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Abstract. While implicit generative models such as GANs have shown
impressive results in high quality image reconstruction and manipulation
using a combination of various losses, we consider a simpler approach
leading to surprisingly strong results. We show that texture loss [1]
alone allows the generation of perceptually high quality images. We pro-
vide a better understanding of texture constraining mechanism and de-
velop a novel semantically guided texture constraining method for further
improvement. Using a recently developed perceptual metric employing
“deep features” and termed LPIPS [2], the method obtains state-of-the-
art results. Moreover, we show that a texture representation of those
deep features better capture the perceptual quality of an image than
the original deep features. Using texture information, off-the-shelf deep
classification networks (without training) perform as well as the best
performing (tuned and calibrated) LPIPS metrics.
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1 Introduction

Recently, the task of single image super-resolution (SISR) has taken an inter-
esting turn. Convolutional neural networks (CNNs) based models have not only
been shown to reduce the distortions on full reference (FR) metrics for, e.g.,
PSNR, SSIM and IFC [3, 4, 5, 6, 7, 8], but also to produce perceptually better
images [4,9]. The models trained specifically to reduce distortions fail at produc-
ing visually compelling results. They suffer from the issue of “regression-to-the-
mean” as they mainly rely on minimizing the mean square error (MSE) between
a high resolution image IHR and an estimated image Iest, approximated from
its low resolution counterpart ILR. This minimization of MSE leads to the sup-
pression of high frequency details in Iest, entailing blurred and over-smoothed
images. Therefore, FR metrics do not conform with the human perception of
visual quality as illustrated in [10,11] and mathematically analyzed in [12].

The newly proposed methods [4, 9, 13] made substantial progress in improv-
ing the perceptual quality of the images by building on generative adversarial
networks (GANs) [14]. The adversarial setting of a generator and a discriminator
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(a) Bicubic (b)SRresnet (b)ENet (c) SRGAN (d)TSRN (e) Original

Fig. 1: Visual Comparison of the recent state-of-the-art methods as measured by
distortion and perceptual quality metrics with our texture based super-resolution
network (TSRN) for 4× SISR.

network helps the generator in hallucinating high frequency textures into the re-
sultant images. Since the goal of the generator is to fool the discriminator, it may
hallucinate fake textures which are not entirely faithful to the input image. This
fake texture generation can be clearly observed in an 8× image super-resolution
images. This behavior of GANs can be reduced using a combination of content
preserving losses. This not only limits the ability of the generator to induce high
quality textures but also makes it fall short in reproducing image details in the
regions which have complex and irregular patterns such as tree leaves, rocks etc.

In the present paper we show that, in the task of SISR, perceptually high
quality textures can be synthesized on the estimated images Iest using the Gram
matrices based texture loss [1]. The loss was first employed by Gatys et al. in
transferring realistic textures from a style image (Is) to a content image (Ic).
Despite the success of this method, the utility of texture transfer for enhancing
natural images has not been studied extensively. This is because of the fact
that while preserving the local spatial information of the textures, the texture
loss discards the global spatial arrangement of the content image, rendering the
semantic guidance of texture transfer a difficult problem.

We explore the effectiveness of Gram matrices in transferring and halluci-
nating realistic texture in the task of SISR. We show that despite its simplicity
through the use of a single loss function, our proposed network yields favorable
results when compared to state-of-the-art models that employ a mixture of loss
functions and involve GANs that are notoriously difficult to train. In contrast,
our model converges without the need of hand-tuned training schemes. We fur-
ther build on this finding by providing external semantic guidance to control the
texture transfer. We show that this scheme prevents the random spread of small
features across object boundaries thus improving the visual quality of results es-
pecially in the challenging task of 8× SISR. Furthermore, we demonstrate, that
Gram matrices of deep features perform surprisingly well in measuring human
perceived similarity between image patches.
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2 Related Work

Super Resolution. Single image super-resolution(SISR) is the problem of ap-
proximating a high resolution (IHR) image from its corresponding low resolution
(ILR) input image. The task is to fill in missing information in IHR which in-
volves the reconstruction and hallucination of textures, edges and low-level image
statistics while remaining faithful to the low-resolution ILR input. It is an under-
determined inverse problem where different image priors have been explored to
guide the upsampling of ILR [15, 16, 17]. One of the earliest methods involved
simple interpolation schemes [18], e.g. bicubic, Lanczos. Due to their simplicity
and fast inference, these methods have been widely used, however they suffer
from blurriness and can not predict high frequency details.
Much success has been achieved by using recent data-driven approaches where
a large number of training examples are used to set the prior over the empirical
distribution of data. These learning based methods that try to learn a map-
ping between ILR to IHR can be classified into parametric and non-parametric
methods [19]. Non-parametric algorithms include neighborhood embedding al-
gorithms [20,21,22,23], that seek for the nearest match in an available database
and try to synthesize an image by simple blending of different patches. Prone to
mismatch and misalignment in patches these methods suffer from rendering arti-
facts in the HR output [24]. Parametric methods include sparse models [17], re-
gression functions [8] and convolutional neural networks (CNNs). Dong et al. [7]
first employed a shallow CNN to perform SISR on a bicubic interpolated image
and got impressive results, [25] successfully used a deep residual network. These
CNN based methods use mean square error (MSE) as an optimization objective
which leads to blurriness and fails to reconstruct high frequency details. Meth-
ods like [3, 4] tend to overcome this issue by minimizing perceptual losses in
feature space. Ledig et al. [4] proposed SRResNet to show improvements in full-
reference (FR) metrics. Follow-up work used a multi-scale optimized SRResNet
architecture to win the NTIRE 2017 SISR Challenge [26] for 4x super-resolution.
Moreover, [6] uses a coarse-to-fine laplacian pyramid framework to achieve state-
of-the-art results in 8x super-resolution with respect to FR metrics.
More recently, GANs based methods [4,9,13] showed promising results by dras-
tically improving the perceptual quality of images. In addition to the perceptual
and adversarial losses used by [4], the patch-wise texture loss used by [9] helps
synthesizing high quality textures. Our approach is different from [9], as we give
up on the adversarial and perceptual loss terms. Moreover, we also don’t use
patch-wise texture loss and show that a globally applied texture loss is enough
for spatially aligning textures and generating photo-realistic high-quality im-
ages. [27] also used patches and manually derived segmentation masks to con-
strain the texture synthesis in Iest. However, it highly relies on the efficiency of a
slow patch matching algorithm and thus is prone to wrong matching of regions in
Iest and IHR which renders artifacts. The loss is also shown to be an important
ingredient of a recent image-inpainting method [28]. A new deep features based
contextual loss [29] is used by [30] to maintain the natural image statistics of
Iest. The method is conceptually similar to texture loss. More recently, a per-
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ceptual image enhancement challenge (PIRM) [31] made a huge step to promote
perceptual enhancment in images.

2.1 Neural Texture Transfer

The concept of neural texture transfer was first coined by Gatys et al. [1]. The
method relies on matching the Gram matrices of VGG-19 [32] features to transfer
the texture of one image to another. Afterwards, much work has been done in
order to improve the speed [3,33] and quality [34,35] of style transfer using feed
forward networks and perceptual losses. Building on fast style transfer, [36, 37]
proposed models to transfer textures from multiple style images. [35] showed
improvement in style transfer by computing cross-layer Gram matrices instead
of within-layer Gram matrices. Recently, Li et al. [38] has shown that matching
the Gram matrices for style transfer is equivalent to minimizing MMD with
the second order polynomial kernel. In addition to improving the style transfer
mechanism, some work has been done to spatially constrain the texture transfer
in order to maintain the textural integrity of different regions [39, 40]. Gatys et
al. [40] demonstrated the spatial control of texture transfer using guided Gram
matrices where binary masks are used as guidance channels in order to constrain
the textures. Similar scheme was used by [34] in constraining style transfer.
Instead of enforcing spatial guidance in the feature space of deep networks like
these methods, we enforce it in pixel-space via customized texture loss which,
unlike other methods, not only enables it to easily scale to multiple style images
but also does not require semantic details at the test time.
Our main contributions are as follows:

– We provide a better understanding of texture constraining mechanism via
texture loss and show that SISR of high perceptual quality can be achieved
by using this as an objective function. The results compare well with GANs
based methods on 4x SISR and outperform them on 8x SISR.

– Unlike GANs based methods, our method is easily reproducible and generates
faithful textures especially in the constrained domain of facial images.

– To further enhance the quality of 8x SISR results, we formulate a novel se-
mantically guided texture transfer scheme in order to avoid the intermixing
of interclass textures such as grass, sky etc. The method is easily scalable to
multiple style images and does not require semantic details at test time.

– We also show that Gram matrices provide a better and richer framework to
capture the perceptual quality of images. Using this, our off-the-shelf deep
classification networks (without training) perform as well as the best per-
forming (tuned and calibrated) LPIPS metrics [2].

3 Texture Loss

The texture transfer loss was first proposed in the context of neural style trans-
fer [1], where both style Is and content images Ic are mapped into feature space
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using a VGG-19 architecture [32], pre-trained for image classification on image-
net. The feature maps of both Is and Ic are denoted by F l ∈ R

Nl×Ml and
P l ∈ R

Nl×Ml respectively, where Nl is the number of feature maps in layer
l and Ml is the product of height and width of feature maps in layer l i.e.
Ml = height × width. A Gram matrix is the inner product of vectorized fea-
ture maps. Therefore the Gram matrices for both F l and P l are computed as
Gl

i,j = FT
i Fj and Al

i,j = PT
i Pj . The texture loss Ltexture is defined by the

mean squared error between the feature correlations expressed by these Gram
matrices.

Ltexture =
1

4N2

l M
2

l

Nl∑

i=1

Ml∑

j=1

(Gl
i,j −Al

i,j)
2 (1)

The loss tries to match the global statistics of Ic with Is, captured by the corre-
lations between feature responses in layers l of the VGG-19. These correlations
capture the local spatial information in the feature maps while discard their
global spatial arrangement [41].

3.1 Constraining Texture Transfer

The above loss tries to match the global level statistics of Is and Ic without re-
taining the spatial arrangement of the content image. However, we observe that
if there exists a good feature space correspondence between Is and Ic then the
Gram matrices alone constrain the texture transfer such that it preserves the
semantic details of the content image. The composition of Gram matrices makes
use of the translational invariance property of the pre-trained VGG-19’s [32]
convolutional kernels in mapping the textures correctly. We shed more light on
this texture constraining mechanism and its translational invariant mapping in
the appendix. Thus Gram matrices’ provide a stable spatial control such that
the texture from Is maps to the corresponding features on Ic. Fig 2 shows tex-
ture transfer of a non-texture image for different initial approximates of Ic using
iterative optimization approach by [1]. Second column depicts the results of
vanilla style transfer [1] on a plain white image, 4x upsampled image and an
8x upsampled images respectively. In case of plain white image, the texture gets
transferred in an uncontrollable fashion. This is the known phenomenon in image
style transfer. However, the texture transfer on a 4x and 8x upsampled images
shows consistency in texture mapping i.e. texture from Is gets mapped to the
correct corresponding regions of Ic. We observe that the interpolated approxi-
mates Iest of ILR are good enough for establishing feature-space correspondences
and thus mapping the textures correctly.

In the Fig 2, one can observe that the texture transfer for a 4x interpolated
image is much better than that for an 8x. The ambiguousness in texture transfer
for an 8x upsampled ILR is because of the absence of enough content features to
establish correspondences. Thus to better guide the texture transfer in 8x SISR,
we devise an external semantic guidance scheme. The third column in Fig 2 shows
the effectiveness of the semantically guided texture transfer. In comparison to



6 Muhammad Waleed Gondal, Bernhard Schölkopf, and Michael Hirsch

Fig. 2: (a) shows IHR (in insets) and a plain white, 4x and 8x upsampled versions
of IHR as Ic. (b) vanilla neural texture transfer [1]. (c) neural texture transfer
with semantic guidance.

the second column we can see that the texture is transferred in a more coherent
fashion.

3.2 Texture Loss in SISR.

In SISR we try to find a mapping between a low-resolution input image ILR and
a high-resolution output image IHR. As a function approximator we use a deep
CNN. While recent state-of-the-art methods use a combination of various loss
functions, our texture super resolution network (TSRN) is specifically trained
to optimize for Ltexture in equation 1 which yields images of perceptually high
quality for 4× and 8× super-resolution, Fig 5 and 6.

3.3 SISR via Semantically Constrained Textures.

In order to make full use of the texture loss based image super resolution, we also
performed externally controlled semantic texture transfer. We enforce semantic
details via loss function. For the implementation of semantic control of texture
transfer, we use the ground truth segmentation masks provided by the recently
released dataset MS-COCO stuff dataset [42].
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Additional spatial control is provided by making use of the semantic information
present inside an image. Instead of matching the global level statistics of an
image we divide the image into r segments semantically. Each segment exhibits
its own local level statistics which are different from the other segments of the

Fig. 3: Scheme for semantically controlled texture transfer.

same image. This facilitates us to match the local level statistics at an individual
segment level. Also it helps in preserving the global spatial arrangement of the
segments as the relative spatial information of each segment is considered before
extracting them from the images.
Our method gains inspiration from the spatial control of texture transfer based
on guided Gram matrices (GGMs) [40] where binary segmentation masks are
used to define which region of a style image would get mapped to the specific
region of a content image. It uses r segmentation masks Irseg to compute guidance
channels (Tr

l ) for each layer l of a CNN by either down-sampling them to match
the dimensions of each layer’s feature maps or by enforcing spatial guidance only
on neurons whose receptive field lie inside the guidance region for better results.
The guidance channels are then used to form spatially guided feature maps by the
element-wise multiplication of texture image features and the guidance channels.
This method of computing GGMs for training a deep architecture is not feasible,
especially in our case where we have multiple segmentation masks for each image.
We propose a simplification of this process by removing the need of guidance
channels (Tr

l ) and the explicit computation of spatially guided feature maps
altogether. The r binary segmentation masks Irseg (having pixel value of 1 for
the class of interest and 0 elsewhere) where each mask categorically represents a
different region of an image are element-wise multiplied with the texture image
IHR and the estimated image Iest to give out Irtarget and Irest respectively, Fig 3.

Irtarget = IHR ◦ Irseg (2)

Irest = Iest ◦ I
r
seg (3)

These segmented images are then propagated to the VGG19 and Gram ma-
trices of their feature maps are then computed in normal fashion. The method is
flexible and relatively fast to enforce spatial guidance of texture transfer, espe-
cially when it has to be used for training a deep architecture. The texture loss is
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then performed individually for all the segmented images. Equation 4 shows the
objective function formulation of the complete semantically controlled texture
transfer. See abstract to check the effectiveness of our proposed semantically
controlled fast style transfer.

Ltexture =

r∑

k=1

1

4N2

l M
2

l

Nl∑

i=1

Ml∑

j=1

(Gl
i,j(I

k
target)−Al

i,j(I
k
est))

2 (4)

4 Architecture

For the implementation of TSRN, we employ a fully convolutional neural network
architecture inspired by [9]. The architecture is efficient at inference time as it
performs most feed forward computations on ILR and is deep enough to perform
texture synthesis. The presence of residual blocks facilitates convergence during
training. Similarly to [9], we also add a bi-cubically upsampled verison of ILR

to the predicted output such that the network is only required to learn the
residual image. This helps to reduce color shifts during training as also reported
by [9]. However, instead of using nearest neighbor up-sampling, we use a pixel
resampling layer [43] because of its recent proven success in generative networks
[44]. The method is also shown to be agnostic to model’s depth. See appendix
for more details.

5 Implementation

We trained our network on MS-COCO [42], where we center crop image patches
sized 256×256 pixels. The patches are then bi-cubically down-sampled 4× or 8×
to 64×64 or 32×32, respectively. We first pretrain our network by minimizing
mean square error (MSE) for 10 epochs. We found this pre-training beneficial for
the subsequent Gram matrix based optimization as it facilitates the detection

Fig. 4: Layer and loss ablation study on SunHays dataset [24]. Each column shows
the effects of different VGG19 [32] layers on the visual quality of a restored
image. Perceptual loss using deep features (F) generates blurred images (left
most column) in comparison to Gram matrices (G) based restoration. The last
row shows the mean LPIPS score on the dataset (lower score is better).
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of relevant features for texture transfer. After pretraining, we train our model
using only 1 as an objective function for another 100 epochs. We found that
the network converges after approximately 60 epochs. For the implementation
of Ltexture, we compute Gram matrices on layers conv2 2, conv3 4, conv4 4 and
conv5 2 of a pre-trained VGG-19 architecture. To justify the selection of spe-
cific VGG-19’s layers for texture loss, we provide a qualitative and quantitative
(LPIPS) analysis on SunHays dataset in Fig.4. We considered convolutional lay-
ers before each pooling layer except (conv1 2 ) as this layer, containing more
pixel-level and less structural information, causes artifacts and over-smoothing
in images. The selection of only higher layers tend to generate checkboard ar-
tifacts. In Fig.4, all the networks are trained using the same architecture and
procedure mentioned in the paper for 100 epochs. The network is trained with
the learning rate of 0.0005 using ADAM as an optimizer. We use the PyTorch
framework [45] to implement the model on a Nvidia Tesla P40 GPU. Inference
time for 4× and 8× SISR is approximately 41 and 32 milliseconds for a 1 mega-
pixel image and 0.203 and 0.158 seconds for a 5 mega-pixel image on the GPU.

For our results on segmentation based super-resolution (TSRN-S), we pre-train
on the MS-COCO dataset before we train on the MS-COCO stuff dataset using
equation 4 as an objective function. The stuff dataset is particularly suited for
our task as it not only contains the segmentation masks of object instances but
also outdoor scenes like grass, sky, buildings etc. Statistically, these regions cover
more than 60% [46] of images showing natural scenes. To reduce the computation
time, we consider the binary segmentation masks of only six maximally repre-
sented classes in each image (based on their pixel count). Whereas the seventh
mask covers the ’others’ class, containing the remaining regions of the image. If
there are less than six classes in an image then the ’others’ class is replicated to
give out seven masks per image.

6 Experimental Results

We evaluate both our proposed models, one with globally computed Gram ma-
trices (TSRN-G) and semantically guided Gram matrices (TSRN-S).

6.1 Quantitative Evaluation

For quantitative comparison we follow [9] and report the performance in ob-
ject recognition as a proxy for perceived image quality. Additionally, we report
numbers for a recently proposed no-reference based method [12] and the learned
full-reference image quality metric [2] that approximates perceptual similarity.

Object Recognition Performance. The perceptual quality of an image cor-
relates very well with its performance on object recognition models which are
trained on the large corpus of image-net, as corroborated by [9]. Recently, the
same methodology of assessing image quality has been adopted by a competi-
tion3. Therefore, we perform our comparison with other methods utilizing the

3 http://www.ug2challenge.org/
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TopK Methods Bicubic SRResNet [4] SRGAN [4] ENet-PAT [9] TSRN-S TSRN-G Baseline

Top 1
DenseNet-169 0.594 0.641 0.666 0.658 0.688 0.692 0.713
ResNet-50 0.545 0.616 0.655 0.649 0.674 0.671 0.703
VGG-19 0.455 0.538 0.578 0.571 0.610 0.609 0.656

Top 5
DenseNet-169 0.788 0.862 0.864 0.857 0.876 0.871 0.890
ResNet-50 0.776 0.841 0.847 0.843 0.862 0.866 0.885
VGG-19 0.676 0.772 0.798 0.792 0.819 0.821 0.853

Table 1: Top-1 and Top-5 image recognition accuracy on 4× SISR images.

TopK Methods Bicubic SRResNet [4] SRGAN [4] TSRN-S TSRN-G Baseline

Top 1
DenseNet-169 0.353 0.506 0.432 0.509 0.506 0.713
ResNet-50 0.301 0.437 0.424 0.484 0.503 0.703
VGG-19 0.239 0.343 0.267 0.374 0.389 0.656

Top 5
DenseNet-169 0.602 0.727 0.676 0.733 0.743 0.890
ResNet-50 0.518 0.689 0.657 0.718 0.717 0.885
VGG-19 0.406 0.565 0.504 0.613 0.611 0.853

Table 2: Top-1 and Top-5 image recognition accuracy on 8× SISR images.

standard image classification models trained on ImageNet. We randomly pick
1000 images from the ILSVRC 12 validation dataset and super-resolve their
downsampled versions using different super-resolution models. The performance
is evaluated on how much recognition accuracy is retained by each model, com-
pared to the baseline accuracy. Tables 1 and 2 show that our proposed TSRN
model outperforms all other state-of-the-art SISR methods for both 4× and 8×
super-resolution.

No-reference Image Quality Measure. A no-reference image quality as-
sessment is proposed by [12] and is based on NIQE [47] and [48]. Based on this
method, our method obtained 2.227 perceptual index.

LPIPS. The Learned Perceptual Image Patch Similarity (LPIPS) metric [2] is a
recently introduced full-reference image quality assessment metric which tries to
measure the perceptual similarity between two images. The metric uses linearly
calibrated off-the-shelf standard deep classification networks trained to measure
the perceptual similarity of the images. The networks are trained on the very
large Berkeley-Adobe Perceptual Patch Similarity (BAPPS) [2] dataset, con-
taining human perceptual judgments. We use the pre-trained, linearly calibrated
AlexNet and SqueezeNet networks4. The networks are trained on patches sized
64×64 pixels. Therefore, we also divide the images into patches of size 64×64
pixels. For each image, we pick its shorter dimension and find the nearest pos-
sible value v divisible by 64, then we center crop an image of resolution v ×

v. The cropped image is then further divided into patches of size 64 × 64. We
report the averaged perceptual similarity determined on those patches.
In Table 3 we use the recommended AlexNet (linear) and SqueezeNet (linear)
models for measuring the perceptual quality. We found the quantitative evalua-
tions to be consistent across numerous models that have been trained to improve

4 https://github.com/richzhang/PerceptualSimilarity
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Metric
Set 5 Set 14 BSD 100 Urban

AlexNet SNet AlexNet SNet AlexNet SNet AlexNet SNet

Bicubic 0.1585 0.1202 0.1731 0.1320 0.1463 0.1007 0.1552 0.1238
SRCNN [7] 0.0964 0.0732 0.1175 0.1025 0.1257 0.0920 0.0960 0.0905
LapSRN [6] 0.0566 0.0556 0.1002 0.0967 0.1005 0.0753 0.0746 0.0757
MSLapSRN [49] 0.0551 0.0574 0.0972 0.0916 0.0989 0.0720 0.0691 0.0709
SRResNet [4] 0.0538 0.0491 0.0848 0.0821 0.0909 0.0625 0.0628 0.0652
SRGAN [4] 0.0275 0.0466 0.0575 0.0679 0.0484 0.0527 0.0401 0.0584
ENet-PAT [9] 0.0251 0.0391 0.0569 0.0590 0.0494 0.0472 0.0414 0.0467

TSRN-S (Ours) 0.0273 0.0394 0.0438 0.0483 0.0478 0.0420 0.0397 0.0404
TSRN-G (Ours) 0.0285 0.0358 0.0463 0.0456 0.0481 0.0404 0.0385 0.0392

Table 3: Comparison for 4× SISR on pre-trained AlexNet-linear and SqueezeNet-
linear LPIPS metric [2]. Lower score is better.

Metric
Set 5 Set 14 BSD 100 Urban

AlexNet SNet AlexNet SNet AlexNet SNet AlexNet SNet

Bicubic 0.27464 0.22877 0.27390 0.24669 0.22802 0.20202 0.23854 0.22946
LapSRN [6] 0.19849 0.15506 0.21525 0.19058 0.19009 0.16379 0.15638 0.15426
MSLapSRN [49] 0.16748 0.13609 0.20184 0.17599 0.17679 0.15276 0.13252 0.13328
SRResNet [4] 0.13679 0.11958 0.18091 0.16060 0.16148 0.13512 0.13714 0.13217
SRGAN [4] 0.14230 0.15007 0.13801 0.12720 0.13276 0.10902 0.12929 0.12470

TSRN-S(Ours) 0.0859 0.0863 0.1194 0.0963 0.1021 0.0823 0.0918 0.0802
TSRN-G(Ours) 0.0900 0.0859 0.1277 0.1092 0.1029 0.0833 0.0900 0.0817

Table 4: Comparison for 8× SISR on pre-trained AlexNet-linear and SqueezeNet-
linear LPIPS Perceptual Similarity Metric models. Lower score is better.

either PSNR, SSIM scores such as SRResNet, LapSRN, SRCNN or the ones
trained to improve perceptual quality such as SRGAN and ENet-PAT. TSRN
consistently achieves better perceptual similarity scores than other methods.

6.2 Visual Comparison

In Fig. 5 and 6 we show visual comparisons with recently proposed state-of-the-
art models for both 4× and 8× super-resolution. Our TSRN model manages to
hallucinate realistic textures and image details and compares favorably with the
state-of-the-art.

6.3 TSRN-Faces on CelebA Dataset.

In addition to training on MS-COCO dataset [42], we also tested our proposed
texture based super resolution method for CelebA faces dataset [?]. Our method
yields visible improvements over other methods. More specifically we compare
with Enhancenet-PAT [9] which employs GAN for enhancing textures. We ob-
serve that such method has a tendency to manipulate the overall facial features,
thus not maintaining the integrity of the input image. In comparison, our method
learns the texture mapping between a low resolution image (ILR) and its high
resolution counterpart (IHR) thus generates visually plausible results.
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(a) SRResNet (b)SRGAN (b)ENet-PAT (c) TSRN-G (d) TSRN-S (e) Original

Fig. 5: Visual Comparison of recent state-of-the-art methods based on distortion
metrics and perceptual quality with our texture based 4× image super-resolution.

(a)Bicubic (b)LapSrn (c)SRresnet (d)SRGAN (e)TSRN-G (f)TSRN-S (g)Original

Fig. 6: Visual Comparison of recent state-of-the-art methods based on distortion
metrics and perceptual quality with our texture based 8× image super-resolution.

7 Using Texture as a Perceptual Metric

In this section, we propose an improvement on LPIPS [2], a recently proposed
perceptual similarity metric based on deep features. The method computes the
distance between the deep features of two images in order to determine the per-
ceptual similarity between them. We argue that Gram matrices that measure the
correlations of the same deep features, provide a richer and better framework for
capturing the perceptual representation of images than the features themselves.
Therefore, instead of computing the distances between the features of a given
convolutional layer, we compute the distance between their Gram matrices. For
a pair of reference and distorted patches (x,x0), we compute their normalized
Gram matrices Ĝl and Âl ∈ R

Cl×Cl , where C is the number of channels in
layer l. We compute the distance between them using the same formulation as
in equation1 and then sum it up across all layers l, i.e.

d(x, x0) =
∑

l

1

C2

l

Cl∑

i=1

Cl∑

j=1

(Gl
i,j −Al

i,j)
2 (5)
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(a) Bicubic (b) ENet-PAT (b) ENet-PATF (c) TSRN-Faces (d) Original

Fig. 7: Visual comparison of different networks trained on CelebA dataset [?] for
4× SISR. TSRN yields visually faithful results to the original input image.

Using the features of “uncalibrated” pre-trained image classification net-
works, this Gram matrices distance achieves better 2AFC scores on the BAPPS
validation dataset than the distances based on the features themselves. In Fig.8,
our results (Net-G) are comparable to the “calibrated” LPIPS models (specif-
ically trained on BAPPS training datasets) and also outperform them in some
benchmarks. For comparison, we adopted the same configuration of three refer-
ence models (SqueezeNet [50], AlexNet [51] and VGG-16 [32]) used by [2]. How-
ever, to get the best results we changed the number of layers for the distance
computation, more specifically we did not use the feature activations before the
first pooling layer and after the penultimate pooling layer of each model. This
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Fig. 8: Quantitative comparison between different methods for determining per-
ceptual similarity on the BAPPS validation dataset [2]. Our Gram matrices
based distance (Net-G) scores better than the feature based method (Net-F).
Net-G results are comparable to calibrated *LPIPS metrics which are specifi-
cally trained on BAPPS training dataset, thus have an advantage.
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is because the texture from the lowest layers do not contain any structure in
them whereas the last layers capture abstract and semantically more meaningful
representations but lack in their ability to capture the perceptual details [41].

Subtype Metric

Distortions Real Algorithms All

Trad- CNN-
All

Super- Video Color- Frame
All All

itional Based res Deblur ization Interp

Oracle Human 80.8 84.4 82.6 73.4 67.1 68.8 68.6 69.5 73.9

Squeeze – lin 76.1 83.5 79.8 71.1 60.8 65.3 63.2 65.1 70.0

*LPIPS [2]

Alex – lin 73.9 83.4 78.7 71.5 61.2 65.3 63.2 65.3 69.8
VGG – lin 76.0 82.8 79.4 70.5 60.5 62.5 63.0 64.1 69.2
Squeeze – scratch 74.9 83.1 79.0 71.1 60.8 63.0 62.4 64.3 69.2
Alex – scratch 77.6 82.8 80.2 71.1 61.0 65.6 63.3 65.2 70.2
VGG – scratch 77.9 83.7 80.8 71.1 60.6 64.0 62.9 64.6 70.0
Squeeze – tune 76.7 83.2 79.9 70.4 61.1 63.2 63.2 64.5 69.6
Alex – tune 77.7 83.5 80.6 69.1 60.5 64.8 62.9 64.3 69.7
VGG – tune 79.3 83.5 81.4 69.8 60.5 63.4 62.3 64.0 69.8

Supervised-
SqueezeNet [50] 73.3 82.6 78.0 70.1 60.1 63.6 62.0 64.0 68.6

Nets [2]
AlexNet [51] 70.6 83.1 76.8 71.7 60.7 65.0 62.7 65.0 68.9
VGG [32] 70.1 81.3 75.7 69.0 59.0 60.2 62.1 62.6 67.0

Supervised-
SqueezeNet [50] 77.5 83.2 80.4 71.6 61.1 65.1 62.9 65.2 70.2

Nets (Ours)
AlexNet [51] 73.5 83.0 78.3 71.5 60.9 65.6 63.4 65.4 69.7
VGG [32] 78.3 83.7 81.0 70.9 60.9 64.3 63.1 64.8 70.2

Table 5: 2AFC scores (higher is better) for different methods using disparity in
deep feature representations [2] and texture representations (ours) on BAPPS
validation dataset. Values in blue are highest performing while the values in
red are the second best. Our texture based scores from untrained supervised
networks consistently perform better than the feature based scores and compare
to *LPIPS metrics which are specifically trained on BAPPS training dataset,
thus have an advantage over other untrained methods.

8 Conclusion

Transferring texture via matching Gram matrices has been very successful in
image style transfer, however their utility for natural image enhancement has
not been studied extensively. In this work we demonstrate that Gram matri-
ces are very powerful in capturing perceptual representations of images which
makes them a perfect candidate for their use in a perceptual similarity met-
ric like LPIPS. Exploiting this ability, we obtain image reconstructions of high
perceptual quality for the task of 4× and 8× single image super-resolution. We
further devise a scheme for external semantic guidance for controlling texture
transfer which is particularly helpful for 8× super-resolution. Our method is
simple, easily reproducible and yet effective. We believe that texture loss can
have far reaching implications in the future research of image restoration.
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