
Interest point detectors stability evaluation on

ApolloScape dataset

Jacek Komorowski1[0000−0001−6906−4318], Konrad Czarnota1, Tomasz
Trzcinski1,2[0000−0002−1486−8906], Lukasz Dabala1, Simon Lynen3

1 Warsaw University of Technology, Warsaw, Poland
2 Tooploox
3 Google

Abstract. In the recent years, a number of novel, deep-learning based,
interest point detectors, such as LIFT, DELF, Superpoint or LF-Net was
proposed. However there’s a lack of a standard benchmark to evaluate
suitability of these novel keypoint detectors for real-live applications such
as autonomous driving. Traditional benchmarks (e.g. Oxford VGG) are
rather limited, as they consist of relatively few images of mostly planar
scenes taken in favourable conditions. In this paper we verify if the recent,
deep-learning based interest point detectors have the advantage over the
traditional, hand-crafted keypoint detectors. To this end, we evaluate
stability of a number of hand crafted and recent, learning-based interest
point detectors on the street-level view ApolloScape dataset.
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1 Introduction

Detection of local interest points in images is the fundamental part of many
computer vision applications, including 3D reconstruction [1], panorama stitch-
ing [2] and monocular Simultaneous Localization and Mapping [3]. This topic
has gained significant attention from the research community [4–13]. While tra-
ditional interest point detectors rely on hand-crafted features [7–9], more recent
methods use machine learning techniques such as decision trees [10] or deep
learning [4–6, 12, 13] to train a high-performing keypoint detector.

In the recent years, a number of novel, deep-learning based interest point de-
tectors, such as LIFT [4], DELF [5], Superpoint [6] or LF-Net [13], was proposed.
However there’s a lack of a standard benchmark, to evaluate suitability of these
novel keypoint detectors for real-live applications such as autonomous driving.
Oxford VGG [14], a very popular benchmark for evaluation of local features,
is rather limited, as it consists of only 8 sequences, each containing 6 images.
Images are taken in a favourable environmental conditions and contain mostly
planar scenes. The dataset does not capture variety of factors that impact the
image of the visible scene, such as diverse weather conditions, different seasons
or time of the day.
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In the seminal work [15] on local feature detectors, the following properties
of an ideal local interest points are listed: repeatability, distinctiveness, locality,
quantity, accuracy and efficiency. Repeatability is considered as one of the most
important properties of good features. High repeatability ensures that given
two images of the same scene, taken under different viewing conditions, a high
percentage of features detected on the scene part visible in both views can be
found in both images. In this paper we evaluate repeatability of a wide range of
hand-crafted and learning-based interest point detectors on the ApolloScape [16]
street-level view dataset. Due to their size and diversity this datasets allows
evaluation of interest point detectors in the real-life, variable and challenging
conditions.

2 Related work

In this section we briefly review recently proposed, learning based interest point
detectors.

TaSK (Task Specific Keypoint) [17] is one of the early attempts to use ma-
chine learning methods in order to improve interest point detector performance.
It aims at improving repeatability of keypoints by learning a classifier to filter
out detected keypoints to retain more stable features. However, the method is
reliant on some other interest point detector, such as DoG [9], and only filters
out points found by the base detector.

TILDE (Temporarily Invariant Learned DEtector) [18] is the learning-based
method to detect repeatable keypoints under drastic changes of environmental
conditions such as weather and lighting. It relies on other keypoint detector,
DoG [9], only to generate training examples. Training set consists of multiple
stacks of images showing the same scene and taken from the same viewpoint but
at different season and time of the day. DoG features detected on training images
are considered positive examples, if they are repeatable on majority images in
the stack (set of images showing the same scene). The regressor is trained to
compute a value (score map) for each patch of a given size of the input image.
The loss function is constructed so the learned regressor produces a peaked shape
on positive samples (patches centered near good keypoint location) and small
value on negative samples.

LIFT (Learned Invariant Feature Transform) [4] is the first end-to-end, deep
learning-based, method including feature detection, orientation estimation and
robust descriptor extraction. The learning is based on SfM-verified DoG [9] key-
points detected in a large collection of images. The feature extraction pipeline
is trained by presenting quadruples of image patches (base patch, positive ex-
ample, negative example and a patch with no distinctive feature points) to the
network having a Siamese-like architecture with four branches.

Convolutional feature detector proposed in [19] identifies regions of the input
image that constitute good keypoints. The loss function consists of two terms:
binary classification loss to classify patches as centered on the keypoint loca-
tion and squared difference loss to penalize network responses on non-centered
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patches. Training set is constructed by detecting interest points using a hand-
crafted feature detector in a sequence of images. Tuples of points that survive
SfM verification form positive training examples.

Quad-networks [12] is the first unsupervised interest point detection method,
not relying on a hand crafted feature detector for the training set generation.
Neural network is trained to map an image patch point to a single real-valued
response and then to rank points according to the response. Image patch is
mapped by the neural network to a ’heat map’ with ranking of each pixel. The
ranking is optimized to be repeatable under the desired transformation classes,
such as rotation, translation or intensity change. If one point has the higher
ranking than another one, it should still be higher after a transformation. Top
and bottom quantiles of the response are repeatable and can be used as an
interest points. Two training approaches are described. The first one uses an
image dataset with ground truth data on camera poses and 3D scene structure
from the LIDAR scan. Using the ground truth data, correspondence between
image patches in two different images can be established. The other approach is
fully unsupervised. The training set is constructed, by applying transformations,
such as rotation and translation, to a set of base image patches.

Superpoint [6] is a self-supervised framework for training interest point de-
tectors and descriptors. It operates on the full-sized images and jointly computes
interest points locations and associated descriptors. VGG-style [20] convolutional
network is used to reduce the dimensionality of the input image. Then the net-
work branches into interest point decoder and descriptor decoder units. The
interest point detector is pre-trained on the synthetic data consisting of a large
set of computer generated images with pseudo-ground truth interest point loca-
tions. To boost the performance on the real data, the network is fine tuned using
real images. Images are warped multiple times to help an interest point detector
to see the scene from many different viewpoints and scales.

LF-Net (Local Feature Network) [13] is a novel deep architecture for sparse
matching, which can be trained end-to-end and does not require using a hand-
crafted feature detector to initialize the training process. The training requires
image pairs with known relative pose and depth maps, so the correspondence
between image patches in two images can be established. LF-Net runs the detec-
tor on the first image and finds the maxima on the produced score map. Then
it optimizes the weights so that when the detector is run on the second image it
produces a clean response map with sharp maxima at right locations.

3 Interest point detectors evaluation

3.1 Dataset

We performed evaluation of interest point detectors on the recently released
ApolloScape [16] street-level view dataset. The dataset contains almost 150 thou-
sand frames with high quality ground truth data including pixel-level semantic
segmentation, pose information and depth maps for the static background. Im-
age frames in the dataset are collected every one meter by the acquisition system
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Fig. 1. Exemplary image (top) and corresponding depth map for the static background
(bottom) from the ApolloScape [16] dataset.

with resolution 3384 x 2710. The dataset contains images taken in diverse lo-
cations under the varying weather conditions and with challenging lightning
conditions (e.g. dark or very bright).

The data is acquired using Riegl VMX-1HA acquisition system consisting of
two VUX-1HA laser scanners (360◦FOV, range from 1.2m up to 420m), VMX-
CS6 camera system (two front cameras with resolution 3384 x 2710), and the
measuring head with IMU/GNSS (position accuracy 20 ∼ 50mm, roll and pitch
accuracy 0.005◦, and heading accuracy 0.015◦).

3.2 Evaluation criteria

We evaluate stability of the interest point detectors using repeatability criteria
introduced in [21]. Repeatability score for an interest point detector operating
on a pair of images is defined as a ratio between the number of point-to-point
correspondences that can be established between detected points and the number
of points detected in both images.

Computing repeatability, in general case, is not a trivial task. First, cor-
respondence between interest points on two images must be established. In
standard benchmarks, such as Oxford VGG Affine Covariant Regions [14] or
HPatches [22], this relation is defined by a homography, as they contain images
of planar scenes or camera motion is purely rotational. In general case, where
the visible scene is not planar and the camera movement is not restricted, es-
tablishing such correspondence is not easy. Second, an interest point detector
in general will not detected an interest point at the exact position of the corre-
sponding point, but at some close neighbourhood. Third, some interest points
cannot be repeated as some parts of the scene can be observed by only one
camera.

When interest point correspondence is related by the homography H, re-
peatability definition introduced in [21] is commonly used. Let P be a 3D point
and p1 = M1P , p2 = M2P its projections of P onto the image I1 and I2 re-
spectively. M1 and M2 are projections matrices related with images I1 and I2.
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Two points p1 ∈ I1 and p2 ∈ I2 correspond, if they are related by homogra-
phy H, that is if dist(Hp1, p2) < θ, where θ is some fixed threshold. d1 and d2
denote points that could be potentially detected on both images, defined as as
d1 = {pi ∈ I1|H21pi ∈ I2} and d2 = {p2 ∈ I2|H12p2 ∈ I1}. The repeatability rate
r is defined as:

r1,2 =
|C(I1, I2)|

min (|d1| , |d2|)
, (1)

where C(I1, I2) = {(p1 ∈ I1, p2 ∈ I2) |dist(Hp1, p2) < θ} is the set of correspond-
ing pairs of interest points.

In general case, when interest points are not related by homography, the
above approach cannot be taken. If the dataset ground truth contains image
poses and high quality depth maps, as is the case in ApolloScape [16] dataset, we
can use it to establish the correspondence between interest points. The 3D point
P corresponding to the interest point p1 ∈ I1 has the coordinates P = (dx̃, dỹ, d),
where d is the depth of the point p1 and (x̃, ỹ) are normalized coordinates of the
point p1 in the image I1. Then, using the ground truth relative pose between
images I1 and I2, we project P onto the second image I2 to get its projection
p∗1. A pair of interest points p1 ∈ I1 and p2 ∈ I2 corresponds, if:

dist(p∗1, p2) < θ. (2)

3.3 Evaluation results

We evaluate stability of traditional interest point detectors: DoG [9], AKAZE [23],
AGAST [24], Fast [10], ORB [11] and recently proposed detectors LIFT [4], Sad-
dler [25], Superpoint [6], TILDE [18] and LF-Net [13].

For traditional detectors (DoG, AKAZE, AGAST, Fast and ORB) we use
OpenCV 4 implementations. Evaluation of recent learning-based methods (LIFT,
Superpoinit, TILDE, LF-Net) is performed using the code and pre-trained mod-
els released by authors.

We choose the following traversals from ApolloScape [16] dataset: 16, 32 from
road id 1; 1, 5, 16 from road id 2; 1, 21 and 29 from road id 3. For each traversal
we take every 20th frame (corresponding to 20 meter drive) as the base frame.
We match keypoints in each base frame with keypoints in 19 subsequent frames.
These 19 subsequent frames are at the distance of approximately 1, 2, . . . , 19
meters from the base frame. On each image we select N = 10, 000 interest points
with the strongest response. The threshold θ for interest point correspondence
in Eq. 2 is set to 2.5 pixels.

Fig. 2, 3 and 4 show mean repeatability score as a function of a distance
between camera centres in pairs of images for each evaluated traversal. The
results are summarized in Tab. 1.

Recently proposed Saddler [25] detector has the best average repeatability
for all evaluated traversals: 0.177. It has the highest repeatability in 6 out of
9 traversals and a relatively small gap to the best performing detectors in the

4 https://opencv.org/
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Table 1. Mean repeatability of interest point detectors evaluated on 9 traversals from
ApolloScape dataset. Recently proposed Saddler detector has the highest average re-
peatability (0.177) for all evaluated sequences. Traditional FAST detector is a runner
up with 0.164 average repeatability. The best deep-learning based detector Superpoint
scores only 0.123.

Traversal id / 1-16-6 1-32-5 1-36-6 2-01-5 2-05-5 2-16-5 3-01-5 3-21-5 3-29-5 Avg.

Keypoint Repeatability

Saddler [25] 0.103 0.089 0.153 0.186 0.090 0.231 0.247 0.255 0.238 0.177

FAST [10] 0.113 0.093 0.200 0.176 0.077 0.217 0.206 0.185 0.208 0.164
AGAST [24] 0.091 0.086 0.176 0.146 0.070 0.190 0.179 0.163 0.182 0.143
ORB [11] 0.078 0.056 0.138 0.140 0.038 0.192 0.236 0.196 0.207 0.142
AKAZE [23] 0.081 0.070 0.169 0.142 0.072 0.176 0.184 0.160 0.177 0.137
Superpoint [6] 0.075 0.070 0.119 0.136 0.080 0.152 0.168 0.156 0.151 0.123
DoG [9] 0.081 0.066 0.122 0.137 0.062 0.156 0.161 0.143 0.168 0.122
TILDE [18] 0.068 0.068 0.088 0.092 0.074 0.107 0.108 0.103 0.116 0.091
LF-Net [13] 0.060 0.065 0.095 0.082 0.034 0.104 0.114 0.101 0.103 0.084
LIFT [4] 0.050 0.052 0.054 0.058 0.049 0.056 0.068 0.061 0.072 0.058

remaining 3 traversals. Traditional FAST [10] (avg. repeatability 0.164) performs
slightly worse.

Non of the recently proposed deep learning-based keypoint detectors shows
an advantage other the traditional hand-crafted detectors. The best performing
deep-learning based detector, Superpoint [6], has an average repeatability equal
to 0.123. Other perform even worse: TILDE [18] scores 0.084, LF-Net [13] 0.04
and LIFT [4] 0.058 average repeatability.

Using semantic labels ground truth provided with the ApolloScape dataset,
we analyzed dependency of the interest point repeatability on the semantic con-
tent of the visible scene. Tab. 2 shows semantic classes with top-5 and bottom-5
repeatability for the best performing detector (Saddler [25]), best traditional
detector (FAST [10]) and best deep-learning based detector (Superpoint [6]). As
expected, repeatability of keypoints detected on stable objects such as billboards,
traffic lights and buildings is consistently higher than on movable or volatile ob-
jects such as car, motorcycles, or sky. Dependency of the interest point detector
performance on the semantic class of the scene region is visualized on Fig. 5.
These results proves, that in order to build high-performing interest point de-
tector, high-level information on the semantic content of the visible scene must
be taken into the account. Keypoints should not be detected on the movable or
volatile regions of the scene, such as vehicles or sky.

4 Conclusions and future work

The best performing interest point detector on ApolloScape dataset is recently
proposed Saddler [25]). Average Saddler repeatability across all evaluated se-
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Fig. 2. Repeatability of keypoint detectors evaluated on record 016 (top), record032
(middle) and record 036 (bottom) from road 01 as the function of distance between
cameras. (Left column) Traditional keypoint detectors, (right column) modern keypoint
detectors.
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Fig. 3. Repeatability of keypoint detectors evaluated on record 001 (top), record005
(middle) and record 016 (bottom) from road 02 as the function of distance between
cameras. (Left column) Traditional keypoint detectors, (right column) modern keypoint
detectors.
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Fig. 4. Repeatability of keypoint detectors evaluated on record 001 (top), record021
(middle) and record 029 (bottom) from road 3 as the function of distance between
cameras. (Left column) Traditional keypoint detectors. (right column) modern keypoint
detectors.
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Table 2. Semantic classes with top-5 and bottom-5 repeatability for FAST, Saddler
and Superpoint keypoint detectors. Repeatability of keypoints detected on the stable
structures such as billboards, traffic light or traffic signs) is significantly higher than
repeatability of the keypoints detected on movable or volatile objects, such as cars,
motorcycles or sky.

Top 5 Bottom 5
Detector Semantic class Avg. rep. Semantic class Avg. rep.

FAST [10] billboard 0.552 rover 0.021
traffic light 0.523 sky 0.132
traffic sign 0.502 unlabelled 0.138
road pile 0.491 car 0.151
dustbin 0.418 motorcycle 0.160

Saddler [25] traffic light 0.640 rover 0.012
billboard 0.538 sky 0.075
pole 0.526 motorcycle 0.115
traffic sign 0.487 person 0.130
building 0.482 car 0.133

Superpoint [6] billboard 0.538 rover 0.030
traffic sign 0.486 sky 0.075
road pile 0.395 unlabelled 0.086
overpass 0.381 car 0.097
building 0.373 motorcycle 0.107

quences is 0.177. It has a considerable advantage over the second best detector,
FAST (0.164 mean repeatability).

Interestingly, all recently proposed deep learning-based interest point detec-
tors perform noticeable worse compared to best hand-crafted detector (Saddler).
The best deep learning-based detector, Superpoint [6], scores average repeatabil-
ity equal to 0.123. Other evaluated deep learning-based descriptors (TILDE [18],
LF-Net [13], LIFT [4]) perform even worse.

Analysis of the stability of interest points detected in objects with different
semantic class labels proves that keypoints detected on the stable objects, such
as road signs or buildings, have the highest repeatability. This suggest, that in
order to build high-performing interest point detector, high-level information
on the semantic content of the visible scene must be taken into the account.
Keypoints should not be detected on the movable or volatile objects, such as
vehicles or sky.

As the future work we plan to verify if the results generalize to other large-
scale, stree-level view datasets, such as Oxford RobotCar [26] and Berkeley Deep-
Drive [27].

A very promising direction of the research is development of the repeatable
and discriminant learning-based interest point detector and descriptor. Recently
released large-scale street-view datasets contain millions of images taken in mul-
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Fig. 5. Repeatability of FAST, Saddler and Superpoint keypoints on objects with dif-
ferent semantic labels. Repeatability for stable objects such as traffic signs or buildings
(left side) is consistently the highest for all detectors. Repeatability for movable objects
(right side) is the lowest.

tiple locations in diverse weather conditions, and at the different times of the day
and year. Ground truth, in the form of high quality dense depth maps or point
clouds, allows establishing correspondences between interest point in different
images, This should allow training high quality interest point detectors and de-
scriptors, invariant to viewpoint change and variable environmental conditions.
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