
Learning Driving Behaviors for Automated Cars

in Unstructured Environments

Meha Kaushik, K. Madhava Krishna

Robotics Research Center, International Institute of Information Technology,
Hyderabad

Abstract. The core of Reinforcement learning lies in learning from
experiences. The performance of the agent is hugely impacted by the
training conditions, reward functions and exploration policies. Deep De-
terministic Policy Gradient(DDPG) is a well known approach to solve
continuous control problems in RL. We use DDPG with intelligent choice
of reward function and exploration policy to learn various driving behav-
iors(Lanekeeping, Overtaking, Blocking, Defensive, Opportunistic) for a
simulated car in unstructured environments. In cluttered scenes, where
the opponent agents are not following any driving pattern, it is difficult
to anticipate their behavior and henceforth decide our agent’s actions.
DDPG enables us to propose a solution which requires only the sen-
sor information at current time step to predict the action to be taken.
Our main contribution is generating a behavior based motion model for
simulated cars, which plans for every instant.

Keywords: Reinforcement Learning, DDPG, overtaking, blocking, driv-
ing in traffic, unstructured environments

Fig. 1: A view of the environment and traffic settings for our experiments. The scene
consists of cars on three lanes moving with random velocities. The light blue car towards
the end is our agent, rest all cars are the traffic components. They can steer in any
direction with any speed. Our car is navigating from left most to rightmost lane.
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1 Introduction

Driving in cluttered unstructured environments is not an easy task. By unstruc-
tured we imply that the scene is continuously changing and we cannot model the
behavior or motion model of the other cars. Different cars are moving at different
speeds and with a different motivation. Some are motivated by the need to reach
a destination at the earliest possible time and some aim at driving safely without
any possible risks. In real time traffic, vehicles are guided by the driver’s behav-
ior and very importantly the behavior of nearby cars. The behavior or motion
planning decisions of any of the car cannot be decided in advance, any decision
taken in past, can be changed at any instant.

Methods which plan in a centralized manner cannot work in real time scenar-
ios, because all the cars are completely independent without any major commu-
nication channel. Methods which plan in advance for next few time steps cannot
guarantee successful planning because of the dynamic nature of the environment.
We need a method which plans for each time step using only the information
that is available at the current time step.

We propose a solution to drive in such unstructured environments. We use
Deep RL, the input to our algorithm is the sensor readings and velocity details
at current time step, of our agent. Actions(steer, acceleration, brake) for each
time step are returned. Unlike many popular algorithms for driving our cur-
rent method does not need the information states for the other cars, our agent
learns takes only the current step information vector and learns from experi-
ence(training/exploration), how to map the state vector to action vector in a
way that reward is maximized. It learns similar to humans, how we approxi-
mate distances and take actions at current time step and dynamically decide
the actions for next time steps according to the new predicted distances.

Our work targets to learn to navigate in unstructured environments. The
scenes we have used to evaluate our results consist of three congested lanes, where
the cars are driving at random velocities. They can change their lanes anytime
and create chaos in the environment. We have learned different behaviors, with
two(Opportunistic and Defensive) of them focused only on how to tackle the
congested unstructured dynamically changing environments.

2 Related Work

The problem of autonomous driving control has been targeted by perception
based methods. Two broad classifications for them are Mediated Perception(The
complete scene is segmented and components are recognized and the estimations
are used for calculating the control commands of the vehicle ) and Behavior
Reflex(Information from sensors, range finders, GPS, LiDAR, Radars etc are
directly used to calculate control commands). [1] and [2] are based on Mediated
Perception approach while [3] and [4] are Behavior Reflex techniques. A third
technique called Direct Perception was introduced by DeepDriving [5]. It falls in
between the other two paradigms. It learns several meaningful indicators of the
road situations which can be used with any controller to make driving decisions.
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We have used TORCS [6] an Open Source Simulator for research on au-
tonomous cars. Controllers for driving in TORCS have been developed using
various techniques: [7] uses Modular Fuzzy Controllers, [8] uses evolutionary
strategy for the controller. Methods using Artificial Neural Networks have also
been in developed [9]. End to End driving in TORCS has also been achieved
using Imitation Learning [10]. Motivated by these and the recent success of RL
algorithms, developing RL based controllers seems a reasonable step.

Reinforcement Learning and driving have been targeted together previously
as well. In [11], authors have learned lanekeeping in TORCS using DQN(for
discrete action space)[12] and DDPG(for continuous action space)[13]. [14] also
learns to drive on lane using Deep Q-Network. Another interesting work is [15],
they have used Deep Q-Networks but they have also learned the reward function
using Inverse Reinforcement Learning.

Automated Vehicle Overtaking is a standard problem in autonomous learn-
ing, it has also been targeted using Reinforcement Learning using multiple ap-
proaches. Authors in [16] have used RL along with destination seeking approach
and collision avoidance constraints. Collision avoidance is taken care by Double-
action Q-Learning while Q-Learning is responsible for destination seeking. Block-
ing and Overtaking, both were taken up by authors in [17]. They have used
simple Q-Learning for the same. [18] also uses Q-Learning to learn overtaking
behaviors.

Most of the previous work is based out of Deep Q-Networks and Q-Learning.
A major drawback of these algorithms is the discrete action space. Fortunately,
continuous control using Deep RL is also solved using DDPG[13]. Deep De-
terministic Policy Gradient (DDPG) has given impressive results in various do-
mains: Manipulators [19], Humanoids [20], Automated Vehicle Driving [21,22,11].

We use DDPG to create various driving behaviors (namely, Lanekeeping,
Overtaking, Opportunistic, Defensive and Blocking).

3 Background

3.1 Deep Deterministic Policy Gradients

DDPG is a deep RL algorithm that aims at solving problems where the action
and state space are continuous. It implements Deterministic Policy Gradients
using Neural Networks. The main components of the algorithm are:

1. Replay buffer: The training samples are samples of experiences from a
sequence of time steps. The consecutive steps of the sequence are highly
correlated. If the correlated experiences are fed sequentially then the training
may result in unstable learned weights. To avoid this, transition Tuples,
(st, at, rt, st+1), are sampled from the environment as per the exploration
policy and stored into a replay buffer. Here st, rt and at denote state, reward
and action respectively, at timestep, t.

2. Batch Normalization: Different components of the state vector inputted
to a neural network, usually have different units and scales. This results in
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slower and inefficient training. Batch Normalization was a solution to resolve
this. It normalizes each dimension across the samples in a minibatch to have
unit mean and variance. It also maintains a running average of the mean
and variance to use for normalization during exploration.

3. Actor Critic Networks: Actor Critic Algorithms [23,24,25] are a class
of RL Algorithms that exploit the strengths of actor-only and critic-only
algorithms. The Actor determines the action to be taken according to a
policy. say π(θ). The Critic learns the parameters of the actor policy i.e θ.
The Critic network uses a Bellman update to learn a value function based
on this policy and using that value function as shown in 1.

L =
1

N

∑

i

(yi −Q(si, ai))
2

yi = (ri + γQT (si+1, µT (si+1)))

(1)

where ri is the reward at the ith timestep, QT (si+1, µT (si+1)) is the target
Q value for the state-action pair (si+1, µT (si+1)) where µT (si+1) is obtained
from the target actor network, Q(si, ai) is the Q value from the learned
network, N is the batch-size and γ is the discount factor.
The Actor updates its policy parameters in the direction of the ascending
gradient of the value function. Its update is as given below:

∇θµJ ≈
1

N

∑

i

∇aQ(s, a)|s=si,a=µ(si)∇θµµ(s)|s=si (2)

where N is the batch-size, θQ are the critic network parameters and θµ are
the actor network parameters. The rest of the terms have the same meaning
as those in Eq. 1.

4. Target Networks: The stability of the weights learned is improved by using
Target Actor and Critic Networks. They are not updated directly by copying
weights but by using soft update:

θQT ← τθQ + (1− τ)θQT

θµT ← τθµ + (1− τ)θµT
(3)

Here actor and critic are denoted by QT (s, a) and µT (s) respectively. θ
µT &

θQT are their corresponding target network parameters and τ << 1, is the
learning rate.

5. Exploration: DDPG is an off-policy algorithm, hence exploration need not
come from the learned policy. We add OU Noise [26] in the actions produced
by Actor Network, as proposed in original paper [13].

1 shows the complete DDPG algorithm for behavior learning.

3.2 Curriculum Learning

Just like humans, machine learning algorithms learn better when the training
samples are provided in a progressively increasing difficulty levels, instead of any
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random manner. Learning to perform in simpler situations first and eventually
building up more difficult ones is faster than learning all of the situations at
once. Performance of the system is increased in terms of the speed of convergence
and quality of the local minima or maxima. This manner of training in which
simpler situations are trained first and complex ones later is called Curriculum
Learning [27]. Results of[28] prove the effectiveness of Curriculum learning in
Reinforcement Learning techniques as well.

3.3 Intrinsic Motivation

Intrinsic motivation in living animals refer to the driving force which comes from
inside, to act in a particular manner. It is not the reward of doing the act which
is motivating, but the action itself is pleasurable. In [29] the evolutionary aspect
of Intrinsically motivated RL is shown. Reward function for adaptive agents
are evaluated according to their expected fitness, where explicit fitness function
is given along with the distribution for the state of interest.Here the authors
search for a primary reward function that maximizes the expected fitness of the
RL agent learning through that reward function.
Recent works [30] and [31] have used Intrinsic Motivation to increase the per-
formance of RL algorithms. Intrinsic motivation can be of three types: Empow-
erment(agent enjoys the level of control it has over future), Surprise(agent is
exploring i.e. it gets excited to the outcomes that run contrary to it’s under-
standing of the world ) and Novelty(excited to see the new states). In [30] au-
thors formulate Surprise based Intrinsic Motivation for Deep RL. [31] formulates
a method to increase exploration using a pseudo-count from arbitrary density
model. These pseudo counts is used for improved exploration. Our motivation
for using Intrinsic motivation comes from the success of [30] and [31]. Following
a similar approach using surprised based intrinsic motivation, we show our agent
approximately good trajectories so that it learns the expected behaviour faster.

4 Simulator details

We have used TORCS [6] for all our experiments and development. A modified
version called Gym-TORCS [32] is available freely, which enabled us to use RL
algorithms at ease with traditional TORCS.
Our agent car is of type scr server, which was developed later to be used with
TORCS. Unlike other bots in the simulator, this bot does not have its own
intelligence, it rather waits for a client to send it the actions to take. In our case
the actions are decided by the DDPG algorithm.
The opponent cars are also of type scr server [33] and their actions are decided
as in the SnakeOil Agent [34].

5 Driving behaviors

Our work is based on [21]. Authors in [21] have shown how to use DDPG and
curriculum learning to learn overtaking in simulated highway scenarios. The



6 Meha Kaushik, K. Madhava Krishna

authors handcraft a reward function to learn the overtaking maneuvers. Given
below are the details of the work.

1. Lanekeeping behaviour i.e. to drive on lane smoothly without collisions or
abrupt velocity and acceleration changes was trained using

RLanekeeping = vx(cosθ − sinθ)− vxabs(t) (4)

where vx denotes the longitudinal velocity of the car, θ denotes the angle
between the car and the track axis. t is the fraction by which the car has
moved away from the track axis, it lies in between [-1,1].

2. The weights of neural network learned in step 1 were loaded for second phase
of training. The environment now consists of (n-1) other cars. Reward for
this step is

Rovertaking = RLanekeeping + 100 ∗ (n− racePos) (5)

where n is the total number of cars and racePos indicates how many cars
are ahead of the agent.

3. To handle collision and off-track drifting, negative rewards were given as per
table 1

Condition Reward

Collision −1000
Off track drifting −1000
No Progress −500
Overtaking Rovertaking + 2000
Overhauling Rovertaking − 2000

Table 1: Extra Rewarding Conditions

The State Vector is a 65 sized array consisting of the following sensor data:

1. Angle between the car and the axis of the track.
2. Track Information: Readings from 19 sensors with a 200m range, present

at every 10◦ on the front half of the car. They return the distance to the
track edge.

3. Track Position: Distance between the car and the axis of the track, nor-
malized with respect to the track width.

4. SpeedX: As the name suggests, speed of the car along the longitudinal axis
of the car.

5. SpeedY: Lateral speed of the car.
6. SpeedZ: Vertical speed of car, indicates bumpiness.
7. Wheel Spin Velocity of each of the 4 wheels.
8. Rotations per minute of the car engine
9. Opponent information: Array of 36 sensor values, each corresponding to

the distance of the nearest opponent in the range of 200 meters, located at
a difference of 10◦, spanning the complete car.

Further details about each of these sensor readings can be found in [33].
The Action Vector consists of continuous values, the ranges of which are

given below:



Learning Driving Behaviors for Automated Cars 7

1. Steer: This represents the steering angle and ranges from -1 to 1, where -1
indicates steer completely to right and +1 indicates to steer completely to
left.

2. Brake: This indicates the strength of braking and ranges from 0 to 1, where
0 indicates no brake and 1 indicates brake with complete strength.

3. Acceleration: This is like the opposite of brake in the sense that it ranges
from 0 to 1, 0 indicates no acceleration and 1 means complete strength.

Algorithm 1 Behavior Learning using DDPG

Randomly initialize Actor and Critic Networks

TargetActor ← ActorNetwork

TargetCriticNetwork ← CriticNetwork

for i = 1 to NumEpisodes do

s← ResetTORCS()
for j = 1 to MaxStep do

action← Policy(s)
action← action+N

s′, r, done← Step(action)
Buffer ← Store(s, a, s′, r)
if size(Buffer) > BufferSize then

batch← Sample(Buffer,BufferSize)
QT ← Update(Critic, batch)
Policy ← Update(Actor, batch,QT )
Update Target networks using τ

end if

if done then

break

end if

end for

end for

The following section shows the different driving behaviors we attempted to learn
for an agent.

5.1 Overtaking on Highways

Our approach for overtaking on highways is derived from the method used by
authors in [21]. We have modified the state vector from 65 space to 173(29 +
36x4, 29 is the state vector size without opponent information and 36 is the
size of opponent information vector) space. Instead of including the opponent
information for the current step only, we include the opponent information for
current step as well as for previous 3 steps. The state vector in [21] does not
incorporate the opponent information in a temporal manner. To estimate the
motion of opponent cars temporal information is a logical requirement. In an
attempt to do so, we have added the previous three opponent information in the
state vector.
While training we have kept 4 other cars in front of the agent.
Extra reward conditions are same as in table 1.
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Fig. 2: Results for highway overtaking using our proposed method. Our agent(blue)
starts from the last and overtakes all other cars(yellow), till the last frame.

Results Our results indicate smooth overtaking trajectories, with collisions
hugely decreased than [21]. Table 2 shows a comparison between our method
and the method used in [21]. As it can be inferred from the 2, collisions decrease
hugely in our method. This can be reasoned on the fact that, last four step
opponent information is able to provide velocity estimate of other vehicles.
Another inference from 2 is the quality of overtaking trajectories. The average
number of cars overtaken is lesser in our case. This clearly shows that the agent
was not trained enough. Although it was trained for 1500 episodes which is 500
more than the training episodes of [21]. 1500 training episodes is not sufficient
because of the increased state space. The state space increases by more than
double, from 65 to 173.

5.2 Lane-keeping with restricted maximum speed

Approach This behavior is derived out of the work done in [22]. In [22] the
agent assumes no velocity constraints, hence acquires velocities in the range
120-170km/hr after stable learning. In real world scenarios, such high velocities
do not classify as safe behaviors, hence we train an agent with a constraint
of maximum possible velocity. We achieved the velocity restrictions using two
methods:

1. Manually limiting the acceleration applied: We kept the reward func-
tion, state vector and action vector same as in [22] and added one extra
constraint, for all time steps, i.e. if velocity exceeds the maximum allowed
velocity, acceleration is manually set to zero.

2. Modifying the reward function: Here as well, the state vector and action
vector remained same, but reward was modified as in eq. 6:

Reward =

{

RLanekeeping, if velocity < maxV elocity

−900, otherwise
(6)
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Track Name
Avg No of cars overtaken % of colliding timesteps

% of episodes where
agent overtook all other cars

Case A Case B Case A Case B Case A Case B
4cars 9cars 4cars 9 cars 4 cars 9cars 4cars 9 cars 4 cars 9 cars 4 cars 9 cars

Wheel2 3.95 7.55 3.3 7.7619 0.2291 0.2328 0 0 100 50 80 85.7143

Forza 4 7.8 3.6 2.75 25.8348 9.64 0 0 100 40 95 0

CG2 4 8.45 2.8 6.85 7.0111 8.135 0.2117 0.494 95 65 65 65

CG3 3.05 6.15 0.45 0 25.6376 39.7 0 0 30 35 5 0

Etrack1 4 8.35 3.45 8.4 7.0789 1.05 0 0 100 80 95 90

Etrack2 3.55 7.8 3.3 8.15 26.4079 0 0 0 65 60 90 100

Etrack3 4 6.35 3.1 7.25 7.987 2.36 0 0 100 40 60 85

Etrack4 4 8.5 3.65 8.2 0 7.23 0 0 100 70 95 100

Etrack6 3.65 7.8 3.55 6.8 26.1345 10.5 0 0.1537 90 60 90 55

ERoad 4 8.05 3.75 5.4 3.2502 6.9 0 1.3537 100 75 95 40

Alpine1 4 8.55 3.4 8.1 17.4464 0.67 1.0067 36.5944 100 80 75 95

Alpine2 3.9 7.95 1.9 5.4 7.5701 0.7064 0.9969 1.3537 85 50 20 40

Olethros 4 7.1 0.25 2 7.2993 18.84 0 0 100 30 5 10

Spring 3.8 7.8 3.65 8.6 3.8753 8.05 0.2283 0 95 45 90 100

Ruudskogen 3.95 7.65 3.5 8.25 2.2113 12.2895 0 0 100 40 85 90

Street1 3.95 8.55 2.7 6.9 4.0665 6.1907 0 0 100 80 65 75

wheel1 4 8.5 3.8 7.35 0 10.3769 0 0 100 50 90 75

CG-Speedway1 3.85 7.95 3.25 1.7 5.621 0.2328 0 0 95 50 75 5

Table 2: Comparison of Results in [21] and our approach. Case A refers to [21]’s
approach and Case B refers to our approach

Here, RLanekeeping is same as in eq. 4, velocity refers to the velocity of
the agent at current time step and maxV elocity refers to the maximum al-
lowed velocity, this can be set to any reasonable positive value of choice.
We have chosen -900 as the otherwise reward, -900 can be replaced by
any large(compared to the values of RLanekeeping) negative value. We took
maxV elocity as 30km/hr, hence -900 was a huge negative value compared
to RLanekeeping, which would be less than or equal to 30.

In both of the cases the extra reward conditions are same as in table 1.

Results and Observations Learning was very stable, the car made smooth
turns because of the controlled velocity. Both of the methods work equally good.
We also trained the same conditions with state space consisting of opponent
information, the results were not affected by the presence of this redundant
information.

5.3 Driving in traffic/Opportunistic Behavior

Approach In [21], velocity allowed for the agent is not restricted, which makes
the agent ruthless and nasty. Once we restrict the highest attainable velocity,
agent is able to learn safe maneuvers in dense traffic conditions. We train the
agent in a manner similar to [21] i.e using Curriculum Learning based training
and preloading the weights of Lanekeeping agent(here, with restricted velocity)

Reward =

{

RLanekeeping +Rovertaking, if velocity < maxV elocity

−900, otherwise
(7)
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We do not modify the Rovertaking because our inherent aim which is to move in
a way to occupy any available free space, is equivalent to overtake or to attempt
an overtake by lane change.
During training, there exist 4 other opponent cars which move with velocities
ranging from 5km/hr to maxV elocity.
To facilitate faster learning we explore the good actions first, for the same we
do not add any noise for first 30 episodes of training, this way the agent tries to
drive straight on road and learns how his interactions with other cars affects his
rewards. This method of exploration can be considered an example of surprise
based intrinsic motivation. Again, the extra reward conditions are same as in
table 1.

Fig. 3: Opportunistic behavior shown by our agent(blue) in presence of dynami-
cally changing traffic. Our agent detects the free spaces and navigates in between
the other cars and takes up the free spaces. This behavior is typical in scenes
like Indian traffic.

Results and Observations Our results indicated smooth trajectories, where
the agent remains under the speed limit and whenever possible, changes its lane
to occupy the nearest free space available.
This behavior is representative of how humans behave in very dense traffic situ-
ations like traffic jams. Wherever any free space is available, our agent navigates
to go there. Such scenes are typical in Indian Roads.
The opportunistic behavior is our first step towards solving decision problems
in very dense, unstructured environments. We got the best(collision free and
readily occupying free spaces) results when we trained a single agent in presence
of 4 other agents.
The number of training episodes after which we got convincing results were
2500.
We experimented increasing the state vector by including the information of
previous three steps of opponents. Unfortunately, even after 4500 episodes of
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No. of
Agents

Total number
of steps

in episode

Total no.of
colliding
steps

% of
colliding
steps

Structure
of the
environment

30 310 70 22.5
Highly unstructured,
cars surround agent
from all four sides.

20 282 44 15.6
Highly unstructured,
cars surround agent
from all four sides.

15 251 44 17.5
Unstructured,
less dense

10 517 22 4.25
Structured,
cars follow lanes
for majority time

5 300 29 9.6 Less dense

3 200 8 4 Not dense

Table 3: Table analyzing Opportunistic behavior in different levels of traffic
conditions. Top to down, structured nature of traffic increases.

training we did not see any significant results. The logical explanation behind
the difficulty in learning is the huge state space.

5.4 Blocking Behavior

Approach By blocking we mean the agent tries to block the car behind it from
overtaking. This is a very hostile behavior which is not appreciated nor expected
in common life.
A very important feature of RL is the fact that training conditions alter the
results drastically. The agents learns by exploration and whatever conditions it
is exposed to result in the final behavior. For blocking we had the same reward
as overtaking but now during training our agent starts infront the other car.
Eventually after 2k episodes it learns how to make sure that car behind never
overtakes.
Since the car need not run ahead here, we do not use curriculum based learning.
The agent is trained with one single car in the environment.
All the extra reward conditions are same as in table 1, apart from the overhauling
condition, which has been removed here.

Results and Observations We observed that our agent learned how to change
its position on the track, so as to come directly in path of the other vehicle and
never let it overtake itself. Table 4 shows that AI cars BT, Damned and Olethros
could not be blocked by our Blocking Agent, on the other hand Berniw, Inferno,
Illiaw and Tita could be blocked with 65% chances and InfHist, BerniwHist are
easily blocked most of the times.
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Fig. 4: Results of blocking behavior, in first three images, the purple car moves towards
right to overtake our(blue) agent, our agent also moves towards the right to prevent
the overtaking. In last two frames, the purple car is translating towards left and back
to center and our car, also translates in center to block it from overtaking.

Fig. 5: This is an example of defensive behavior, whenever our agent(blue) is at a risk
of colliding with any other car(green), it slows down. It takes care to not collide with
cars in same lane as well as in adjacent lanes. For safety reasons, defensive behavior
can be considered better than opportunistic.

Comparison with existing approach Blocking behavior has been targeted
using Reinforcement Learning in [17]. Their approach is derived from work shown
in [18]. The authors have used Berniw as their Base AI car i.e. when the agent
does not need to perform the Blocking characteristics, it will use Berniw’s driving
implementations. Their approach uses tabular Q-learning with discrete values of
action and state space.

Differences between the two approaches:

– Our approach is end-to-end, we not just give overtaking trajectories, but in
absence of other cars we do not use other algorithm to detect the actions. The
various traffic scenes do not need to be handled differently, curves, straight
paths, no opponent cars all situations are handled in one single approach.

– A very prominent difference is the use of Deep RL with continuous space
in our approach and their approach uses tabular Q-Learning with discrete
actions and states.
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Name of
the AI Car

% of
colliding
timesteps

%of
overhauls

Berniw 1.6473 35

BT 2.1277 100

BerniwHist 0.6547 0

Damned 2.2901 100

Inferno 1.6473 35

InfHist 2.1672 0

Illiaw 0 35

Olethros 0.9202 100

Tita 2.0032 35

Table 4: Analysis of Blocking Behavior. % of colliding timesteps indicate the
timesteps out of total timesteps where the agent experienced a collision. %of
overhauls indicate how many time did the AI car overtook our agent.

5.5 Defensive Behavior

Approach This is relatively different from the previous approaches. Here, we
learn only the brake and acceleration actuators. Steering angle is fed manually
and is calculated using SnakeOil [34] agent’s steer calculation:

steer = (10/PI)× trackAngle− (0.10)× trackPos (8)

here trackAngle is angle between car’s heading angle and track axis, trackPos
is the relative position of car on the track. This agent is called defensive since
it would never try to overtake anyone, it will avoid collisions by decreasing its
own speed. It cannot overtake because it cannot manipulate its steering angle.
Steering angle values align with the track angle values. We did not preload any
weights, this was a faster training because of decreased size of action space. The
extra reward conditions are same as in table 1.

Results and Observations When this agent was trained with standard OU
function as exploration noise, it could not learn the desired behavior. This ob-
servation can be reasoned to the fact that applying complete brake and applying
zero acceleration would not be generated very frequently by OU noise. Hence,
the agent was lacking the experiences where it receives higher reward(in the
longer run) by slowing down.
To help the agent see situations where it is rewarded on slowing down, we man-
ually set the acceleration as 0 and brake as 1, whenever the agent collided with
any other agent.
This was one most important contribution of intrinsic motivation, in our work,
we intrinsically showed it examples of good behavior and eventually it was able
to learn from them. After 500-700 episodes of training the agent learned to slow
down whenever opponents were detected ahead of it. The agent follows smooth
trajectories, stays in the middle lane and slows down whenever any opponent is
approaching in any of the lane, from where it can collide into the agent.
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Table 5: Comparing various behaviors shown in the paper

Behaviour Reward function
State

Space

Action

Space

Number of

episodes trained

Training

Conditions

Lanekeeping RLanekeeping 29 3 1k-2k
Single car
on track

Lanekeeping with
restricted maximum speed

RLanekeeping, if vel<maxVel
-900, otherwise

29 3 1k-2k
Single car
on track

Highway Overtaking
RLanekeeping + Rovertaking 65 3 1k

4 cars ahead
of agent car

RLanekeeping + Rovertaking 173 3 1.5k
4 cars ahead
of agent car

Driving in traffic/
Opportunistic behaviour

RLanekeeping +
Rovertaking, if vel <maxV el

-900, otherwise
65 3 4k

4 cars(Velocities
approximately
equal to the

agent
car’s maximum

velocity)
ahead of
agent car

Blocking RLanekeeping + Rovertaking 65 3 2k
1 car behind
the agent car

Defensive Behaviour RLanekeeping 65 2 700
4 cars ahead

of the agent car

6 Conclusion and Future Work

The main contribution of this research are the behavior driven agents. We show
how RL can be used to develop agents which are not driven by any goal but by
a behavior. We show how reward function is important in affecting the learned
behavior. On top of everything, we show how can be speed up the process of
learning by intelligently using Curriculum learning and Intrinsic motivation. We
show the effectiveness of RL in dense unstructured environments. Our agent is
able to navigate in dense, dynamic and diverse situations.
RL when used with the correct choice of reward in an environment which gen-
erates enough experiences, can give impressive results. The main driving force
for any RL algorithm’s behavior is the reward function and the environmental
settings, observe how the results varied for Blocking and Overtaking behavior,
they had same rewards but the environment setting was different, in overtaking
the agent started from the end while in blocking it started from the beginning.
An important contribution using these behaviors would be to learn a meta func-
tion which decides which behavior to be followed. Using the meta function and
these behaviors we can generate an end to end motion model for navigating
safely in unstructured environments.

Since most of the learning takes place in an environment with other cars,
we can speed up the learning by using the other car’s experiences as well. In
Asynchronous Actor-Critic Methods[35] multiple workers work together to up-
date a single network, this way the network learns from all the agents in scene.
Another interesting approach to efficiently speed up the training would be Dis-
tributed DDPG [36]. The given results can be hugely improved using Distributed
Methods.
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