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Abstract. We propose to self-supervise a convolutional neural network
operating on images using temporal information from videos. The task is
to learn a representation of single images and the supervision for this is
obtained by learning to group image pixels in such a way that their col-
lective motion is “coherent”. This learning by grouping approach is used
as a pre-training as well as segmentation strategy. Preliminary results
suggest that the segments obtained are reasonable and the representa-
tion learned transfers well for classification.

1 Introduction

An increasingly popular approach to representation learning is to use proxy
tasks that do not require the use of manual annotations. In this paper, we ex-
plore using motion cues, represented as optical flow, to formulate a proxy task
for self-supervision. Inspired by Gestalt principle of common fate, we develop
a framework which groups pixels that constitute “coherent” motion. Crucially
this grouping is obtained by looking at a single image only. The optical flow is
used only in the loss function. Therefore, at test time, the model can be de-
ployed without video or flow information. The underlying assumption is that a
segment containing an object exhibits “coherent” motion. Therefore a segmen-
tation with our objective will learn to segment objects or object-parts. We call
this framework Self-Supervised Segmentation-CNN or S3-CNN . An illustration
is provided in fig. 1a.

Our formulation can be easily extended to the case where motion is induced
by action / ego-motion. This extension is more expensive to experiment with
and hence we restrict ourselves to offline videos.

2 Related Work

Self-Supervised Learning. S3-CNN is a self-supervised pre-training scheme
to learn a feature extractor that can be fine-tuned for other tasks. We review
closely related prior works by grouping them based on the nature of their pre-
training loss.

The first group comprises methods that predict an auxiliary input y
given an image x. For example using RNNs to predict future frames in videos [1].
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(a) S3-CNN framework. (b) Affine Motion Loss

Fig. 1: (a) We propose to learn a neural network operating on images using
temporal information contained in videos as supervision. The learning goal is
to predict regions that are likely to have “coherent” optical flow. Flow can be
observed by the loss, but not by the CNN. It encourages the network to learn
about object-part-like regions in images. (b) Affine Motion Loss: Optical flow
within each region is approximated using an affine transformation (A1, · · · , AM ).
These are recombined to give a reconstructed flow which is compared against
ground truth.

Similarly, Colorization [2,3] predicts colour given grayscale input. A generaliza-
tion to arbitrary pairs of modalities was proposed in [4]. Recent work has ex-
plored the geometric target of surface normals [5]. Closely related to our work
is the use of video segmentation by [6]. They use an off-the-shelf video segmen-
tation method to construct a foreground-background segmentation dataset to
pretrain a CNN. We differ from them in that we do not require a sophisticated
pre-existing pipeline to extract video segments, but use optical flow directly.

The second group of self-supervised methods reconstruct (properties of)
the image x given an incomplete or corrupted version of the same. For
example, [7] solve the inpainting problem, where part of the image is occluded.
Alternative low dimensional targets have been explored by the community. For
example, [8] learn to predict the global image rotation. [9] predict the relative
position of two patches extracted from an image. [10,11] solve a jig-saw puz-
zle problem. [12] improve upon context based methods. The temporal analog
of these are methods that predict the correct ordering of frames [13,14,15] or
embed frames using temporal cues [16,17,18,19,20]. [21] train a siamese style
convolutional neural network to predict the transformation between two images.
[22] use videos along with spatial context pretraining [9] to construct an image
graph. Transitivity in the graph is exploited to learn representations.

Our approach borrows from both paradigms. We predict a property of image
x – a grouping of its pixels. At the same time, we supervise these segments using
auxiliary data. This adds richer supervision than can be obtained by looking at
cues contained in image x alone.

Segmentation Cues. Our method is based on using various motion cues to
evaluate image regions and in this way relates to classical work [23,24,25]. These
methods, however, use motion at test/inference time while we use it only at
training time for supervision.
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3 Method: Self-Supervised Grouping Losses

Our idea is to learn a CNN that predicts a segmentation Φ : x 7→ m ∈
{1, . . . , L}H×W of the image. Pixels u ∈ [1, . . . , H] × [1, . . . ,W ] within each
region l are assumed to be I.I.D with respect to a simple parametric distribution
p(fu|θl) where fu is the flow at pixel u. Marginalizing the region parameters
p(θl) results in the model:

p(f |m) =

L
∏

l=1

∫

[

∏

u:mu=l

p(fu|θl)

]

p(θl) dθl. (1)

Crucially, due to the marginalization, network Φ is not tasked with predicting the
transformation parameters θ, but only the regions m. As a simpler alternative to
marginalizing by integration, in the rest of this extended abstract we marginalize
the model parameters by maximization and drop the prior on the parameters,
so that the probability density for a region is written as:

p(f |m) =
L
∏

l=1

max
θl

∏

u:mu=l

p(fu|θl). (2)

We further adapt the formulation for soft segments m ∈ [0, 1]H×W×L. We exper-
iment with two choices of θl - Affine transforms and flow-magnitude histograms.

Affine transformations: We fit an affine motion model to the optical flow
within each segment. This “fit” corresponds to the max operation in eq. (2) and
is computed by solving a weighted least squares problem. As a proxy for the
likelihood in eq. (2), our loss function is a robust residual between the affine
approximation and the optical-flow f . This is a motion based self-supervision
loss which conveys a notion of coherent motion within each segment based on
an affine approximation of its optical flow. Computing this loss requires solv-
ing a weighted least squares online in the network’s forward pass which is a
simple combination of matrix arithmetic and a matrix inverse all of which are
differentiable.

Low Entropy Motion Loss. Instead of fitting parametric motion models
to regions, histograms offer a general non-parametric alternative. We compute
a histogram for the flow-magnitude within each segment. The histogram itself
constitutes θl (eq. (2)) and f is the flow magnitude rather than 2D flow vectors.
The entropy of this histogram is used as a loss, again as a proxy for the likelihood
in eq. (2). We assume that a segment straddling different independently movable
objects will constitute a high entropy histogram. In other words, we assume
a histogram entropy loss encourages the separation of independently movable
objects.

4 Experiments

We show qualitative results as sample image segmentations generated by our
S3-CNN . We then assess its capability to pre-train for image recognition. In
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(a) Orthographic projection:
Segment cube faces (train set).

(b) Sintel - L = 5. Col-1:
Train Set, Col-2,3: Val.

(c) Youtube Objects (Val.
set) - L = 10

Fig. 2: Predicted regions are visualized by a colour map.

these experiments, we use a Fully Convolutional Network [26] FCN-8s model
on VGG-16 [27]. FCN scores are mapped to soft segmentation masks as in [28].
Parameter free batch normalization [29] was used after every convolutional and
fully connected layer in the pretraining stage.

Qualitative Results: First, we demonstrate our method on a toy problem.
The data consists of synthetic videos of a single translating and rotating 3D tex-
tured cube (fig. 2a); paired with the corresponding optical flow field. Cubes are
imaged under an orthographic camera, so that the affine motion model of sec-
tion 3 applies to each cube face. We train a network to predict 5 segments with
self-supervision from five sequences containing 99 frames each. As seen in fig. 2a,
the network learns to correctly group together the pixels in each cube face.

Next we consider Sintel [30], containing videos from an animated 3D movie
and use the affine flow model to learn a grouping of image regions. While this
model offers only a loose approximation of the complex motions in these videos,
informative regions can still be learned as the affine approximation is quite good
for body parts and other small objects. The results obtained, on training and
validation images, by the model trained using the affine flow loss on 20 training
sequence from Sintel are shown in fig. 2b, where several objects and parts are
highlighted. Notice in particular that even bodies and heads are picked up despite
their non-planar structure.

In the case of real world data, we have large systematic noise in automati-
cally computed optical flow. We find that the histogram entropy loss works best
in these cases. Figure 2c shows qualitative results on frames from the Youtube
objects dataset[31,32]. These were predicted by our model trained on frames
extracted from YFCC100m [33] and supervised using the flow magnitude his-
togram entropy loss (section 3). The cat boundaries align well with segments in
the first column and a bird in the middle is segmented out. Also each segment
caters to one spatial region. The teal coloured region is always in the middle left
whereas the light green region is always in the top right corner.

Pre-training for Object Recognition: Our approach can also be used as
a proxy to pre-train a generic feature extractor. These features can then be
fine-tuned for other tasks such as image classification. To test this use, we fol-
low the protocol of [34] to evaluate on Pascal VOC 2007 classification. Batch
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Table 1: We fine-tune our model for VOC-07 classification (%mAP on test split).

Method ImageNet Random (∼ [2]) k-means [34] Colorization [2] S3-CNN

% mAP 86.9 59.85 56.5 77.2 76.35

normalization moments are absorbed into convolution filters and biases before
fine-tuning.

We first pre-train our S3-CNN model on optical flow and frames extracted
from videos in the YFCC100m dataset. We use 150k videos and compute optical
flow between the first and fifth frame of each using EpicFlow1 [35] with initial
matches given by FlowFields [36]. This yields a dataset of 150k frames.

Table 1 lists methods that report results on VOC-07 classification using a
VGG-16 based model. We observe that our S3-CNN model performs better than
a non pretrained VGG-16. We are competitive to state-of-the-art models for
VOC-07 classification: 76.35% mAP compared to 77.2% mAP of [2] despite us-
ing only 150k pre-training pairs compared to their pretraining dataset of 3.7M
images. Lastly, we trained an AlexNet model akin to that of [6] by construct-
ing an AlexNet FCN S3-CNN . We compare with them on VOC-07 classification
and obtain 57.37% mAP versus their result of 61% mAP. This is promising given
that we use 150k images versus their dataset of 1.6M images.

5 Conclusions

We have presented the S3 framework, that allows supervising neural network
architectures for general-purpose feature extraction using optical flow.
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