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Abstract. This paper addresses the problem of removing rain disrup-
tion from images for outdoor vision systems. The Cycle-Consistent Gen-
erative Adversarial Network (CycleGAN) is proposed as a more promis-
ing rain removal algorithm, as compared to the state-of-the-art Image De-
raining Conditional Generative Adversarial Network (ID-CGAN). The
CycleGAN has an advantage in its ability to learn the underlying re-
lationship between the rain and rain-free domain without the need of
paired domain examples. Based on rain physical properties and its vari-
ous phenomena, five broad categories of real rain distortions are proposed
in this paper. For a fair comparison, both networks were trained on the
same set of synthesized rain-and-ground-truth image-pairs provided by
the ID-CGAN work, and subsequently tested on real rain images which
fall broadly under these five categories. The comparison results demon-
strated that the CycleGAN is superior in removing real rain distortions.
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1 Introduction

It has been widely acknowledged that severe weather effects caused by rain can
badly affect the performance of many computer vision algorithms. This is pri-
marily due to the fact that these algorithms are typically trained using images
which have been captured under well-controlled conditions. Rain can manifest
itself in the form of low contrast, blurred and distorted scene content, and highly
saturated image specularities produced by falling raindrops, which are always
brighter than the original background [12]. Figure 1 shows two examples of
rain distorted images and their rain removal results using the Cycle-Consistent
Generative Adversarial Networks (CycleGAN)[42] algorithm. Our rain images
and their removal results clearly show the potential for automatic rain removal
from the types of image captured when undertaking many real outdoor tasks in
computer vision. One such example is drivable path detection for an autonomous
driving system [27], which must be able to detect both drivable and non-drivable
paths for successful navigation [1]. Some researchers using camera sensors have
already been successful to some extent in drivable path detection. Regardless
of this achievement, environmental noise such as rain and/or snow can cause
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misdetection of drivable path which can lead to autonomous driving system ac-
cident. This is because environmental noises have the capability to affect the
color properties of the image with significant effects of misclassification of road
as non-road and vice versa [29].

Fig. 1. Rain distortion on outdoor images as shown in Figure 1(a) and (b), and their
rain removal results by the CycleGAN were shown in Figure 1(c) and (d) respectively.

This paper makes a number of fundamental contributions to removing real
rain effects from images. The CycleGAN [42] is proposed for the first time as a
practical and effective way to reconstruct images under visual disruption caused
by real rain. The proposed approach does not require synthetically generated
paired rain and rain-free training data for learning, as required by other GANs
methods ([41], [34]), to address the disruption problem posed by real rain. In
other words, the proposed CycleGAN [42] has the distinct advantage compared
to the other GAN methods in its ability to learn a mapping from an input rain
image to a rain-free image, in the absence of paired rain and rain-free (ground
truth) training examples for real-world image reconstruction tasks. Hence, issues
of the practicality in collecting similar aligned rain and rain-free image pairs
to train the GAN algorithms and the unproven assumption that synthetically
generated rain streaks represent real rain, can be addressed by the CycleGAN.



Rain removal using CycleGAN 3

Based on a rain physics model [12], removal of five broad categories of real rain
distortion is proposed and this methodology can be applied to the majority of
outdoor rain conditions. Using a synthetic training data set provided by a recent
ID-CGAN study [41], we have evaluated the proposed CycleGAN[42] network
against the previously reported state-of-the-art ID-CGAN [41], in terms of its
rain removal performance on real rain test data sets. Our results demonstrate
that the above CycleGAN [42] was able to remove all types of rain distortion
better than the ID-CGAN [41] algorithm and therefore the CycleGAN represents
the new state-of-the-art for the removal of real rain distortion in images.

This paper is organized as follows. A brief overview of existing single image
rain removal techniques is given in Section II. In Section III, five categories of
rain distortion we propose to address by rain removal algorithms are discussed,
based on the physical properties and various types of rain phenomena mentioned
in [12]. The network, training and testing of the proposed CycleGAN [42] method
are presented in Section IV. The results of the rain removal experiments for both
the state-of-the-art ID-CGAN [41] and the proposed CycleGAN [42] algorithms
were then analyzed both qualitatively and quantitatively in Section V. Section
VI concludes the paper with a brief summary and discussion.

2 Background and related work

In past decades, many researchers have focused on image recovery from video
sequences by taking advantage of the additional temporal information contained
within rain video, as the actual scene content is not occluded by rain in every
video frame of any given sequence ([12], [11],[22],[15],[2],[35]). However, single-
image rain detection and removal is a more challenging task, compared to multi-
frame based techniques, due to the lack of predictable spatial and temporal
information that can be obtained by comparing successive image frames in or-
der to compute rain physics and statistical models [12]. In order to tackle this
ill-posed problem, many early single-image based methods considered signal or
layer separation ([36], [38], [8], [19], [20], [7], [5], [6], [26], [37], [30], [40], [9], [10],
[32], [33]), or relied on rain properties as image priors to detect rain patches, to
allow filtering methods to be applied to remove rain ([4], [16], [31], [36], [38]).

Early single-image based methods include sparse coding or morphological
component analysis based dictionary learning methods ([8], [19], [20], [7], [5],
[6], [26], [37], [30], [40]), and rain prior approaches based on rain prior infor-
mation or properties ([18], [17], [4], [16], [31], [36], [38]), for single-image rain
removal. Due to their common assumption of rain streaks having similar pat-
terns and orientations in the high frequency components of the image, some
success in applying both dictionary learning and rain prior approaches has been
observed. In more recently reported research using Deep Learning approaches,
such as Convolutional Neural Networks (CNN) ([9], [10], [32], [33]) and Gen-
erative Adversarial Networks (GAN) ([41], [34]), it was highlighted that early
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approaches suffered from incomplete removal of rain streaks and unintended re-
moval of certain global repetitive patterns, such as brick and texture, as well as
rain-free components, from the background image.

Due to their ability to learn end-to-end mappings, Convolutional Neural net-
works (CNN) approaches have been successfully applied by researchers to tackle
the rain removal problem ([9], [10], [32], [33]). Their results have shown that
CNN-based approaches can out-perform other non-Deep Learning based meth-
ods, particularly when applied to heavy rain images. However, these approaches
failed to remove rain streaks completely, in contrast to the Generative Adver-
sarial Networks (GANs) approach, recently introduced by Zhang et al. [41].

Inspired by the recent success of GAN- [14],[21] for pixel-level vision tasks
such as image generation [24],[25], image inpainting [23] and image super-resolution[3],
the GAN approach seemed natural and promising in removing rain streaks from
a single image without affecting the background scene details. Using the discrim-
inative model in GANs to ensure that the rain-removed reconstructed images are
indistinguishable from their original ground truth counterparts, Zhang et al. [41]
recently introduced their special conditional GAN called the Image De-raining
Conditional General Adversarial Network (ID-CGAN) to remove rain streaks
from a single image, which was inspired by the success of the general purpose
Conditional General Adversarial Network (CGAN) solution proposed by Isola
et al. [24] for image-to-image translation such as mapping an object edges to its
photo, semantic labels to a scenes image, etc. Apart from learning a mapping
function, Isola et al. [24] argued that the network also learnt a loss function,
eliminating the need for specifying or hand-designing a task-specific loss func-
tion. Instead of using a decomposition framework to address the single image
rain removal problem, the ID-CGANs [41] framework is based on the CGANs
network to directly learn a mapping from an input rain image to a rain-removed
(background) image.

The ID-CGAN consists of two models: a generator model (G) and a discrim-
inator model (D). The generator model acts as a mapping function to translate
an input image corrupted with rain to a reconstructed rain-removed image such
that it fools the discriminator model which is trained to distinguish rain images
from images without rain. In other words, by directly incorporating this criterion
into the optimization framework, the CGAN approach ensures that rain-removed
images are indistinguishable by a given discriminator from their corresponding
ground truth images. In addition, a perceptual loss function is also defined in
their optimization function to ensure the visual appeal of the end result using
the ID-CGAN [41]. Due to the above contributions, the ID-CGAN now repre-
sents the state-of-the-art method for rain removal in a single image.

In the next section, five categories of rain distortion phenomena that we pro-
pose to address using the rain removal algorithms we discuss. This is followed by
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the introduction of the Cycle-Consistent Generative Adversarial Network (Cy-
cleGAN) [42], as a practical method to address the single-image rain degradation
problem, due to it’s unique ability to learn a mapping from an input rain image
to a rain-free (ground truth) image, in the absence of paired rain and rain-free
training examples.

3 Rain distortions on images

There are various detrimental effects of rain on images ,which can be analyzed
using rain physics models [12]. Rain brings complex intensity changes due to
its unique physical properties: its small size, high velocity and wide spatial dis-
tribution. In addition, rain consists of large numbers of drops falling at high
speeds (terminal velocity) in the same direction. Typically, raindrops are water
droplets of size between 0.1-10mm, with a wide distribution of size. The drops
that make up a significant fraction of rain are less than 1mm in size, which are
not severely distorted and their shapes can be well approximated and modelled
as transparent spheres of water.Individual raindrops are distributed randomly
and uniformly in 3D volume. The probability P (k) that k number of drops exist
in a volume V is given by a Poisson distribution [12]. These rain physics models
have been used to detect and remove rain effect from images.

The terminal velocity −→v of a raindrop is directly proportional to the square
root of its radius a [12] as shown by the equation:

−→v = 200
√

a (1)

To achieve this terminal velocity(constant maximum velocity) which is typi-
cally between 5-9m/s in air, raindrops need distances of at least 12m to acceler-
ate to terminal velocity [12]. For free-fall rain drops travelling at their terminal
velocities, motion-blur significantly affects the appearance of rain. Garg and
Nayar ([12], [11]) examined the irradiance of the pixel over the exposure (in-
tegration) duration T and showed that the time τ that a drop projects onto a
pixel is far less than exposure (integration) duration T , i.e., the maximum value
of τ is approximately 1.18ms, which is much less than the typical exposure time
T ≈ 30ms of a video camera. The short exposures produced stationary and
bright raindrops and they do not appear transparent. However, at long expo-
sures, due to fast motion, raindrops produce severely motion-blurred rain streaks
and makes it look transparent.

Garg and Nayar [12] derived the dependence of rain visibility (intensity stan-

dard deviation of acvolume of rain, σr(I)) on rain properties (k0
a2√ρ
√

v
), scene

properties ((Lr − Lb))and camera parameters (

√
G(f,N,z0)

√
T

) as:

σr(I) =

∫

σr(I, z)dz = k0

a2√ρ√
v

(Lr − Lb)

√

G(f,N, z0)√
T

, (2)



6 L.M., Tang, L.H., Lim and J.P., Siebert

where σ is the standard deviation, I is the rain pixel’s intensity, z is the distance
of the rain drops in front of the camera, k0 is a constant camera gain, ρ is the
rain water density, a and v are the rain drops’ radius and velocity respectively,
Lr and Lb are the rain drops’ and background’s radiance respectively, and G
is a camera function defined by the focal length f , the F-number N , the Focus
Distance z0 and the exposure time T .

Based on the above physical properties and various types of rain phenom-
ena, this paper proposes five broad categories of real rain distortions, which can
be applied to the majority of outdoor rain conditions. The effectiveness of rain
removal algorithms can then be evaluated, based on these five categories, which
are listed as follows.:

i.) different severity of rain streaks [33];
ii.) different camera settings ([12], [11]);
iii.) rain images taken in an indoor setting behind a glass window;
iv.) rain velocity reduction and splashing at obstructing structures; and
v.) splashing and accumulation of rain water on ground surface.

4 Network, training and testing

4.1 Network parameter and training data set

The same architecture of the CycleGAN networks from Zhu et. al. [42] is pro-
posed in this paper to remove real rain disruptions as it has shown impressive
results for general purpose unpaired image-to-image style transfer, object trans-
figuration, season transfer and photo enhancement. For this purpose, the gen-
eral purpose CycleGAN [42] can be used to translate an image from a source
domain (rain) X to a target domain (rain-free) Y . Its goal is to learn a mapping
G : X → Y such that the distribution of images from G(X) is indistinguishable
from the distribution Y using an adversarial loss. This highly under-constrained
mapping is coupled with an inverse mapping F : Y → X, thereby using the cycle
consistency loss introduced to push F (G(X)) ≈ X (and vice versa). Combining
this cycle consistency loss (Lcyc(G, F )) with adversarial losses on domains X
(LGAN(G, DY , X, Y )) and Y (LGAN(F,DX , Y,X)) yields the overall CycleGAN
objective expressed as:

L(G, F, DX , DY ) =LGAN(G, DY , X, Y )

+ LGAN(F,DX , Y,X)

+ λLcyc(G, F ), (3)

where DY is the associated adversarial discriminator that encourage G to trans-
late X into outputs indistinguishable from domain Y , and vice versa for DX ,
and λ is a constant that control the relative importance of the two objective
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functions G and F in the cycle consistency loss.

The objective of the forward mapping function G : X → Y , LGAN(G, DY , X, Y ),
is expressed as LLSGAN(G, DY , X, Y ) for training stability reason:

LLSGAN(G, DY , X, Y ) =Ey∼pdata(y)[(DY (y) − 1)2]

+Ex∼pdata(x)[DY (G(x))2], (4)

where x and y are the images in X and Y domain respectively. A similar objec-
tive was used for the reverse mapping function F : Y → X, LGAN(F,DX , Y,X).

The Lcyc(G, F ) is expressed as:

Lcyc(G, F ) =Ex∼pdata(x)[‖F (G(x)) − x‖1]

+Ey∼pdata(y)[‖G(F (y)) − y‖1]. (5)

The entire proposed CycleGAN network is trained on a Nvidia GTX 1080
using the Pytorch implementation [13]. Same as [42], this CycleGAN network
was trained with a learning rate of 0.0002 for the first 100 epochs and linearly
decaying rate to zero for the next 100 epochs. Weights were initialized from a
Gaussian distribution with mean 0 and standard deviation 0.02. The discrim-
inators DX and DY were updated using a history of previously generated 50
images rather than the ones produced by the latest generative networks to sta-
bilize the training procedure. For all experiments, λ, which controls the relative
importance of the two objective functions G and F in the cycle consistency loss,
was set to 10 in Equation (3). The Adam solver was used with a batch size of 1.

The same generator architecture from [42] was adopted to accomodate differ-
ent image sizes for the rain-removal CycleGAN network. It contains two stride-2
convolutions, several residual blocks, and two fractionally-strided convolutions
with stride 1

2 . For images with sizes 128 × 128, 6 residual blocks were used;
and for images with sizes 256 × 256 and larger, 9 blocks were used. In addition,
instance normalization was used.

Let c7s1-k denote a 7 × 7 Convolution-BatchNorm-ReLU layer with k fil-
ters and stride 1; and dk denotes a 3 × 3 Convolution-BatchNorm-ReLU layer
with k filters, and stride 2, with reflection padding used to reduce artifacts. Rk
denotes a residual block that contains two 3 × 3 convolutional layers with the
same number of filters on both layer. uk denotes a 3 × 3 fractional-strided-
Convolution-BatchNorm-ReLU layer with k filters, and stride 1

2 . Using similar
naming convention used in [42] to describe the generator network architecture,
the network with 6 blocks consists of:

c7s1-32,d64, d128, R128, R128, R128, R128, R128, R128, u64, u32, c7s1-3

and the network with 9 blocks consists of:
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c7s1-32,d64, d128, R128, R128, R128, R128, R128, R128, R128, R128, R128,
u64, u32, c7s1-3

The same discriminator architecture from [42] was adopted to accomodate
different image sizes for the rain-removal CycleGAN network as well. It used 70
× 70 PatchGANs [42] to try to classify whether the 70 × 70 overlapping image
patches were real or fake. Such a patch-level discriminator architecture has fewer
parameters than a full-image discriminator, and can be applied to arbitrarily-
sized images in a fully convolutional fashion. In a similar naming convention
as the Generator network, let Ck denote a 4 × 4 Convolution-BatchNorm-
LeakyReLU layer with k filters and stride 2. BatchNorm was not used for the
first C64 layer. Slope of 0.2 was used for the leaky ReLUs. After the last layer, a
convolution was applied to produce a 1-dimensional output. The discriminator
architecture is:

C64-C128-C256-C512

The CycleGAN approach does not require synthetically created rain and
rain-free image pairs for training the networks. But for a fair comparison of
the proposed CycleGAN rain removal approach with the state-of-the-art ID-
CGAN, the same synthesized rain image pairs provided by [41] were used for the
training of both networks. A total of 700 synthetically created rain-and-ground-
truth image-pairs were used as training samples. All the training samples were
resized to 256 × 256 for evaluation purpose. Note that although rain pixels of
different intensities and orientations were added to generate this diverse training
set, these ”fake rain” added may not represent the ”real rain” statistics in the
natural images. Thus, both algorithms need to be tested using only real rain
images. Real rain images with different types of distortions were collected to
investigate the rain removal capability of the CycleGAN compared to the ID-
CGAN visually, as explained in the next section.

4.2 Testing and evaluation data set

Existing objective image quality measures require some measurement of the
closeness of a test image to its corresponding reference (ground truth). These
measures are either based on mathematically defined measures such as the widely
used mean squared error (MSE), peak signal to noise ratio (PSNR), structure
similarity information measures (SSIM) [39], or the human visual system (HVS)
based perceptual quality measures such as the visual information fidelity (VIF)
[28]. Most existing literature used such generated image pairs for quantitative
comparison of their results.

Based on the five types of rain distortions discussed in Section III, the qual-
itative performance of real rain removal performance was evaluated. As their
real rain ground truth reference images were not available in the test data set,
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the performance of the proposed CycleGAN and the ID-CGAN is evaluated vi-
sually. The results reveal the superiority of the proposed CycleGAN method.
In addition, although the corresponding rain-free (ground truth) images for a
real rain quantitative comparison of results were not available, the quantitative
comparison results of a subset of images from the synthetic data set are used to
compare their performance for a complete analysis, as shown in the next section.

5 Experiment results

5.1 Type I: Different severity of rain streaks

As discussed in Section III, rain drops show a wide distribution of size, volume
and rate [12]. Hence, it is expected that rain properties affect the appearance
of rain streaks in a wide variety of manner [12], [33]. Light rain streaks below
1 mm in rain drop’s diameter are common; they are less visible and blur the
background scene in a rain image. Heavy nearby rain streaks above 1 mm in
rain drops’ diameter are more visible and reduce the visibility by occluding the
background scene. Severe distant rain with large rain drops’ diameter show their
individual rain streaks are overlapping and cannot be seen, occluding the back-
ground scene in a misty manner [33]. Two Type I sample images are shown in
Figure 2 (a) and (c) with different severity of rain streaks, and their correspond-
ing magnified rain streaks are as shown in Figure 2 (b) and (d) respectively. The
rain removal results using the ID-CGAN and CycleGAN are as shown in Figure
2(e) to (h) and Figure 2(i) to (l) respectively. The subsequent figures for other
types of rain distortion are presented in the similar manner.

As shown by the results, CycleGAN removed the rain streaks of different
severity equally well, while the ID-CGAN was unable to remove the rain streaks
and many original rain streaks remained, especially for heavy rain. In addition,
it was observed that the contrast of background scenes was enhanced with the
ID-CGAN.

5.2 Type II: Different camera settings

As discussed in Section III, camera parameters such as exposure time affect the
visibility of the rain. Garg and Nayar [12] compared rain images taken with a
short exposure time of 1ms and normal exposure time of 30ms, and discov-
ered that the short exposures produced stationary and bright raindrops and
they do not appear transparent. However, at long exposures, due to fast motion,
raindrops produce severely motion-blurred rain streaks. Type II distortion is
typically due to a short exposure time that increases rain visibility and produces
stationary, bright and non-transparent raindrops. Due to the high speed of rain,
rain drops appear as bright spheres occluding the background scene. Figure 3(a)
to (d) shows examples of such rain degradation. The rain removal results using
the ID-CGAN and CycleGAN are as shown in Figure 3(e) to (h) and Figure 3(i)
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Fig. 2. Type I distortion for different severity of rain streaks as shown in Figure 2(a)
to (d), and their rain removal results by the ID-CGAN and CycleGAN were shown in
Figure 2(e) to (h) and 2(i) to (l) respectively.

Fig. 3. Type II distortion for different camera setting as shown in Figure 3(a) to (d),
and their rain removal results by the ID-CGAN and CycleGAN were shown in Figure
3(e) to (h) and 3(i) to (l) respectively.

to (l) respectively.
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It was observed that the CycleGAN was able to remove the bright rain
spheres well, although it was not trained to remove such a type of defect. In
comparison, the ID-CGAN was unable to remove such defects and left behind
many bright rain spheres in the zoomed regions-of-interest. This may be because
such real rain defect are not covered in the synthetic training data set. In ad-
dition, ID-CGAN is known to suffer from white-round rain streaks due to the
high-level features from CNN network inherently enhancing white round par-
ticles [41]. Hence, the CycleGAN performed better than the ID-CGAN for the
rain distortions in Type II.

5.3 Type III: Indoor rain images behind a glass window

Since a glass window affect the radiance or scene properties of an image, it af-
fects the visibility of rain streaks as shown by Equation (2), as shown in Section
III. Hence rain streaks and its background scene viewed behind a transparent or
translucent glass window should be considered separately as a different defect.
The adherent rain water behind the glass window also occludes the rain streaks
and its background scene. The reflection of light by, and the refraction of light
through, the adherent water stain behind the glass window produces very low
brightness scene captured by a camera or observed by a human, as shown in
Figure 4 (a) to (d).

Fig. 4. Type III distortion for scene behind a glass window as shown in Figure 4(a)
to (d), and their rain removal results by the ID-CGAN and CycleGAN were shown in
Figure 4(e) to (h) and 4(i) to (l) respectively.
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Figure 4(e) to (h) and Figure 4(i) to (l) show the results of removing rain
using the ID-CGAN and CycleGAN respectively. As shown by the results, the
ID-CGAN would brighten the adherent water drops as shown by Figure 4(e) and
(f), regardless of the sizes of the drops. This may be due to the same reasons, as
discussed in Type II. In comparison, the CycleGAN does not show such defects,
as shown in Figure 4 (i) and (j). Also, as shown in Figure 4 (g) and (h), although
the ID-CGAN managed to enhance the contrast of the low brightness background
scenes, its contrast was still not as good as the CycleGAN, as shown in Figure 4
(k) and (l). This may be due to the nature of the learning of the cycle consistency
objective that prevent the learned mappings G and F from contradicting each
other, in such low brightness situations. Although none of the algorithms was
trained to remove such defects, the CycleGAN has shown that it is more superior
to remove such defect and manage to enhance the contrast of the low brightness
scene well.

Fig. 5. Type IV distortion for rain velocity reduction and splashing at obstructing
structures as shown in Figure 5(a) to (d), and their rain removal results by the ID-
CGAN and CycleGAN were shown in Figure 5(e) to (h) and 5(i) to (l) respectively.

5.4 Type IV: Rain velocity reduction and splashing at obstructing

structures

For free falling rain drops where the raindrops’ velocities were suddenly reduced
by a structure (e.g. the roof) of a building as shown in Figure 5(a) to (d), the
rain streaks appeared almost stationary and bright as they are not falling at
terminal velocities (see Equation (1)). This kind of distortion consists of both
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the usual motion blurred long rain streaks as well as the brighter and shorter
streaks, as shown in Figure 5(a) to (d).

It is illustrated in Figure 5(i) to (l) that the CycleGAN was able to remove
both fast and slow rain streaks, while the ID-CGAN was only able to remove the
faster rain streaks. This may be due to the same reasons, as discussed in Type
II. As shown in Figure 5(f) and (h), most of the slow rain streaks remained, in
the case of the ID-CGAN. Based on these observations, the CycleGAN is more
robust for a wide range of real rain defects, as compared to the ID-CGAN.

5.5 Type V: Splashing and accumulation of rain water on ground

surface

Rain water tends to accumulate on surfaces such as the road surface or the roof
of a building. Hence, distortions due to water splashing defects are common in
rain images. Figure 6(a) to (d) show samples of such rain distortion.

Fig. 6. Type V distortion for splashing and accumulation of rain water on ground
surface as shown in Figure 6(a) to (d), and their rain removal results by the ID-CGAN
and CycleGAN were shown in Figure 6(e) to (h) and Figure 6(i) to (l) respectively.

Figure 6(e) to (h) and Figure 6(i) to (l) show the results of removing rain
using the ID-CGAN and CycleGAN respectively. As shown by the results, the
CycleGAN was able to remove water splashes and ripples of water accumulated
on the surface completely. As shown in Figure 6 (e) and (f), the ID-CGAN has
introduced many white artefacts. This was expected as the ID-CGAN was not
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trained to remove such a type of defect, But the CycleGAN was able to remove
the defect very well with good contrast, as shown in Figure 6 (i) and (j). The
ID-CGAN also created a large patch of bright defect on the accumulated surface
water, as shown in Figure 6 (g) and (h). Such artefacts are not observed in the
CycleGAN, as shown in Figure 6 (k) and (l). Based on the above observations,
the CycleGAN has shown to be superior to the ID-CGAN in removing Type V
rain distortion.

5.6 Quantitative Comparison Results

As both the ID-CGAN and the CYCLEGAN are learned using the same syn-
thetic data set provided by the ID-CGAN, we can also perform a quantitative
comparison to compare both performance based on the same synthetic data set
provided by the ID-CGAN [41], as shown in Table 1. The results show that our
proposed CYCLEGAN method achieve superior quantitative performance over
the more recent ID-CGAN method using the mathematically defined SSIM and
perceptually defined VIF measures.

Table 1. Quantitative Comparison between the ID-CGAN and the CycleGAN using
the synthetic data set

CycleGAN ID-CGAN
SSIM 0.9992 0.8133
VIF 0.6376 0.4148

6 Conclusions

This paper is addressing the impracticality in collecting aligned rain and rain-free
image pairs to train rain removal GANs for real outdoor task in computer vision
as synthetic rain’s statistics may not faithfully representing real rain. Hence the
CycleGAN is proposed to re-construct images under visual disruption caused
by rain as it can be trained using real rain images. A qualitative study based
on rain physics for comparing the effectiveness of rain removal in five types
of real rain distortion is presented, along with quantitative evaluation using
the limited synthetic data set provided by the ID-CGAN work [41]. Our results
demonstrate that the proposed CycleGAN approach is more robust and effective
in removing all five types of real rain defects from images than the ID-CGAN,
while preserving image scene details. In comparison, the ID-CGAN was unable
to remove bright and short rain streaks, leaving behind many white artefacts
and was not able to enhance images with low brightness or contrast. Hence,
we could potentially extend the CycleGAN framework as a new state-of-the-art
single-image rain disruption removal method from single-image to video for rain
disruption removal in the future.
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