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Abstract. Understanding 3D semantics of the surrounding objects is critically

important and a challenging requirement from the safety perspective of autonomous

driving. We present a localization prioritized approach for effectively localizing

the position of the object in the 3D world and fit a complete 3D box around it.

Our method requires a single image and performs both 2D and 3D detection in

an end to end fashion. Estimating depth of an object from a monocular image is

not as generalizable as pose and dimensions. Hence, we approach this problem

by effectively localizing the projection of the center of bottom face of 3D bound-

ing box (CBF) to the image. Later in our post processing stage, we use a look up

table based approach to reproject the CBF in the 3D world. This stage is a single

time setup and simple enough to be deployed in fixed map communities where

we can store complete knowledge about the ground plane. The object’s dimen-

sion and pose are predicted in multitask fashion using a shared set of features.

Experiments show that our method is able to produce smooth tracks for surround

objects and outperforms existing image based approaches in 3D localization.

Keywords: Single Stage 3D Object Detection; Inverse Perspective Mapping; Ef-

fective Near Object Localization

1 Introduction

Scene understanding is among the critical safety requirements to make an autonomous

system learn and adapt based on his interactions with the surroundings. Works like [16]

talk about the overall signal to semantics for surround analysis. [15] and [17] present

complete vision based surround understanding systems. Taking inspiration from these

works, our work proposes a complete vision based solution for estimating the loca-

tion, dimension and pose of the surrounding objects. Complete 3D knowledge of the

surround vehicles contributes to efficient path planning and tracking for autonomous

systems. 3D object detection involves 9 degrees of freedom accumulated as pose, di-

mensions and location. In normal driving scenarios, we assume no roll and pitch of the

objects and the visual yaw fluctuates around 0◦ , ±90◦ and 180◦. Also, the dimensions

of on road objects like cars are highly invariant and have a high kurtosis. Effectively lo-

calizing the position of the object in 3D world become much more important for good

3D object detection.
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Fig. 1: Illustration of proposed approach: We train a detector to predict the keypoint

(green circle) that would result in the desired 3D location after inverse perspective map-

ping (IPM). This is in contrast to traditional approaches where the bottom center of the

2D detection box (red circle) would be used to carry out the IPM.

Most of the works in the domain of learning 3D semantics use expensive LiDAR

systems to learn object proposals like [2] and [20]. In this work, we just use an input

from a single camera and estimate the 3D location of the surround objects. We tackle

the object localization by first estimating the projection of the center of the bottom face

(CBF) on the image along with other parameters in an end to end fashion. Recent ad-

vances in the field of object detection can be broadly categorized into two stage and

single stage architectures. The two stage architectures involve a pooling stage which

takes input from the proposal network for all regions having the probability of an ob-

ject. The detection architectures are further extended as in [5] to perfrom keypoint and

instance mask prediction. On the other hand, architectures like [9], [13] and [8] present

a mechanism to learn the posterior distribution of each class given region in the im-

age in a single stage. We take the inspiration from the success of these approaches and

consider the 2D projection of the center of the bottom face as a keypoint. In driving

scenarios, the position of this keypoint fluctuates a lot when the objects are in a certain

range of the ego vehicle. Hence we focus on developing an efficient estimation scheme

which prioritizes on localizing this keypoint against other learning tasks in the network.

All object detection architectures use anchors of different scales and ratios which

are regressed over the whole feature map at different levels. The anchors are labeled

as positive if they overlap above a threshold with the ground truth location. Positive

anchors are regressed to their corresponding ground truth match. The same regression

approach can be applied for locating the projection of the 3D bounding box’s center

on the image plane which we refer as CBF in our work. However instead of creating a

separate regression head for CBF, we change the anchor marking scheme to prioritize

it’s learning. This scheme reduces the total number of positive samples which might

lead to heavy class imbalance. To avoid that, we use Focal loss [8] which helps in mod-
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ulating the loss perfectly between the negative and positive examples. Our experiments

show that change in anchor marking scheme does not effect the 2D detection task. Our

modification implicitly helps in classifying those locations on the feature map which

are close to the center projection. Hence, the network does all the task learning with

reference to the keypoint’s location which in our case is the projection of bottom face’s

center to the image plane.

Our main contributions presented in this paper can be summarized as follows - 1)

We approach the 3D bounding box learning task in an end to end fashion and propose

a complete image based solution. 2) We modify the single stage detection architecture

to prioritize learning based on the keypoint location. 3) We demonstrate an alternative

approach to traditional approaches which perform IPM (Inverse Perspective Mapping)

on the center of the bottom edge of the 2D bounding box to find the corresponding

location in the world coordinates. 4) We present a look up table based approach for

reprojecting the center to the 3D world.

2 Related Research

We highlight some representative works in the 3D Object Detection in Autonomous

Driving using different sensor modalities. Most approaches use depth sensors like Li-

DAR or a stereo setup. Chen. et .al [2] learn proposals from the bird eye view of the

LiDAR point cloud and use the corresponding region proposal in the image and the

LiDAR front view to generate a pooled feature map from both LiDAR and camera

modalities. The final 3D box regression and multi-class classification is performed af-

ter series of fusion operations. In [20], they distribute the complete LiDAR point cloud

into voxels and perform learning upon the voxelized feature map. Each voxel’s feature

capture the local and global semantics for all the points inside that voxel. In [11], they

run a 2D object detector over an image and seek for the LiDAR points corresponding

to each object’s frustum. Once, in the constrained LiDAR space, instance segmentation

of 3D points is performed as done in [12]. All these techniques either learn propos-

als in the depth space or use it for post analysis. On the other hand, our approach just

uses a single image and encourages a very cheap solution which can be deployed for

near range scene perception. Our approach shows a happy marriage between Inverse

Perspective Mapping(IPM) and deep network based predictions. Hence in a fixed map

environment where there is complete knowledge of ground plane, our solution’s perfor-

mance becomes invariant to the range of the vehicle from the ego one.

Previous works which do 3D object detection using images, like [1] either rely on

regressing 3D anchor boxes in the image using cues from complex features like seg-

mentation maps, contextual pooling and location prior from the ground truth data. [10]

learns dimensions and pose from cropped image features and uses projective constraints

to compute the translation from the ego vehicle. They also analyzed how regressing the

center of the 3D box against dimensions is sensitive to learning accurate 3D boxes.

These approaches either compute complex features to regress the boxes in the 3D space

or are not end to end learned. Our work shows a simple and efficient approach to com-

pute the localization and a post processing stage to fit a 3D box over the object. We
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leverage upon works like [7] and present an end to end learning platform for 3D object

detection.

3 Monocular 3D Localization

3.1 Problem Formulation

Given a single camera image, we have to estimate the location, dimensions and the pose

of the all the objects in the field of view. The center of the bottom face of a 3D box lies

on the ground plane. We use this constraint and design a supervised learning scheme

which is able to localize the projection of the center on the image plane. Then we use the

ground plane information by fitting a fixed number of planes on the ground surface and

find the best plane which has the least inverse re-projection error. Note, this technique

is only applicable for the points which lie on the ground plane. Hence, it is different

from some other works which use the center as the intersection of the diagonals of the

3D box. We also extended our single stage architecture to predict the dimensions and

the pose to fit a complete 3D box.

3.2 CBF Based Region Proposal

The original anchor based region proposal scheme takes as input a downscaled feature

map and at each location on the feature map, we propose anchors of different scales and

ratios. Assuming N anchors at each scale, only those anchors are marked as positive

which have an intersection more than a threshold with any ground truth object. How-

ever we move slightly from this strategy. We project all the 3D center of the object to

the image using camera projection matrices. The location of the projection is computed

on each downscaled feature map which will be used for supervision. As the computed

location will not be an integer, we mark all the nearest integer neighbors corresponding

to that ground truth location in each feature map. Figure 2 shows the center of the posi-

tive anchors selected (red) and the location of the CBF projection (yellow). We perform

regression on features maps which are downscaled by a factor of 1/2i, ∀i = 3, 4, 5, 6, 7
with respect to the original image size. Figure 3 shows how to determine the location

of the positive anchors on any feature map. If both x and y coordinates of the center

projection needs to be discretized, we choose the nearest 4 neighbors to it on the feature

map i.e (x−1, y−1), (x+1, y+1), (x−1, y+1), (x+1, y−1). For cases, when either

x or y coordinate is integer, we choose 6 neighbors by adding ((x, y + 1), (x, y − 1))
or ((x− 1, y), (x+ 1, y)) in the two cases.

3.3 Regression Parameters

As described, our region proposal architecture marks only those anchors as positive

which are around the CBF in the feature map. Simply classifying those anchors as

positive will not suffice the purpose of accurate prediction of 3D translation. Hence,

we attach a CBF regression head to the class body as shown in Figure 4. The CBF

head will help in accounting the problem caused by discretization of the CBF location
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Fig. 2: The red circle shows the center of positive anchors selected by our approach and

the yellow circle shows the projection of the center of the ground truth 3D bounding

box. In comparison to IOU(Intersection Over Union) based anchor labeling approach,

we label very few anchors as positive. Also depending upon the size of the anchor, IOU

of the positive anchor with the object can be less than 0.5.

in the feature map. We use the same approach as in [14] for regressing ∆cbfx and

∆cbfy . Apart from that we regress the ∆xc,∆yc,∆w,∆l for estimating the center and

the dimensions of the 2D bounding box. As learning progresses, the classification head

will learn to heat up only around the CBF location in the feature map. The shared pool

of features learnt by the localization and the classification body can also be used to

learn all the parameters for estimating an accurate 3D bounding box. Hence, we attach

prediction heads for dimension and yaw in each prediction blob as shown in 4. For

the classification head, we used the focal loss [8] which is excellent in handling the

class imbalance between the positive and negative samples. Handling this imbalance is

necessary because our location based anchor marking approach reduces the number of

positive anchors per object. The regression targets for CBF and location head are learnt

using Smooth-L1 loss, as in [4]. The regression loss is only computed for the positive

anchors. Because of our new region proposal approach, we decrease the positive IOU

threshold from 0.5, (as used in most of the cases) to 0.2. Anchors having a non zero

IOU less than 0.2 are ignored while back propagation. Hence, the negative examples in

our case will also include those anchors which are having a large overlap with the object

of interest. The dimension head estimates the deviation from the mean dimensions of

the dataset. This makes the learning easier because gradients will not be fluctuating

heavily at the start of the training. The mean dimension(l,w,h) of cars in KITTI dataset

is (3.88, 1.63, 1.52) in meters. We use multibin loss to predict the camera yaw using

2 bins for classification, (−π, 0) and (0, π). Camera yaw can be defined as the angle

made by the camera axis of the surround object with the light ray from ego camera. The

overall loss function for all the predictions can be written as :-

L = Lloc + α · Lclass + β · Lcbf + γ · Ldim + Lθ (1)

Lθ = Lθclass
+ Lθreg (2)

We experiment with different weights for learning different tasks simultaneously. From

our observations, using large weights during the start diverges the training. Hence, for

the first 10 epochs, we use the same weight for all the tasks and eventually put α, β and
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Fig. 3: The red dot shows the CBF projection in a feature map and the green dot shows

the nearest integer neighbors. Depending on the data type of the ground truth, an object

can not have more than six positive anchors.

γ to 8, 8 and 2 respectively. All the loss functions are formulated as follows:-

Lloc = SmoothL1(tx, tx∗ , ty, ty∗ , tw, tw∗ , th, th∗) (3)

LCBF = SmoothL1(tCBF , tCBF∗) (4)

Ldim = 1/n
∑

(d− d∗)2 (5)

Lθclass
= SoftmaxLoss (6)

Lθreg = 1/nbins((cosθ − cosθ∗)2 + (sinθ − sinθ∗)2) (7)

3.4 IPM Based Projection

The proposed network is capable to predict accurate location of the center projection

on the image (CBF). Now we present a simple approach to map each CBF prediction

to it’s corresponding 3D location. The center of the 3D Box lies on the ground plane

which allows approaches like Inverse Perspective Mapping to be applicable in our case.

However instead of learning the transformation from ground plane to the image plane,

we use a look-up table based approach which is easily extendable to more than one

transformation. Multiple transformations will not restrict vehicles at different ranges to

lie on a single ground plane. Also, the complete pipeline for reprojection of CBF is

a one time setup. We use the ground LiDAR points for each scene in KITTI to kick

start this one time setup. RANSAC is used to fit multiple planes to a given set of laser

points. Upon a fixed 2D mesh grid, each plane equation will provide a different depth

value. The 2D mesh grid includes points for which X ranges from 0 to 100 meters

and Y ranges from −40 to 40 meters at a resolution of 0.01 meters. Each 3D location

is then projected to the image and stored in a separate KD-Tree for each plane. Also,

we store the corresponding 3D location for each 2D location on the image. For each

CBF prediction, we query all the KD-Trees to find the best possible solution. The 3D

coordinates of the nearest neighbour are looked in the corresponding look up table and
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Fig. 4: Single Stage Multi-Task Learning Framework for 3D Bounding Box Estimation.

Feature Pyramid with ResNet Backbone is used to extract the features for all the pre-

diction blobs. Each feature pyramid level predicts the location, dimension and pose of

the object.

used as the center of the 3D box. The complete setup is summarized in the algorithm

below:

Algorithm 1 IPM Setup Algorithm

1: procedure SETUPIPM(ground pts, tf img 3d) ⊲ Returns possible ground planes

2: ground planes = RANSAC(ground pts)
3: mesh 2d← get 2d mesh(xmin, xmax, ymin, ymax, xres, yres)
4: i← 0
5: for all plane ∈ ground planes do

6: pts 3d[i] = get lidar mesh(plane, xmin, xmax, xres, ymin, ymax, yres)
7: pts 2d[i] = tf img 3d.project(mesh 3d[i])
8: kd trees[i] = KDTREE(pts 2d[i])
9: i← i+ 1

10: end for

11: return kd trees, pts 3d, pts 2d
12: end procedure

3.5 Implementation

The complete architectural flow is shown in Figure 4. We use the ResNet body [6] as

our basenet and use feature pyramid as proposed in [7] to construct multi-scale fea-

ture maps. As shown in the architecture, each lower level of pyramid is formed by

bi-linearly upsampling the upper level and adding the corresponding block’s output

from the basenet body. Each pyramid level is used to learn objects at different scales.
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Therefore, we chose anchor boxes of different sizes keeping number of aspect ratios to

be constant at each level. We pull feature maps from five levels and use anchors boxes

with sizes (32× 32, 64× 64, 128× 128, 256× 256, 512× 512) corresponding to each

level. Anchor boxes are further changed to following aspect ratios (1, 1/2, 2/1) at each

level. The ResNet body is initialized with pretrained imagenet weights.

We use KITTI’s 3D object detection dataset [3] for the training. The input resolution

of the training data set is 1242 × 375, which is resized by changing the maximum di-

mension to 1024 keeping the aspect ratio constant. As different object scales are learnt

efficiently using feature pyramid networks, we kept the input batch size as constant for

entire training process. The KITTI training labels contain the translation for each la-

belled object which is transformed to the image using the LiDAR to camera and the

rectified image projection matrices. We pad the image with zeros to take into account

the cases where the CBF lies outside the image plane. We split the KITTI training data

as proposed in [18] by ensuring that the same video sequence is not used in both train-

ing and validation set. The network is trained end to end with a batch size of 4 for

80 epochs. We use constant learning rate of 0.001 with a momentum of 0.9. Weight

decay of 0.0001 is used to regularize the weights at each training step. During infer-

ence, the network will classify the regions surrounding the CBF projection as positive.

We perform Non-Maximum Suppression (NMS) on the 2D bounding boxes by sorting

the box predictions with the classification score. We use a NMS threshold of 0.3 and

classification threshold of 0.5 during evaluation. The complete implementation can be

summarized in an algorithm as follows.

Algorithm 2 Our Monocular 3D-BBOX Algorithm

1: procedure GET3DBBOX(img, kd trees,meshes 3d)

2: loc preds, cls preds, cbf preds, dim preds, yaw preds← net(image)
3: bbox 2d, scores← decode(loc preds, cls preds) ⊲ 2D Location of Object in Image

4: for all pred ∈ cbf preds do

5: i← 0
6: min dist←∞
7: for all tree ∈ kd trees do

8: dist, loc← tree.query(pred)
9: if dist < min dist then

10: min dist← dist

11: loc 3d[i]← meshes 3d[loc]
12: end if

13: end for

14: dim l[i]← mean l + dim preds[i][0]
15: dim w[i]← mean w + dim preds[i][1]
16: dim h[i]← mean h+ dim preds[i][2]
17: yaw[i]← decode multibin pred(yaw preds[i])
18: i← i+ 1
19: end for

20: return loc 3d, dim l, dim w, dim h, yaw

21: end procedure
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Fig. 5: We compare our change in the anchor labeling pipeline with IOU based anchor

labeling. The blue bar shows the average prediction error for some KITTI streams used

in the validation set. The yellow bar shows error for the case when the same architecture

is trained with IOU based labeling.

4 Experimental Evaluation

We perform evaluation using the KITTI 3D object detection dataset. We are focusing

our experiments only on the vehicle category in the KITTI. Figure 9 shows some qual-

itative results from our approach on KITTI cars in our test set.

4.1 Comparison with Direct CBF Regression

In this section, we compare our approach with the one where we keep the original IOU

based region proposal methodology and add a regression head for CBF prediction. Our

proposed positive anchor marking scheme gives better results than IOU based scheme.

A variant of Chamfer Distance is used to evaluate and compare both the approaches.

For each predicted CBF projection in the image, we find the closest ground truth cor-

respondence to it. We also verify that the nearest neighbor should lie inside the region

formed by expanding the predicted bounding box by factor of 1.5.

Figure 5 shows the improvement in pixel level estimation of the CBF with our pro-

posed approach. Figure 6 illustrates some tracks picked from KITTI sequences. We can

see how the flat ground plane assumption by IPM brings some jitters in the tracks. Next

we also show that how our learning scheme is able to produce very similar tracks to the

ones after applying IPM to ground trajectories. Figure 8 shows some visual examples

where our proposed change helps in improving the CBF prediction.

4.2 Effect of Range on Localization

In this section, we analyze how the 3D localization performance starts to degrade as the

distance of the surround vehicle increases from the ego vehicle. We only analyze objects

which are within a range of 50 meters from the ego vehicle and show our performance
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at range interval of 10 meters. Table [1] and [2] show the 3D localization error after

applying IPM over the predicted location of the center in the image and with/without

applying IPM to the ground truth 3D location.

Table 1: 3D localization error variation with distance from ego vehicle after applying

IPM to the ground truth annotations. We use only plane for our IPM based post pro-

cessing. Multiple IPM planes can help in maintaining the same performance across all

ranges.
Range (in meters) C.D

[0-10) 0.312

[10-20) 0.668

[20-30) 1.103

[30-40) 1.582

[40-50) 2.212

Table 2: 3D localization error variation with distance from ego vehicle without apply-

ing IPM to the ground truth annotations. After comparison from Table 1, we can say

that localization of the center on image plane is perfect and can be improved by using

multiple IPM planes and better ground plane information.
Range (in meters) C.D

[0-10) 0.454

[10-20) 1.446

[20-30) 2.358

[30-40) 4.532

[40-50) 7.823

4.3 Effect on the Detection Performance

The proposed change reduces the number of positive anchors in comparison to original

anchor design. Also, the positive anchors are less overlapping with the objects because

the CBF is most of the time near the bottom edge of 2D box. The results from the

validation set on KITTI shows that our new design does not hamper the 2D localization.

Figure 7 shows the ROC curve for the same.

As our main motivation was to analyze the quality of 3D bounding box, we ignored

those samples which are heavily occluded and truncated from our training set. On the

KITTI test dataset, we get reasonable recall at all distance ranges. Table [3] shows

results obtained on KITTI test set for car detection. Further improvements in the MAP

can be obtained after performing padding on the image and including all truncated cases
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Fig. 6: We use the predicted center of the 3D box to form a complete trajectory for all

the objects seen in the KITTI clip. Better object localization will remover the jitteriness

from the tracks. Grid Resolution used is 2 × 2 meters. The third column shows the

trajectories formed using our approach. They are quite comparable to the ones in the

second column which is formed after applying IPM on ground truth location and are

much smoother than ones in the fourth column.

in the training.

Table 3: Car Detection Results on the KITTI Test Set

Benchmark Easy Moderate Hard

Car (Detection) 79.87 % 64.98 % 49.31 %

4.4 3D Bounding Box Evaluation

To evaluate the accuracy of the predicted 3D bounding box, we compute the 3D Inter-

section over Union (IOU) and do a comparative analysis over surround objects from

the ego vehicle. For objects which are in the range of [0− 10] meters, a good fitted 3D

bounding box provides good scene understanding for near range perception activities.

We compare our approach against [10] which also present a complete image based so-

lution for 3D box estimation. In [10], first a 2D detector is ran over the image to obtain

all the detections, whereas in contrast to that our approach learns the complete task of

detection, 3D localization, orientation and dimension estimation in single step. Hence

our evaluation is not variant to the performance of any component in our pipeline. Also,

we evaluate the Average Orientation Similarity for KITTI Cars as shown in Table [4].
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Fig. 7: ROC Curve at IOU Threshold of 0.5

The AOS score computes the cosine difference of the predicted yaw with the ground

truth yaw and averages this over recall steps. We emulate KITTI’s 3D bounding box

overlap strategy to compute the 3D IOU in our analysis. 3D recall at different ranges

depends on the training samples which we include during training our architecture. On

the other hand [10] are computing the mean 3D IOU after obtaining the cropped region

from the 2D detector. Hence, even currently at lower recall from other approaches we

are still able to outperform or match the 3D IOU across all distance ranges, as shown in

Table [5]. The recall of our approach for different distance ranges are shown in Table

[6].

Table 4: Car Orientation Results on the KITTI Test Set

Benchmark Easy Moderate Hard

Car (Orientation) 50.26 % 41.10 % 32.03 %

Table 5: 3D IOU variation with distance from ego vehicle

Method [0-10) [10-20) [20-30) [30-40) [40-50)

SubCNN [19] 0.210 0.175 0.125 0.075 0.020

3D Bbox [10] 0.275 0.315 0.200 0.152 0.100

Our Method 0.487 0.324 0.1958 0.143 0.121

The large gain in 3D IOU for surround vehicles in the range of [0-10) should be

credited to our localization prioritized approach. In Table [7] we compare the same



3D Bounding Boxes for Road Vehicles. 13

Table 6: Recall for KITTI Cars across distance ranges from ego vehicle
Range (in meters) C.D

[0-10) 0.465

[10-20) 0.711

[20-30) 0.464

[30-40) 0.324

[40-50) 0.219

localization error mentioned in Table [2] with the state of the art works selected for 3D

IOU comparison. The single ground plane assumption suppresses our approach as the

distance of surround vehicle increases from the ego.

Table 7: Localization error variation with distance from ego vehicle

Method [0-10) [10-20) [20-30)

SubCNN [19] 1.449 1.887 2.437

3D Bbox [10] 1.447 1.112 1.959

Our Method 0.454 1.446 2.358

5 Conclusions

In this paper, we propose a complete camera based solution to localize the surround-

ing objects in the 3D world. Our method helps in better estimation of the projection of

the center in comparison to direct regression. For fixed map environments, the assump-

tion of flat ground in IPM projection is resolved by learning a data dependent approach

and choosing the best K fitting planes for all the points on the ground plane. This is

a one time setup and the number of planes can be tuned without changing the infer-

ence pipeline. This learned module can be extended in future for learning the object

maneuver and track prediction.
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Fig. 8: Illustration showing the improvements in pixel error (increase in concentric over-

lap) with the proposed approach. The red circles are the ground truth and yellow circles

are the predictions. All circles have a radius of 5 pixels
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Fig. 9: Illustration of the 2D detection boxes and the corresponding 3D projections es-

timated by our proposed approach.
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