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Abstract. The detection of vascular structures from noisy images is a fundamental process for
extracting meaningful information in many applications. Most well-known vascular enhancing
techniques often rely on Hessian-based filters. This paper investigates the feasibility and
deficiencies of detecting curve-like structures using a Hessian matrix. The main contribution is
a novel enhancement function, which overcomes the deficiencies of established methods. Our
approach has been evaluated quantitatively and qualitatively using synthetic examples and a
wide range of real 2D and 3D biomedical images. Compared with other existing approaches,
the experimental results prove that our proposed approach achieves high-quality curvilinear
structure enhancement.
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1 Introduction

The enhancement of vessel-like structures in images plays an important role in various applications of
computer vision, image processing, and medical analysis. The enhancement phase can be immediately
improved upon by advancing the acquisition, interpretation and image analysis techniques. A wide
range of curvilinear structures enhancement methods analyse image derivatives, most of them
employ the analysis of Hessian matrix, such as [4JI6JI0]. The Hessian matrix is based on second-
order Gaussian derivatives, calculated at different scales (controlled by standard deviation o). This
enables the differentiation between particular shapes, such as rounded, tubular, and planar structures.
These approaches suffer from many deficiencies, which can be seen in different curve patterns and in
the suppression of junctions and rounded structures [g].

Recently, the use of diffusion tensors (such as the Regularised Volume Ratio tensor (RVR)[]])
has improved the detection of vessel-like structures. The Fractional Anisotropic Tensor (FAT) is
another well-known diffusion tensor measure, which has been reviewed in [14]. FAT measures the
variance of eigenvalues across different structures, i.e., it measures the change of anisotropy along
the vessels. In terms of ellipsoid glyphs, cigar-shaped (linear) and pancake-shaped ellipsoids (planar)
can result in equal FAT measures though their shapes differ greatly [6]. This feature gives FAT less
potential to fail in the junctions and has more chance of getting closer to uniformity in the final
response. Thus, FAT plays a major role in many attempts towards diffusion tensor regularization [2].
An optimal enhancement function should achieve a high and uniform response to i) variable vascular
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morphology, ii) the intensity non-uniformities caused by blood contrast or in the background, iii)
unambiguity of the vessel boundary, and iv) background noise.

Our contribution in this paper is a novel multiscale approach for either 2D or 3D images by
preprocessing the eigenvalues and junctions reconstructing at each scale. Our proposed method has
shown a surpassed performance when compared to the competing state-of-the-art approaches.

2 Related Work

One of the early attempts to use eigenvalue analysis for vessel enhancement was by Sato [16]. A
later attempt that received wide acceptance was in the work of Frangi et al. [4]. In their work,
they proposed a Hessian-based approach, known as Vesselness, to enhance curve-like features. The
Vesselness measure is used to describe an image whenever a dark curvilinear structure appears
with respect to the background. However, the main drawback of this approach are the very small
curve-like feature responses at junctions, due to the large eigenvalues. The use of the Hessian matrix
was further developed in the Neuriteness method, proposed by Meijering et al. [10]. It consists of a
detection stage, which implies a feasible neurite with a value in every individual pixel of the image,
and the actual tracing stage. This last stage determines which pixels are successive and which are
most likely to reflect the centerline of the neurites. Furthermore, Obara et al. [12] used a Phase
Congruency Tensor (PCT) by [9] in combination with Vesselness (PCT ves.) [4] and Neuriteness
(PCT neu.) [I0] in order to improve their results in detecting edges and to not rely on image
intensities. The advantage of this approach is its insensitivity to intensity and noise variations in
images.

Recently, motivated by the detection of spherical diffusion tensors, Jerman et al. [§] proposed
a new measure based on the Volume Ratio, which overcomes the deficiencies of using a Hessian
matrix such as: non-uniformity, variation of eigenvalues with image intensity, and non-uniformity
of enhancement across scales. However, the problem of having lower intensities on junctions and
crossings has not been completely solved by this approach. For more details, we provide further
background of the enhancement approaches (please refer to the supplementary materials).

3 Methodology

In this section, we introduce a novel approach in order to enhance vessel-like structure in images.
We hypothesize that an enhancement function should take the degree of anisotropy of the target
structure into account, should be preserving the transactions between isotropic and anisotropic
tissues and should be robust to sustain low-magnitude eigenvalues. Furthermore, an enhancement
function should solve the fitting problem in the elliptical cross-section structures, which yield a
uniform response across different vascular structures and more effective suppression of background
noise without affecting the junctions or cross-sections.

Biological tissue samples are often anisotropic, because the cell and vessel membranes limit the
motion of water molecules. Since the shape of the curvilinear structures is anisotropic, the junctions
in these tissues have an isotropic shape, which explains why other established methods could not
detect non-circular cross-sections [410] or having less uniformity in the junctions and crossing [g]. In
order to avoid the low filter response at junctions, we regularise eigenvalues, calculated from Hessian
representation of an image I(x) at each scale o, to fulfill the following condition for 3D images:

Ao > Az A [Aaz] > [\l (1)
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This eigenvalues regularization process is combined with a junctions reconstruction step at each scale
0. This paper proposed a new Hessian-based enhancement approach called Multiscale-Fractional
Anisotropic Tensor M F AT

3.1 Fractional Anisotropic Tensor-based Vascular structures Enhancement

Enhancement function in 3D The anisotropy on a voxel level is quantified in terms of FAT and
is expressed as an invariant of the three independent diffusion tensor eigenvalues at each scale o,
and it is expressed in [6] as:

A1 —Dyx)2+(Aa—Dy)24+(A3—Dy)?
FATS =[5 ComPal e B 0D, 2)

The response of FAT{ ranges between 0 and 1. The mean diffusivity D) is defined as:

_ T,
D/\:§7 (3)

where T, refers to the trace of diffusion tensor, which represents the affected area much more
accurately than images, representing the diffusion in only one direction, and defined as:

T, =Y A (4)

Recently, Pardos et al. [I5] proposed another representation of anisotropic diffusion tensors, in
probabilistic form based on a ternary diagram, called Finetti Diagram [I], analysed for each tensor,
and proved its feasibility. They describe the main limitation of eigenvalue-based measures as its
partial representation of the tensor information which is only related to image intensities. They
proved that the probability-based FAT measure has better detection of curve-like structures. The
Probabilistic Fractional Anisotropic Tensor F'AT,, at each scale o, can be expressed as:

o _ /3 [ (p1—=Dy)2+(p2—Dp)2+(ps—Dy)?
FATP - \g\/ Plzj-sz—t-pgz ” : (5)

The relative importance of each ellipsoid axis p; is defined as:

Pi = 7~ (6)

where the mean of diffusivity is set to be D, = £ as in [15].

Both forms of fractional anisotropic have been modified in this work from the original version in
Equations |2l and [5| Our enhancement function is based on the modifications that have been done
in [8]. They add absolute values to account for differently signed eigenvalues, which results in a
more uniform response. Also, they eliminate A\; to get more normalized results, and by regularizing

the value of A at each scale o using cut-off threshold 7. Our new enhancement function of FATY, is

defined as follows:
FAT] = |3/ 222G B0, o
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where 7, is corresponding to A,, which is adopted from the work has been done in [§]. We propose
using another cut-off thresholding 7, to regulate A3 at each point « in each scale o to fulfil the
condition in Equation E Both A, and A, can be obtained from:

As(x, o) if A3(x,0) > 7,, maxy (Ag(m,a)),
Aoy = § Tpy MaXy ()\3(&:,0)) if 0<A3(x,0) <7, maxy ()\3(93,0)), (8)
0 otherwise,

where 7, and 7, are between [0, 1]. With the above eigenvalues regularization, both Equations [5 and
can be written as follows:

TAT® — 3 (p2—Dp)%+(pp—Dp)?+(pr—Dp)?
FATp - \/g\/ P22 +D, 2 D2 s (9)
where
_|A A A
p2_‘T_i’ pP_T_:7 pl/—‘T_7

The inverted response of either Equation [7] or Equation [J] assure a positive response at vessel and
the junctions. Furthermore, in order to remove noise from the background, we add more restrictions.
Therefore, the response RS , can be written as follows:

0 if /\p>/\p*/\2\//\p20\/>\220,
Sp=191 if A, — A2 =maxz(A, — A2), (10)
1-— FATiZ7 otherwise.

Using the similar concept of the magnitude regularization in [2], the junctions reconstruction is
obtained by a maximized co-addition of response at each scale o and the final enhancement function
MF AT , using either Equation |7| or |§| as follows:

MFAT, , = MFAT, ' + & tanh (RS, — 4), (11)

MFAT) , = max, <MFATi,p, §7p>, (12)

where o is the current scale and o — 1 is a previous scale. ¢ is the step size during the calculation of
the solution. Considered as possible improvements at the beginning of this section, our enhancement
method produce a highly uniform response that is very close to the ground truth of typical curvilinear
structures.

Enhancement in 2D Our proposed function M F ATy , can be also defined for 2D case. In such
case, there are three eigenvalues A2, Ay, and A\, that are defined in Equation 8| The corresponding
response RS, for 2D images as follows:

0 if >\p>)\p*)\2\/>\p20\/)\2ZOVAP*)\2<man()\p*)\2),
RS, =141 if A, — A2 =ming (A, — A2), (13)
1-— FATi,p otherwise.
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4 Results

In this section, we present quantitative and qualitative validations for our proposed approach against
both synthetic and real-world 2D and 3D imaging data. We then compare the results with state-
of-the-art approaches. The Receiver Operating Characteristic (ROC) curve [3] is widely adopted
in similar analysis. We used the Area Under the Curve (AUC) of the ROC curve to compare the
curvilinear structure enhancement approaches.

4.1 Profile Analysis

The profile of our proposed M F AT ;, methods and other state-of-the-art enhancement methods on
a synthetic, vessel-like structure are shown in Fig. [l We evaluate our approach using Equations [7]
and @ which refer them to M FAT and M FAT,, respectively. Hessian-based methods, such as
vesselness and neuritness, have an enhanced signal at the center of the vessel, i.e., a peak value
of one at the centre-line of the vessel, and their respective value quickly drops off and decreases
with the perceived thickness of the vessel. On the other hand, the most recent approach (RVR),
despite producing a defined response, still shows a poor response to non-crossing junctions. The
proposed approach matches all the features of previous methods and shows a more uniform response
at non-crossing and crossing junctions.
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Fig. 1: Cross-sectional profile of a synthetic vessel image (black, dashed line), non-crossing junction in
vessel-like structure enhanced by the proposed M F AT , methods (black and red solid line) and by the
state-of-the-art methods (see legend for colours). All images were normalised such that the brightest pixel in
the whole image has a value of 1 and the darkest a value of 0.

4.2 Application to 2D Retinal Images

Although a visual inspection can provide some qualitative information, a more rigorous form of
quantitative validation is required to measure the effectiveness of curvilinear structure enhancement
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approaches. The quality of the approach is measured by using the following publicly available
retinal image datasets: DRIVE [II], STARE [7], and HRF [13]. In particular, we evaluate our
approach alongside state-of-the-art approaches, calculating the mean ROC curve and the mean
of AUC between the enhanced images and the ground truth. The results are shown in Fig.
Fig. |3| and Table [1| (results for DRIVE, STARE and unhealthy HRF datasets can be found in
the supplementary material). A higher AUC value indicates a better enhancement of curvilinear
structures, with a value of 1 indicating that the enhanced image is identical to the ground truth image.
Our experimental results clearly show that the proposed approaches outperform state-of-the-art
approaches, as illustrated as mean AUC in Table

a. b. c. d.

e. f. g. (Ours) h. (Ours)

Fig.2: A sample image from the healthy HRF retina dataset, alongside the enhanced images from the
state-of-the-art approaches. (a) The original grayscale image, (b) Vesselness [4], (¢) Neuriteness [10], (d)
PCT ves. [12], (e) PCT neu. [12], (f) RVR [8], (g) MFAT and (h) M FAT, methods.

4.3 3D Vascular Network Complexity

In order to validate our approach in 3D, we used synthetic vascular networks produced by Vas-
cuSynth [5]. In order to make the images more realistic, a small amount of Gaussian noise (o = 10)
is added and a Gaussian smoothing kernel with a standard deviation of 1 is applied. Samples of
the results are shown in Fig. [4] The results, in terms of AUC and the mean ROC curve over the 9
enhanced images, can be found in the supplementary material (Table 1 and Fig. 4, respectively).
Furthermore, our proposed approach is also applied across a wider range of different 2D /3D images
and the results can be found in supplementary material.

5 Implementation

The software was implemented and written in MATLAB 2017a on Windows 8.1 Pro 64-bit PC
with an Intel Core i7-4790 CPU (3.60 GHz) with 16GB RAM. The software is made available at:
https://github.com/Haifath/MFAT]
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Fig. 3: Mean ROC curves are calculated for all the 2D retina images enhanced using the state-of-the-art
approaches alongside our proposed method (see legend for colours). Correspondingly, the mean AUC values

for all datasets can be found in Table

Table 1: Mean AUC values for the state-of-the-art approaches and our proposed methods across the DRIVE,
STARE and HRF datasets. Samples of enhanced images are shown in Fig. [2] and the mean ROC curves can

be seen in Fig. Bl

Enhancement AUC (StDev)

Approach DRIVE STARE  HRF (healthy) HRF (unhealthy)
Raw image 0.416 (0.064) 0.490 (0.076) 0.530 (0.075)  0.541 (0.073)
Vesselness [4] 0.888 (0.243) 0.898 (0.215) 0.913 (0.020)  0.904 (0.020)
Neuriteness [I0]  0.909 (0.022) 0.927 (0.039) 0.896 (0.024)  0.879 (0.059)
PCT ves. [12] 0.890 (0.037) 0.899 (0.056) 0.888 (0.011)  0.837 (0.030)
PCT neu. [TZ]  0.817 (0.121) 0.827 (0.165) 0.901 (0.029)  0.777 (0.022)

RVR [§] 0.934 (0.024)

0.939 (0.024)

0.926 (0.022)  0.823 (0.026)

MFAT(Ours) 0.940 (0.013) 0.950 (0.016) 0.935 (0.024) 0.921 (0.020)

MFAT,(Ours) 0.940 (0.013) 0.950 (0.016) 0.935 (0.024) 0.921 (0.020)
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Fig. 4: A selection of 3D synthetic vascular network images generated with the VascuSynth Software. Each
image has a resolution of (167x167x167 voxels) and have different nodes to increase the complexity of
structure. (a) original images with different number of nodes (5, 200 and 1000) respectively. (b-c) are the
enhance images from the proposed M FAT ) and M F AT, methods respectively.

6 Conclusion

This paper proposed a novel method M F ATy ;,, which takes the advantages of Fractional Anisotropic
Tensor to enhance curvilinear structures. Our approach adds an enhancement improvement using
regularised eigenvalues and junction reconstruction in multiscale scheme. The proposed method is
evaluated qualitatively and quantitatively using different 2D and 3D images. Furthermore, compared
with established methods, the experimental work with of the proposed method yield excellent
segmentation results. The use of this approach significantly improves upon previous image analysis
methods, since the enhancement result of the proposed approach is very close to the expected ideal
enhancement function.
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