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Abstract. The basic idea behind a wearable robotic grasp assistance
system is to support people that suffer from severe motor impairments
in daily activities. Such a system needs to act mostly autonomously and
according to the user’s intent. Vision-based hand pose estimation could
be an integral part of a larger control and assistance framework. In this
paper we evaluate the performance of egocentric monocular hand pose
estimation for a robot-controlled hand exoskeleton in a simulation. For
hand pose estimation we adopt a Convolutional Neural Network (CNN).
We train and evaluate this network with computer graphics, created by
our own data generator. In order to guide further design decisions we
focus in our experiments on two egocentric camera viewpoints tested
on synthetic data with the help of a 3D-scanned hand model, with and
without an exoskeleton attached to it. We observe that hand pose estima-
tion with a wrist-mounted camera performs more accurate than with a
head-mounted camera in the context of our simulation. Further, a grasp
assistance system attached to the hand alters visual appearance and can
improve hand pose estimation. Our experiment provides useful insights
for the integration of sensors into a context sensitive analysis framework
for intelligent assistance.

Keywords: Hand Pose Estimation, Egocentric View, Grasp Assistance,
Simulation

1 Introduction

Neurorobotics is a promising field to potentially support patients suffering from
debilitating conditions, e.g. stroke, and allow them to regain motoric functions.
(Fig. 1). Sockadar et al. [23] present an exoskeleton-based robotic system to
support and treat patients suffering from motor impairments based on elec-
troencephalography (EEG) and electrooculography (EOG) input. The concept
is extendable to integrate intelligent sensors that perceive and understand the
scene and can potentially increase the usability of such or similar systems for
daily life usage. Such an approach would understand the context of the grasp
interaction and the user’s intention for a more autonomous assistance, since the
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Fig. 1. Design of an exoskeleton prototype for grasp assistance simulated on our 3D
hand scan model.

interpretation of user input, solely based on EEG or EOG, might be prone to
error. A computer vision based control instance could provide valuable input to
support the decision whether the hand is or should be in a certain state. There-
fore an autonomous grasp assistance could profit from hand pose estimation to
control the grasping process and intervene, if necessary, to reach a certain goal.
Parts of a grasp interaction are the exoskeleton, graspable objects as well as
the bare hand. The development of a perception system would need to consider
challenges like the estimation of the pose of the exoskeleton, the pose of the bare
hand, the shape and pose of the graspable object as well as the classification of
the interaction as input for a higher-level micro-controller.

In this paper we focus on comparing hand pose estimation with and without
an exoskeleton covering the hand and take a closer look at appropriate camera
setups for further design decisions of the overall exoskeleton system. Thus our
guiding questions are how does a computer vision based hand pose estimation
perform on our exoskeleton and what are appropriate egocentric viewpoints for
the camera sensors? Since the prototype is not available yet, we run a closed test
scenario with our 3D test framework. Here we demonstrate our test framework
with the evaluation of two egocentric sensor viewpoint positions, on the forehead
and on the wrist (Fig. 2). We present a closed test framework to compare several
setups and scenarios to aid further design decisions for the exoskeleton. Although
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Fig. 2. The two camera setups we demonstrate and evaluate in a closed test scenario.

explicit knowledge about the actuator state of an exoskeleton may support the
estimation accuracy, this closed test framework is focusing on a solution with
computer vision based on deep learning only. We want to point out that our
test framework is based on an established method for hand pose estimation. The
system can support studying generalization from synthetic data to real scenarios
in the wild.

The paper is structured as follows. In section 3.1 we illustrate our own syn-
thetic data generator to create data for monocular hand pose estimation es-
pecially in the context of a wearable exoskeleton allowing for flexible egocentric
sensor viewpoint selection. For the hand pose estimation we employ an approach
based on Convolutional Neural Networks (CNN) as described in section 3.2. In
section 4 we train and evaluate our network with the produced simulated data.
Further, in section 5, we compare the accuracy of pose estimation between a
head- versus wrist-mounted camera with the two conditions of a bare hand ver-
sus a hand covered by an exoskeleton. Based on a quantitative evaluation and the
illustration of qualitative examples of our own and others’ datasets we discuss
our camera setups in section 6. We conclude in section 7 and outline potential
next steps.

2 Related Work

Hand pose estimation is a very active field of research, documented in reviews
like [8,17,3]. Primarily, recent research has focused on joint-based hand pose
estimation, as listed in Chen et al’s. project [5]. Only few works pursue an ap-
proach based on egocentric perception viewpoint. We adopt the idea of Chan
et al. [4] to mount cameras on the head or wrist. The authors present a multi-
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ple wearable camera setup for egocentric activity recognition. This framework
provides a scene- and grasp classification on two synchronized image streams.
Their image-based grasp classification has an accuracy of about 51% for a head-
mounted camera, but a wrist-mounted camera performs 5.5% better. To the
best of our knowledge, a wrist-mounted camera setup has not yet been tested
for joint-based hand pose estimation. These estimated joint positions may offer
a new representation for further high-level classification steps.

Rogez et al. [20] employ Random Forest Trees on images of a chest-mounted
depth-camera for hand pose estimation and classify up to 71 hand poses in
[19]. First, the class of the pose gets estimated, then a preset pose configu-
ration gets aligned onto a reference image. Bambach et al. [2] employ a head-
mounted camera like Google Glass and a CNN for hand segmentation of 4 classes
(my-left-hand, my-right-hand, your-left-hand and your-right-hand). Their
dataset FgoHands provides scenes of two persons sitting in front of each other
and playing cards or other games. Mueller et al. [16] employ chest- or rather
shoulder-mounted depth-cameras and two derivations of ResNet50 [10] to first
detect the hand and then estimate the joint positions. After the joints are es-
timated, a kinematic model is aligned to these points. Their dataset EgoDezter
provides annotations for visible fingertips only.

Maekawa et al. [14] employ sensor fusion of a wrist-mounted camera, micro-
phone, accelerometer, illuminometer and magnetometer to classify with a hidden
Markov model the activity of the hand, but do not focus on estimation of its
pose. A wrist-mounted setup with pose-estimation is presented by Kim et al.
[13]. They employ an infrared (IR)-camera combined with IR-laser. The IR-
laser generates a kind of structured light as a line crossing the proximal bones
of the hand. Those handcrafted features and the depth estimation of the finger-
tips are used to estimate the pose of the forward kinematic chain of each finger
relative to the calibrated camera.

In this paper we want to evaluate the performance of a state-of-the-art CNN-
based hand pose estimation method for wrist-mounted RGB-camera images com-
pared to head-mounted RGB-camera images.

3 Methods

Even though a wearable data glove, potentially integrated into an exoskeleton
and its actuator system, might provide a valuable hand pose estimation [24,
6,27], the information would not be context sensitive. A thorough computer
vision approach may offer a rich overall scene analysis that includes the state
of graspable objects, bare hands and of an exoskeleton. Further, the available
space to mount sensors on an exoskeleton is rather limited.

For our computer vision based hand pose estimation we investigate a staged
CNN approach [25]. This kind of 2D joint estimation has already been used in
several other approaches of pose estimation [22,12]. We train this CNN with
synthetic data, similar to datasets like SynthHands [16] or Rendered Handpose
Dataset (RHD) [28]. However, since no data generator is available that enables
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Fig. 3. Composition diagram of synthetic data generator. Components signified by *
are implemented in Blender.
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Fig. 4. Generalization of scanned meshes. (a) Base mesh (blue) aligned to the scanned
mesh. (b) Base mesh wrapped around the scanned mesh.

to integrate an exoskeleton or to test different camera angles, we created our
own data generator.

3.1 Synthetic Data Generator

Fig. 3 shows the composition of our data generator. First a 3D scan of a real
hand is made with the Artec 3D Eva', a hand-held 3D scanner based on struc-
tured light. The scanner produces mesh and texture at the same time. Then
Wrap3.82 is used as a Unifier to generalize the scanned mesh to a well struc-
tured and rigged mesh. Wrap3.3 wraps a well-structured base mesh around
an unstructured scanned mesh (Fig. 4), as such the output is a new generalized

! https://www.artec3d.com/de/portable-3D-scanners/artec-eva
? http://www.russian3dscanner.com/
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Fig. 5. Examples of our generated dataset. RGB-Maps of head-mounted camera (1st
column), Segmentation-Map (column 2) and Depth-Map (column 3). Corresponding
data for the wrist-mounted camera (columns 4-6). Details of the exoskeleton are blurred
due to proprietary reasons at the time of submission.

mesh, easier to use for further steps, i.e. rigging and texturing. AutoRigging and
TextureEmbelishment are not implemented yet. Editing textures and meshes is
a laborious manual process. Therefore only one mesh and texture set is used up
to now. For the Simulation, the open source 3D creation suite Blender? is used
similar to [28,18]. An early version of a CAD prototype of the exoskeleton is
imported and aligned to the hand mesh in the Simulation. Finally two Blender
add-ons are scripted (RandomPoser and SceneAnnotation). A main script loads
and triggers these add-ons. It also manages the render process and randomizes
the background, camera positions and light conditions.

The add-on RandomPoser performs pseudo random poses by applying ran-
dom transformations along the kinematic chain. Our hand model has 17 bones
(Fig. 6). The Degrees of Freedom (DoF) of the hand model have been put un-
der virtual constraints to simulate articulated hand configurations by consider-
ing natural constraints and limits of collisions and rotations, as suggested by
DhaibaHand and inspired by Jorg et al..

The add-on SceneAnnotation stores all relevant information about the ren-
dered scene in an XML-file. With our data generator we are able to produce

3 https://www.blender.org/
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Fig. 6. Hand model of the simulation. (a) The DoF of DhaibaHand [7]. (b) Our hand
model in Blender, each bone with head and tail vertex.

vast amounts of data automatically. Up to this point the following data has
been extracted from a head- and wrist-mounted camera setup:

RGB-Map: The reference image of visible light, with a resolution of 512x512
and 24-bit PNG encoding. For background the indoor images of NYU Depth
V1 dataset are used [21].

Depth-Map: An 8-bit PNG gray scaled image of depth information. For
the head camera viewpoint the first 100cm are linearly quantized and for the
wrist viewpoint the first 50cm are quantized.

Segmentation-Map: A 24-bit PNG encoded image where each part has its
own color code.

Annotation: An XML-file with coordinates of each component in world
space (as 4 * 4 matrix), in camera space and relative to the image plane (as
vertezx).

Each bone of our hand model is defined via two vertices (head and tail), 21 of
them are used as keypoints. A vertex is a tuple represented as

vertex : (name, x,y, z,r, ¢, u,v,d), (1)

which is parameterized as follows:

name denotes if the vertex is head or tail of the bone.

x,y, z are the relative coordinates in camera space with origin at the center
of the camera.

r,c are the pixel-based 2D coordinates on the image plane (row,column)
with the origin being the upper-left corner.

u,v are the normalized 2D coordinates on the image plane with the origin
being the lower-left corner.
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Fig. 7. Hand Pose Estimation with staged approach. (a) Shows the layers of SubStage
for image feature extraction. (b) Shows the staged approach of [25], whereby img-
features and joint-heatmap get concatenated for the subsequent stage.

— d is the depth value relative to the image plane.

We further used the random image adjustment functions of TensorFlow to ran-
domize brightness, contrast, saturation and hue before training.

3.2 Pose Estimation Model

For the pose estimation a TensorFlow [1] version of Wei’s et al. [25] CNN
approach is used, adapted by Ho et al. [11]. The input layer is increased to
512x512x%3, since we used a GeForce GTX 1080 Ti with enough storage. Our hand
model has 21 joints (including 5 fingertips), therefore the output is a heatmap
of 21 channels of size 64 * 64. Our model has one SubStage for extracting im-
age features and six stages for pose estimation as recommended by Wei et al.
[25]. Except for the first stage, each stage uses the concatenated image features
and the heatmap of the previous stage as input (Fig. 7). As such, the output of
each heatmap gets refined in a feed-forward approach. This enables the machine
to learn filters to verify the spatial context between the estimated keypoints
provided in the heatmap of the previous stage.

4 Experiment

The data generator is used to create 4,000 samples with bare hands and 4,000
samples with an exoskeleton. Both contain images of head- and wrist-mounted
cameras (Fig. 5). For each of the ¢ : (1...21) joints a Gaussian map is created
pixel-wise (m,n) with a radius of » = 3 at the joint position (x,y) stacked to a
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Fig. 8. Composite diagram of our CNN for hand pose estimation, inspired by Wei et
al. [25], adapted by Ho et al. [11].

Table 1. Training 5 different models to compare head vs. wrist mounted cameras and
bare hand vs. exoskeleton.

Model |Domain Examples Epochs Steps Time

head |HeadCam 2,000 20 40,000 3.3h

right |RightCam 2,000 20 40,000 3.3h

bare |HeadCam+RightCam 4,000 10 40,000 3.3h

exo Exoskeleton 4,000 10 40,000 3.3h
(Head+Right)

hybrid|bare+exo 8,000 10 80,000 6.6h

ground truth heatmap G of 21 64 % 64 channels and stored into a TensorFlow-
Record together with the RGB reference image:

G = eap (— ((m =0+ (1= )") 5 2)

2r2

For training (Fig. 8) the total difference between the estimated heatmaps H
of all K = 6 stages and the ground truth heatmap G is used as a cost function:

hmap_loss(H, Q) Z |Hy — G| (3)

For evaluating the two camera setups and the domain of the hand with and
without the exoskeleton, five models have been trained:

— head: Trained on images of bare hands observed from head-mounted camera
— right: Trained on images of bare hands observed from right wrist-mounted
camera
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— bare: Trained on images of head + right

— exo: Trained on images of hands with exoskeleton from head- and wrist-
mounted camera

— hybrid: Trained on images of bare hands and hands with exoskeleton (bare
+ exo).

Each of these models are trained for about 40k steps, apart from hybrid,
which is trained for 80k steps. The training of 40k steps takes just 3.3 hours
performed by a GeForce GTX 1080 Ti (Table 1). These five models are cross-
evaluated with four corresponding evaluation sets:

head with 100 examples of head-mounted camera
— right with 100 examples of wrist-mounted camera
— bare with 200 examples of head + right

exo with 200 examples of hands with exoskeleton.

For evaluation, the Euclidean distance between the estimated pose p and the
ground truth pose g is used, whereby K = 21 denotes the number of keypoints
each pose contains:

K
D(p.g) = _ llpx — gklly (4)
k=1

Based on this error measure we test the performance of pose estimation on
images of a head- versus a wrist-mounted camera and bare hand versus hands
with exoskeleton. For comparison, the Percentage Correct Keypoints (PCK) [26]
metric is used as in [25,12,22]. Though we do not normalize the PCK to the
hand size, we normalize to the image aspect instead. So we do not give an extra
penalty on small hands with lower resolution, just because they are more far from
the image plane. Otherwise the evaluation set head would not be competitive
with the evaluation set right. Since the image plane always has an aspect of
512 % 512 pixels, an inaccuracy of 0.1 represents an error of 51.2 pixels.

5 Results

The y-axis of the PCK graphs (Fig. 9 and Fig. 10) show the percentage of
examples that get estimated to an accepted accuracy, given as an increasing
threshold on the x-axis. The accuracy is the total Euclidean distance of all
keypoints normalized to the image aspect. Each line represents a model applied
on an evaluation set. The earlier the line rises up to 100% the better the model
performs on the evaluation set.

In Fig. 9, the PCK graphs of head- versus wrist-mounted cameras are shown.
For qualitative examples, compare Fig. 11 (a) with (b). The evaluations head-on-
right and right-on-head have low accuracy, because the model head has never
seen examples of the domain right before and vice versa. Both these evaluations
act as control groups to prove that head and right are actually in a separate
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Fig. 9. Evaluation of Head versus Right. Each line describes a trained model applied
on an evaluation set. head-on-head: A model trained and applied on head-mounted
camera images. right-on-right: A model trained and applied on wrist-mounted camera
images of the right hand. head-on-right: A model trained on head but applied on right
wrist. right-on-head: Vice versa of head-on-right. bare-on-head: A model trained on both
setups, but applied to head only. bare-on-right: A model trained on both setups, but
applied to the right wrist.

domain. A noteworthy observation is that right-on-right perform much bet-
ter than head-on-head. This leads us to the point that hand pose estimation
with our CNN performs better on wrist-mounted cameras than on head-mounted
cameras. The model bare shows a clear tradeoff between both domains.

In Fig. 10, the PCK graphs of bare hands versus hands with exoskeleton are
shown. For qualitative examples, compare Fig. 11 (a,b) with (c,d). The control
groups exo-on-bare and bare-on-exo perform relatively poorly. Therefore the
appearance of the exoskeleton dominates the bare hand domain. The observation
in exo-on-exo is that the appearance of the exoskeleton condition leads to a
slightly better pose estimation than bare hands do. We assume that the visual
features of the exoskeleton are more significant, easier to detect and thus enhance
the recognizability of the hand. Furthermore, the model hybrid also performs
well on exo, with just a small reduction on bare. With this we conclude that
a hybrid model with an extended training session may work well in the overall
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Fig. 10. Evaluation of Bare versus Exo. Each line describes a trained model applied
on an evaluation set. bare-on-bare: A model trained and applied on images of bare
hands. exo-on-exo: A model trained and applied on images of hands with exoskeleton.
bare-on-exo: A model trained on bare hands, but applied to exoskeleton images. exo-
on-bare vice versa of bare-on-exo. hybrid-on-bare: A model trained on both domains,
but applied on bare hands only. hybrid-on-exo: A model trained on both domains, but
applied to exoskeleton images only.

project application. In summary, we are able to estimate poses of the exoskeleton
and of bare hands from head-mounted and wrist-mounted cameras within the
context of our simulation, whereas the wrist-mounted camera performs better
with respect to the metric presented above.

6 Discussion

Although the occlusion of the fingers on wrist-mounted camera images might be
more severe, it does not seem to drastically affect the pose estimation. Interest-
ingly, Chan et al. [4] have already shown that for the task of grasp classification
from a wrist-mounted camera, the performance is slightly better than from a
head-mounted camera. In our evaluation we observed that the hand pose esti-
mation performs significantly better on wrist-mounted cameras.
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Fig. 11. Qualitative examples of pose estimation. The dots are from the heatmap as
estimated, the lines connect the maxima of the heatmap by given topology: (a) Head-
mounted camera on bare hand, (b) wrist-mounted camera on bare hand, (c¢) head-
mounted camera on exoskeleton and (d) wrist-mounted camera on exoskeleton. Details
of the exoskeleton are blurred due to proprietary reasons at the time of submission.

In addition to the technical challenges of hand pose estimation from an ego-
centric viewpoint we discuss some subjective issues of the camera setups. Dur-
ing lab testing and on qualitative examples from other datasets we developed
an impression of the usability and some of its attributes. We extend the dis-
cussion here with insights from chest-mounted camera setups. Chest-mounted
cameras are used in EgoDexter [16], UCI-EGO [20] and GUN71 [19]. Head- or
chest-mounted cameras have an aesthetic issue, because the user could feel un-
comfortable with the camera at these positions. To wear a camera on the head
might be more uncomfortable than on the chest. If miniaturized, chest cameras
could be integrated into textiles. The dataset EgoHands [2] qualitatively demon-
strates the shortcoming of head-mounted cameras. Obviously the user has to put
the hands into the Field of View (FoV) towards a grasp goal during a potential
application, such that all relevant scene elements can be observed from the cam-
era. However, we recognize in datasets like FgoHands and in a self test that the
hand often disappears beyond the bottom image edge. Usually the user mainly
fixates with his eyes and avoids to move his whole head. We assume that this
behavior might be intensified by wearing a sensor on the head. Thus a user would
need to get used to the setup and needs to learn to look straight and actively
keep track of his interaction zone. Nevertheless, it might be more intuitive than
a wrist- or chest-mounted camera. Yet, in such setups the user has less control
of the camera’s FoV. As long as a display of the camera is not present, the user
will not be able to relate to what the camera might see or not. In the case of the
wrist-mounted camera setup it is ensured that it will fixate the wearing hand,
but the graspable object and the other hand might not always be in the FoV. The
dataset EgoDexter [16] contains many examples in which the hand is beyond the
FoV of the camera. Nevertheless, the workspace of the chest-mounted camera is
much easier to analyze because the observation space is relatively stationary in
front of the user, whereas the head- or wrist-mounted camera could move quite
freely.

Before we can make further design decisions the different camera setups
should be evaluated with subjects. Especially the user acceptance of aesthetic
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and comfort should be investigated. As a result of this paper the wrist-mounted
camera setup has promising properties and should be tested in further scenarios
of the wearable robotic grasp assistance application.

7 Conclusions

In this paper we presented a customizable data generator with Blender and used
the approach of a staged CNN to evaluate the performance of hand pose estima-
tion for egocentric viewpoints. The data generator is able to include a wearable
exoskeleton making it unique in the field of hand simulation frameworks. We
observed in our simulation that hand pose estimation on wrist-mounted cam-
era images performs significantly better than on head-mounted camera images
in terms of PCK scores. Furthermore we observe that our exoskeleton defines
a new domain of appearance by covering large portions of the assisted hand.
Remarkably, the selected CNN approach seems to be powerful enough to learn
and handle all domains captured from head- and wrist-mounted cameras with
exoskeleton and bare hands in one hybrid model.

In the future we plan to classify all joints with fully-connected layers to a
set of grasp poses and compare this approach with other grasp pose classifiers.
We plan to extend our data generator in several aspects based on further assets,
i.e. including more meshes, more textures, improved shaders and full 3D scenes
instead of only 2D backgrounds. Furthermore, we want to look into the transfer
of synthetic simulations to real data, e.g. with a Generative Adversarial Network
(GAN) [9] as pursued for example in [15]. Instead of enhancing synthetic data
to a natural look, it might be easier to downgrade real data to a synthetic look,
or rather a generalization in between these conditions could be feasible.

However, we will also generate real data. We currently develop a setup for
tracking hands in a motion capture laboratory with a marker-based system and
synchronized sensors. In further studies, the influence of a real exoskeleton pro-
totype will be investigated in comparison to simulated prototypes.
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