

These results also show that when reference and test images are globally well

# Configurations Labeled(train) Labeled(dev) Unlabeled

1 Standard CCA 14.91 15.18 12.81
2 Sup+CA CCA 12.95 14.90 11.44

3 SemiSup CCA 11.26 12.80 11.18
4 SemiSup+CA CCA 12.57 11.82 09.96

5 Res CCA 05.81 04.97 05.38
6 Res+Sup+CA CCA 06.35 05.53 05.55

7 Res+SemiSup CCA 08.60 08.74 08.33
8 Res+SemiSup+CA CCA 08.77 08.60 06.94

Table 2. This table shows change detection EER (in %) on labeled (training and vali-
dation) and unlabeled sets under the residual error regime. When context regularization
(referred to as CA in this table) is used, β is set to 10−2.

aligned (with some residual errors; see table. 2), the gain in performance is
dominated by the positive impact of alignment resilience; indeed, the impact
of the unlabeled data is not always consistent (#5,6 vs. #7,8 resp.) in spite of
being positive (in #1,2 vs. #3,4 resp.) while the impact of context regularization
is globally positive (#1,3,5,7 vs. #2,4,6,8 resp.). This clearly shows that, under
the regime of small residual errors, the use of labeled data is already enough in
order to enhance the performance of change detection; the gain comes essentially
from alignment resilience with a marginal (but clear) positive impact of context
regularization.

In order to study the impact of AA CCA w.r.t stronger alignment errors
(i.e. w.r.t a more challenging setting), we apply a relatively strong motion field
to all the pixels in the reference image; precisely, each pixel is shifted along a
direction whose x–y coordinates are randomly set to values between 15 and 30
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pixels. These shifts are sufficient in order to make the quality of alignments used
for CCA very weak so the different versions of CCA, mentioned earlier, become
more sensitive to alignment errors (EERs increase by more than 100% in table. 3
compared to EERs with residual alignment errors in table. 2). With this setting,
AA CCA is clearly more resilient and shows a substantial relative gain compared
to the other CCA versions.

# Configurations Labeled(train) Labeled(dev) Unlabeled

1 Standard CCA 25.63 25.61 28.44
2 Sup+CA CCA 22.85 23.23 26.03

3 SemiSup CCA 22.31 23.58 24.99
4 SemiSup+CA CCA 25.74 25.40 25.47

5 Res CCA 16.42 14.34 19.67
6 Res+Sup+CA CCA 16.55 16.80 19.90

7 Res+SemiSup CCA 19.01 19.24 19.55
8 Res+SemiSup+CA CCA 23.71 21.55 26.76

Table 3. This table shows change detection EER (in %) on labeled (training and vali-
dation) and unlabeled sets under the strong error regime. When context regularization
(referred to as CA in this table) is used, β is set to 10−2.

3.3 Discussion

Invariance: resulting from its misalignment resilience, it is easy to see that
our AA CCA is de facto robust to local deformations as these deformations are
strictly equivalent to local misalignments. It is also easy to see that our AA CCA
may achieve invariance to similarity transformations; indeed, the matrices used
to define the spatial context are translation invariant, and can also be made rota-
tion and scale invariant by measuring a “characteristic” scale and orientation of
patches in a given satellite image. For that purpose, dense SIFT can be used to
recover (or at least approximate) the field of orientations and scales, and hence
adapt the spatial support (extent and orientation) of context using the charac-
teristic scale, in order to make context invariant to similarity transformations.

Computational Complexity: provided that VGG-features are extracted (of-
fline) on all the patches of the reference/test images, and provided that the
adjacency matrices of context are precomputed6, and since the adjacency matri-
ces {Wc

u}c, {W
c
v}c are very sparse, the computational complexity of evaluating

Eq. (6) and solving the generalized eigenproblem in Eq. (5) both reduce to

6 Note that the adjacency matrices of the spatial neighborhood system can be com-
puted offline once and reused.
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O(min(d2udv, d
2
vdu)), here du, dv are again the dimensions of data in U, V re-

spectively; hence, this complexity is very equivalent to standard CCA which also
requires solving a generalized eigenproblem. Therefore, the gain in the accuracy
of our AA CCA is obtained without any overhead in the computational com-
plexity that remains dependent on dimensionality of data (which is, in practice,
smaller compared to the cardinality of our datasets).

Ref image Test image + GT mask Standard CCA

Sup CCA+CA Res CCA Res CCA+CA

Fig. 3. These examples show the evolution of detections (in red) for four different
settings of CCA; as we go from top-right to bottom-right, change detection results get
better. CCA acronyms shown below pictures are already defined in Table.1.

4 Conclusion

We introduced in this paper a new canonical correlation analysis method that
learns projection matrices which map data from input spaces to a latent common
space where unaligned data become strongly or weakly correlated depending on
their cross-view similarity and their context. This is achieved by optimizing a
criterion that mixes two terms: the first one aims at maximizing the correla-
tions between data which are likely to be paired while the second term acts as
a regularizer and makes correlations spatially smooth and provides us with ro-
bust context-aware latent representations. Our method considers both labeled
and unlabeled data when learning the CCA projections while being resilient to
alignment errors. Extensive experiments show the substantial gain of our CCA
method under the regimes of residual and strong alignment errors.

As a future work, our CCA method can be extended to many other tasks
where alignments are error-prone and when context can be exploited in order to
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recover from these alignment errors. These tasks include “text-to-text” alignment
in multilingual machine translation, as well as “image-to-image” matching in
multi-view object tracking.

A Appendix (proof of Proposition 2)

We will prove that Ψ is L-Lipschitzian,
with L = β

γmin
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c
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1
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1

)

. For ease of writing, we omit

in this proof the subscripts t, r in Ktr (unless explicitly required and mentioned).
Given two matrices K(2), K(1), we have
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Using Eq. (5), one may write

PtP
′

r =
1

γ
C−1

tt KtrC
−1
rr , (13)

which also results from the fact that KrtC
−1
tt Ktr is Hermitian and Crr is positive

semi-definite. By adding the superscript τ in Pt, Pr, γ, Ktr (with τ = 0, 1), omitting
again the subscripts t, r in Ktr and then plugging (13) into (12) we obtain
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(14)
here γmin is the lower bound of the eigenvalues of (5) which can be derived (see for
instance [54]). Considering Kk,ℓ as the (k, ℓ)th entry of K, we have
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