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Fig. 1. Our G–MGBP super–resolution improves the perceptual quality of low distor-
tion systems like EDSR[16] (with slightly higher RMSE), as well as baseline systems
like EnhanceNet[26] (with significantly lower RMSE). Its perceptual scores are similar
to the original images showing its effectiveness for ECCV PIRM–SR Challenge 2018[2].
Code and models are available at https://github.com/pnavarre/pirm-sr-2018.

Abstract. We describe our solution for the PIRM Super–Resolution
Challenge 2018 where we achieved the 2nd best perceptual quality
for average RMSE 6 16, 5th best for RMSE 6 12.5, and 7th best
for RMSE 6 11.5. We modify a recently proposed Multi–Grid Back–
Projection (MGBP) architecture to work as a generative system with
an input parameter that can control the amount of artificial details in
the output. We propose a discriminator for adversarial training with the
following novel properties: it is multi–scale that resembles a progressive–
GAN; it is recursive that balances the architecture of the generator; and
it includes a new layer to capture significant statistics of natural images.
Finally, we propose a training strategy that avoids conflicts between
reconstruction and perceptual losses. Our configuration uses only 281k
parameters and upscales each image of the competition in 0.2s in average.
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1 Introduction

We are interested in the problem of single image super–resolution (SR), which
is to improve the quality of upscaled images by large factors (e.g. 4×) based
on examples of pristine high–resolution images. Questions such as the objective
meaning of quality, and what characterizes a pristine image, leads us towards
different targets. The traditional approach is to focus on the reconstruction of
high–resolution images from their downscale versions. We will refer to this target
as distortion optimization. Alternatively, we can focus on creating upscale images
that look as real as natural images to human eyes. We refer to the latter as
perception optimization. In [3], Blau and Michaeli studied the conflicting roles
of distortion and perceptual targets for image enhancements problems such as
SR. Both targets cannot be achieved at the same time, one must compromise
perceptual quality to reduce distortion and vice versa. Here, we are interested
in the optimal balance between these two targets.

Our work follows the line of research started by SRCNN[4,5], which designed
SR architectures using convolutional networks. SRCNN focused on a distortion
target and it was later improved most notably by EDSR[16] and DBPN[8] in
NTIRE–SR Challenges[29,30]. The work on SR architectures with a focus on
perceptual targets has been possible thanks to the great progress in Generative
Adversarial Networks (GAN)[7] and style transfer[6]. It began with SRGAN[15],
which proposed the use of GANs, followed by Johnson[11], who proposed a real–
time style transfer architecture, and later improved by EnhanceNet[26], which
combined both approaches. Most recently, the Contextual (CX) loss[19] has been
used in SR architectures to improve the similarity of feature distributions be-
tween artificial and natural images[18]. This latest method provides the best
benchmark for perceptual quality according to non–reference metrics used in
PIRM–SR 2018[2]: Ma[17] and NIQE[20].

Our system architecture was inspired by the multi–scale structure of MSLapSR[14],
which we adapted to use Iterative Back–Projections (IBP) in feature space to
enforce a downscaling model. In [23] we extended the classic IBP method to
multiple scales by using a recursion analogous to the Full Multi–Grid algorithm,
which is commonly used as PDE solver[31]. The system in [23] focused exclu-
sively on a distortion target and now we extend it to perceptual targets.

Our main contributions are:

– We propose a novel strategy to control the perception–distortion

trade-off in Section 2, which we adopt to design our system.
– We introducemulti–scale diversity into our SR architecture design, through

random inputs at each upscaling level. These inputs are manipulated by the
network in a recursive fashion to generate artificial details at different scales.
See Section 3.

– We propose a novel variance–normalization and shift–correlator (VN+SC)
layer that provides meaningful features to the discriminator based upon pre-
vious research on the statistics of natural images. See Section 4.1.

– We propose, to the best of our knowledge, the first multi–scale and recur-

sive discriminator for adversarial training. It is a configuration symmetric
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to the multi–scale upscaler, therefore it is more effective for adversarial train-
ing. It can simultaneously evaluate several upscaling factors, resembling a
Progressive GAN[13] in the sense that the optimizer can focus on smaller
factors first and then work on larger factors. See Section 4.2.

– We propose a novel noise–adaptive training strategy that can avoid con-
flicts between reconstruction and perceptual losses, combining loss functions
with different random inputs into the system. See Section 5.

2 Controlling Distortion vs Perceptual Quality

To better illustrate our target, we present a diagram of image sets in Figure
2. Here, H is the set of all high–resolution images, Hreal ⊂ H is the subset of
high–resolution images that correspond to natural images, and L is the set of all
low–resolution images. Given an image X ∈ Hreal, we are interested in the set
of aliased images:

A(X) = {Y ∈ H s.t. Sdown(Y ) = Sdown(X)} , (1)

where Sdown : H → L is a downscale operator. We are particularly interested in
the set A(X) ∩Hreal of alias images that correspond to real content.

A distortion function ∆(X, y) measures the dissimilarity between a recon-
structed image y and the original image X. Popular and basic distortion metrics
such as L1, L2, PSNR, etc., are sensitive to changes (any minor difference in pixel
values would increase the amount of distortion) and are known to have low corre-
lation with human perception[27]. Several distortion metrics have been proposed
to approach perceptual quality by emphasizing some differences more than oth-
ers, either through normalization, feature extraction or other approaches. These
include metrics like SSIM[32], VIF[28] and the VGG content loss[12]. By doing
so, correlation with human perception improves according to [27], but experi-
ments in [3] show that these metrics still focus more on distortion. More recently,
the contextual loss has been proposed to focus more on perceptual quality while
maintaining a reasonable level of distortion[19].

The optimal solution of distortion optimization is obtained by:

X∗ = argminyE [∆(X, y)] . (2)

The original image X is fixed, and the expected value in (2) removes any visible
randomness in the search variable y. But, according to research on the statis-
tics of natural images, randomness plays an essential role in what makes images
look real[25]. This is well known for non–reference image quality metrics such
as NIQE[20] or BRISQUE[21], and led to a definition of perceptual quality as a
distance between probability distributions in [3]. It is also known that distortion
optimization solutions tend to look unreal, as seen in state–of–the–art results
from NTIRE–SR Challenges[29,30]. Common distortion metrics in these chal-
lenges (L1 and L2) make the image X∗ lose all randomness. We argue that this
removal of randomness in X∗ is what moves it out of set Hreal, as we show in
Figure 2.
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Fig. 2. Given a high–resolution image X that looks real, distortion optimization ap-
proaches an optimal solution X∗ that does not look real because it lacks the random
nature of natural images. We can still use X∗ as a reference point to move through an
innovation jump into the set of realistic images.

We know that X 6= X∗ because X ∈ Hreal and X∗ /∈ Hreal according to
our previous discussion. However, distortion optimization can still be useful to
generate realistic images. By approaching X∗ we are getting closer to X. As
shown in Figure 2, both X and X∗ can be in A(X). Using a signal processing
terminology, the innovation[22] is the difference between X and the optimal
forecast of that image based on prior information, X∗. Most SR architectures
take the randomness for the innovation process from the low–resolution input
image, which is a valid approach but loses the ability to expose and control it.

In our proposed architecture we add randomness explicitly as noise inputs,
so that we can control the amount of innovation in the output. Independent
and identically distributed noise will enter the network architecture at different
scales, so that each of them can target artificial details of different sizes. Gen-
erally speaking, our training strategy will be to approach X∗ with zero input
noise and any image in A(X) ∩ Hreal with unit input noise. By using noise to
target perceptual quality, and remove it for the distortion target, we teach the
network to jump from X∗ into Hreal. With probability one the network cannot
hit X, but the perceptual target is any image in A(X) ∩Hreal.

3 Generator Architecture

Our proposed architecture is shown in Figure 3 and is based on the Multi–
Grid Back–Projection (MGBP) algorithm from [23], which improves a similar
system used in NTIRE–SR Challenge 2018[30]. This is a multi–scale super–
resolution system that updates a progressive classic upscaler (like bicubic) with
the output of a convolutional network system. At each level MGBP shares the
parameters of all networks. The first upcale image at each level is obtained
by a Laplacian pyramid approach[14] and later improved by Iterative Back–
Projections (IBP)[10] computed in latent space (e.g. features within a network).
Iterative Back–projections introduces a downscaler system to recover the low–
resolution image from upscale images, and thus captures information from the
acquisition model of the input image. By using back–projections in latent space,
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Algorithm 1 Generative Multi–Grid Back–Projection (G–MGBP)

G − MGBP (X,W,µ, L): BP
µ

k (u, Y1, . . . , Yk−1, noise1, . . . , noisek−1):
Input: Input image X.
Input: Noise amplitude W .
Input: Numbers µ and L.
Output: Yk, k = 2, . . . , L.
1: Y1 = X

2: noise1 = W · N (0, 1)
3: for k = 2, . . . , L do
4: Yk = ClassicUpscale(Yk−1)
5: d = Downscale(Analysis(Yk))
6: u = Upscale([Yk−1, d, noisek−1])
7: u = BP

µ

k (u, Y1, . . . , Yk−1,

noise1, . . . , noisek−1)
8: noisek = W · N (0, 1)
9: Yk = Yk + Synthesis(u)
10: end for

Input: Image u, level index k, steps µ.
Input: Images Y1, . . . , Yk−1 (only for k > 1).
Input: Images noise1, . . . , noisek−1 (only for

k > 1).
Output: Image u (inplace)
1: if k > 1 then
2: for step = 1, . . . , µ do
3: d = BP

µ

k−1
(

Downscale(u), Y1, . . . , Yk−2,

noise1, . . . , noisek−2

)
4: u = u+Upscale([Yk−1, d, noisek−1])
5: end for
6: end if

the downscaling model can be learned from training data and the iterations will
enforce this model. For a multi–scale solution, MGBP uses a recursion based on
multigrid algorithms[31] so that, at each upscaling level, an image is updated
recursively using all previous level outputs.

For the PIRM–SR Challenge 2018[2] we extended MGBP to work as a gener-
ative system. For this purpose we added noise inputs that provide the innovation
process as explained in Section 2. Previous work has shown the strong ability of
convolutional networks to interpolate in feature space[24]. Inspired by this, we
concatenate one channel of N (0, 1) noise to the input features of the Upscaler
module in Figure 3, and we use a parameter W to control the amplitude of
the noise. This parameter will later allow us to interpolate between distortion
and perception optimizations (see Section 6.2). In our experiments we use 48
features, which increases to 49 features with the noise input. The new recursive
method is specified in Algorithm 1.

The same noise channel is used during different IBP iterations at one scale
(µ = 2 times in our experiments) and i.i.d. noise is used for different scales.
Figure 3 shows the unrolling recursion for µ = 2 number of back–projections.

4 Discriminator Architecture

4.1 Variance Normalization and Shift Correlator

The task of the discriminator is to measure how realistic is an image. A straight-
forward approach is to input the color image to a convolutional network architec-
ture. Then, we hope that the discriminator learns from adversarial training using
real and fake image examples. In practice, we find that this approach works well
to identify which areas of upscale images need more textures but the artificial
details look noisy and have limited structure.

So what makes an image look natural? Extensive research has been carried
to address this question. Here, we follow the seminal work of Ruderman[25]
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Fig. 3. Generative Multi–Grid Back–Projection (G–MGBP) workflow, obtained from
the recursion in Algorithm 1 with µ = 2 and L = 3, to output 2×, 4× and 8× upscale
images. One channel of N (0, 1) noise enters each scale in feature space, and it is reused
several times within each level.

who found regular statistical properties in natural images that are modified
by distortions. In particular, Ruderman observed that applying the so–called
variance normalization operation:

Îi,j =
Ii,j − µi,j(I)

σi,j(I) + 1
, (3)

has a decorrelating effect on natural images. Here, Ii,j is the luminance channel
of an image with values in [0, 255] at pixel (i, j), µ(I) is the local mean of I
(e.g. output of a Gaussian filter), and σ(I)2 = µ(I2) − µ2(I) is the local vari-
ance of I. Ruderman also observed that these normalized values strongly tend
towards a Gaussian characteristic for natural images. These findings are used
in the NIQE perceptual quality metric considered for the PIRM–SR Challenge
2018[20]. NIQE also models the statistical relationships between neighboring pix-
els by considering horizontal and vertical neighbor products: Îi,j Îi,j+1, Îi,j Îi+1,j ,

Îi,j Îi,j−1 and Îi,j Îi−1,j . Previously, the BRISQUE non–reference metric also used
diagonal products[21].

Inspired by previous research we define the Variance Normalization and Shift
Correlator (VN+SC) layer as follows:

V
7(p+3)+q+3
i,j (I) = Îi,j · Îi+p,j+q , p = −3, . . . , 3 , q = −3, . . . , 3 . (4)

Here, we transform a color image into a set of neighbor products (shift correlator)
V k
i,j with k = 0, . . . , 48, using the variance normalized image Î. The number of
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Fig. 4. We propose a Variance Normalization and Shift Correlator (VN+SC) layer that
transforms the inputs of the discriminator into 49 channels that, according to research
on the statistics of natural images, capture the essential information to discriminate
between natural and unnatural images.

neighbor products can be any number, and we set it to 7× 7 in our experiments
to get a number similar to the 48 features used in our discriminator architecture.
Figure 4 shows the visual effect of the the VN+SC operation. We use a VN+SC
layer for each input of our discriminator, as shown in Figure 5.

4.2 Multi–Scale and Recursive Architecture

The G–MGBP upscaler designed in Section 3 is multi–scale and recursive. We
can then take advantage of the multi–scale distortion optimization training strat-
egy proposed in [14]. This strategy is difficult for adversarial training because
the outputs at different levels contain different artifacts and might need an en-
semble of discriminators. We simplify this problem by using a multi–scale and
recursive architecture as shown in Figure 5. The system takes several upscaled
images using different factors (2×, 4× and 8× in our experiments) and, based
on all of them, it outputs one score to decide if the images are real or fake. The
parameters of each block (pooling, analysis and synthesis) are shared at each
level. Thus, the system keeps the same number of parameters, either in a small
configuration with L = 1 level to evaluate a single 2× upscale output, or in a
large configuration with L = 3 levels to simultaneously evaluate 2×, 4× and
8× upscale outputs. Adversarial training with this discriminator resembles a
Progressive GAN[13] because it can adjust parameters to first solve the simpler
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Fig. 5. Multi{level recursive discriminator used for adversarial trainin g. The diagram
shows D 3 , the system unfold for 3 levels to simultaneously evaluate 2� , 4� and 8�
upscale outputs. Each module shares parameters in di�erent scales.

problem of 2� upscaling, and then follow with larger factors. But, at the same
time, it is signi�cantly di�erent because a Progressive GAN system is neither
multi{scale nor recursive.

5 Adversarial Training Strategy

We follow the design of multi{scale loss from MSLapSR[14] with 3 scales: 2� ,
4� and 8� . For each scaleL 2 f 1; 2; 3g we take X L , as patches from the HR
dataset images. High{resolution referencesX k with k = 1 ; : : : ; L � 1 are obtained
by downscaling the dataset HR images with factorL � k. This is:

X L = HR image from dataset ; L = 1 ; 2; 3 ; (5)

X k = SL � k
down (X L ) ; k = 1 ; : : : ; L � 1 : (6)

We denoteYW =0 and YW =1 the outputs of our generator architecture using noise
amplitudes W = 0 and W = 1, respectively. Then, we combine the multi{scale
loss from [14] and the perceptual loss from [18] with di�erent noise inputs. Our
total loss is given by:

L (Y; X ; � ) =
X

L =1 ;2;3

n
0:001� L GAN � G

L (YW =1 ) + 0 :1 � L context
L (YW =1 ; X ) +

10� L rec
L (YW =0 ; X ) + 10 � L cycle

L (YW =0 ; YW =1 ; X )
o

:(7)

Here, colors represent the target of each loss term according to Figure 6. First,


















