
Estimating 2D Multi-Hand Poses From Single

Depth Images

Le Duan1, Minmin Shen⋆1, Song Cui⋆⋆2, Zhexiao Guo1, and Oliver Deussen1

1 INCIDE Center, University of Konstanz, Germany
{duan.le,zhexiao.guo,oliver.deussen}@uni-konstanz.de

mmshenntu@gmail.com
2 Institute of High Performance Computing, Singapore

songcui@acm.org

Abstract. We present a novel framework based on Pictorial Structure
(PS) models to estimate 2D multi-hand poses from depth images. Most
existing single-hand pose estimation algorithms are either subject to
strong assumptions or depend on a weak detector to detect the human
hand. We utilize Mask R-CNN to avoid both aforementioned constraints.
The proposed framework allows detection of multi-hand instances and
localization of hand joints simultaneously. Our experiments show that
our method is superior to existing methods.

Keywords: Multi-Hand Pose Estimation · Pictorial Structure · Mask
R-CNN

1 Introduction

Accurate hand pose estimation from depth images or videos plays an essential
role in human-computer interaction, as well as virtual and augmented reality.
However, challenges with estimating hand pose can arise from self-similarity,
self-occlusion, and large view-point variation. Although much progress has been
made in this area [23–25, 18, 8, 27, 26], multi-hand pose estimation is still mostly
unsolved. A good solution, however, would provide more flexibilities and possi-
bilities in many HCI applications.

Compared to single-hand pose estimation, estimating poses of multiple hands
from a single depth image is more difficult because it requires the correct de-
tection of all hand instances while also precisely localizing the corresponding
hand joints. A straightforward way to solve this problem is to follow the com-
mon two-stage strategy [25] that first uses a traditional method (e.g., a random
forest [2]) to extract regions of an image that contains a hand object. Hav-
ing these regions, single-hand pose estimation methods are applied to each of
them. However, a general framework with more powerful detectors that can fulfill
multi-hand instance detection and hand joint localization simultaneously could
be more reliable and convenient in real-world applications.

⋆ Minmin Shen is currently working at Amazon Alexa, USA
⋆⋆ Song Cui is currently working at Cisco Systems, USA

2 L. Duan et al.

Recently, convolutional Neural Networks (CNN) have become a mainstream
technique in computer vision tasks such as image classification [14], pose esti-
mation [4, 9] and object detection [22]. In [11], a multi-task learning framework
named Mask R-CNN [11] was proposed for simultaneous object detection and
instance segmentation. Mask R-CNN is a generic multi-task learning pipeline
that can be generalized to multi-human pose estimation. Because minimal do-
main knowledge for human pose estimation is exploited, Mask R-CNN is not
applicable to model joint relationships explicitly. Moreover, as pointed out in
[3], key points might not be localized accurately in complex situations.

In this paper, we propose a Pictorial Structure (PS) [1] model-based frame-
work to address limitations of methods based on Mask R-CNN by refining the
output from these networks with a learned global structure of the current hand
pose during the test stage. The overall structure of our proposed method is
shown in Fig. 1. Our framework is composed of two stages: first, Mask R-CNN
is adopted to predict possible key point locations (Fig. 1c) and segments each
hand from the given images (Fig. 1d). Then, we utilize the instance segmentation
output of Mask R-CNN to approximate the pose prior of each hand (Fig. 1d-g)
and add this constraint in pose space. Finally, key point locations are estimated
via combining local information and global constraints (Fig. 1f).

The main contributions of our work are:

– a new method for 2D multi-hand pose estimation from a single depth image.
– a PS model-based method to find global structure constraints of a hand pose

online and two ways to implement the method.
– two multi-hand datasets, dexter2Hands and NYU2Hands, that are based on

the popular single-hand datasets dexter1 [23] and NYU hand pose dataset
[25].

2 Related Work

In this section, we first briefly review some relevant hand pose estimation al-
gorithms with CNN. Because estimating body and hand pose share some simi-
larities, algorithms for one object can be extended to serve the other. Further,
related multi-human pose estimation methods are also reviewed. Finally, we
introduce the Mask R-CNN framework, which serves as the baseline for our
research.

2.1 Hand pose estimation

More recently, CNN has been widely used in hand pose estimation. Authors in
[25] first used CNN for predicting heat maps of joint positions, and this method
was improved in [8] by predicting heat maps on three orthogonal views to better
utilize the depth information. In [18], a multi-stage CNN that enforces priors to
hand poses was presented to directly regress hand joints. Authors in [9] presented

2D Multi-Hand Pose Estimation 3

Fig. 1: Example of how our method localizes joints of left thumb finger and right
index finger. Given an input image (a), we first use Mask R-CNN (b) to detect
bounding boxes, possible joint positions (c), and hand segmentations (d). Then,
we extract global features (e) of each hand from Mask R-CNN and find hand
poses similar to input hands from training data (f). Afterwards, we compute
global constraints of input hands (g). Final hands joint positions are localized
by combining the local information and global constraints (h).

a 3D CNN that regresses 3D hand joint positions directly. In [27], a three-
stage approach that can estimate 3D hand poses from regular RGB images was
proposed. In that approach, the hand is first located by a segmentation network
and serves as input to another network for 2D hand pose estimation. The final
3D hand joint positions are localized via combining the estimated 2D positions
and the 3D pose prior information.

2.2 Multi-human pose estimation

In [7], a PS model-based framework was proposed for estimating poses of multiple
humans, but it relies on an additional human detector and simple geometric
body part relationships. Similarly, the model proposed in [15] also requires a
human detector for initial human hypotheses generation, and the estimation of
key points positions and instances are divided into two stages. Unlike previous
strategies that need to first detect people and subsequently estimate their poses,
the method proposed in [21] utilizes CNN for body part hypotheses generation
and is able to jointly solve the task of detection and pose estimation. This work
was extended in [13] with stronger part detectors and more constraints in the
problem formulation.

2.3 Mask R-CNN

Mask R-CNN is a general framework for object instance segmentation and hu-
man pose estimation. It consists of two stages. In the first stage, candidate object
bounding boxes are proposed by the Region Proposal Network (RPN). In the
second stage, features of each candidate bounding box are extracted and classifi-
cation, bounding box regression, instance segmentation and key point detection

4 L. Duan et al.

are performed. Unlike methods proposed in [20, 5, 16] whereby classification de-
pends on mask prediction, Mask R-CNN applies a parallel strategy that can
simultaneously solve tasks in stage two. The overall network architecture of
Mask R-CNN contains a convolutional backbone used to extract features over
the whole image and three parallel network heads: one for classification and
bounding box regression, and two for the remaining tasks.

3 Problem Formulation

Mathematically, our objective is to estimate hand poses P = {X1,X2,,XM}
from a single image I, where Xi denotes the pose of an instance and M is
the number of instances in I. Following [1], we assume that a hand can be
decomposed into a set of parts, the pose of a hand is defined as Xi = {xn

i |1 ≤
n ≤ N, ∀xn

i ∈ ℜ3}, where the state of part n is formulated as xn
i = {yn

i , t
n
i }.

yn
i = {xn

i , y
n
i } is the position of the key point in image coordinate system and

tni = {0, 1} denotes the state indicating the presence of part n.
We formulate the multi-hand poses estimation problem as finding the max-

imum posteriori of poses given an image I, i.e., p(P|I), which can be approxi-
mated as

p(P|I) ∝ p(I|P)p(P), (1)

where p(I|P) is the likelihood of the image evidence given particular poses, and
the p(P) corresponds to poses prior. We assume that all hands are independent
for simplicity, Eq. 1 can be factorized as

p(P|I) ∝

M
∏

i=1

p(I|Xi)p(Xi), (2)

where p(I|Xi) is the likelihood of the image evidence given a particular pose,
and the p(Xi) corresponds to a kinematic tree prior according to the Pictorial
Structure [1] (PS) model, though this may not always hold when fingers of
different hands are crossed. We propose a general framework based on PS model
and utilize Mask R-CNN [11] to solve Eq. 2.

4 Mask R-CNN for Hand Pose Estimation

In this work, we use ResNet-50 [12] with Feature Pyramid Network (FPN) [17]
as the backbone to extract features of the entire image. For details of ResNet
and FPN, we refer readers to [12, 17]. For the network head, we follow the
three-parallel-branches architecture presented in [11] whereby one branch is for
bounding box classification and regression, one for instance mask prediction
and one for key point detection. In general, given a training image, features of
the entire image are first extracted by the ResNet-FPN backbone. Based on
the features, RPN generates a set of ROIs. Each positive ROI is fed into three

2D Multi-Hand Pose Estimation 5

(a) (b)

Fig. 2: (a) Confidence maps of left thumb finger joints and right index finger
joints. (b) Mask R-CNN detection result.

parallel branches of the network head: one branch for bounding box classifi-
cation and the other two for remaining tasks. The loss function is defined as
L = Lcls +Lbox +Lmask +Lkpt, where the classification loss Lcls is log loss over
two classes (hand vs. background). The bounding box regression loss Lbox is
identical as that defined in [10]. The mask loss Lmask is the binary cross-entropy
loss over predicted hand mask and groundtruth and the key point mask loss Lkpt

is the average cross-entropy loss over the predicted N joints and N groundtruth
points.

At test time, Mask R-CNN key point head branch outputs confidence maps
of all joints. Fig. 2(a) shows an example of confidence maps of left thumb finger
joints and right index finger joints. Because relationships among hand joints are
only implicitly learned during the training process, localizing key point positions
via finding locations with maximum probabilities could lead to large pixel er-
ror. As shown in Fig. 2(b), two joints of the left thumb finger are estimated
incorrectly on the left index finger. Similarly, joints of the right index finger are
incorrectly predicted as the ring and little finger. Moreover, if we cannot guar-
antee the correctness of confidence maps, they cannot be used alone to infer
the presence or visibility of joints. Inspired by PS models by which the poses of
objects can be estimated by combing global structure constraints (which encode
part relationships) and part confidence maps, we utilize the output of Mask
R-CNN mask head to learn kinematic structures of hands explicitly. Learned
kinematic structures are used to refine confidence maps of corresponding hands
and infer presences of joints.

5 Confidence Refinement

Confidence maps provide probabilities of each joint position, which can be viewed
as p(I|P) in Eq. 2. According to the PS model, the prior p(Xi) is supposed to
encode probabilistic constraints on part relationships and capture the unified
global structure of objects in the training data. We present a conceptually simple
method to approximate the tree prior p(Xi) and two methods to implement it.

6 L. Duan et al.

5.1 Tree prior approximation

As illustrated in Fig. 1(d), masks predicted by Mask R-CNN mask head capture
global structures of hand instances, but they lack information on part relation-
ships (e.g., neighbouring joints of the same finger should lie close to each other).
Our idea is to find a training subset Si that has a similar mask as the ith test
hand mask, then the kinematic tree prior that encodes part relationships of the
test hand can be learned from Si.

Before we introduce how we find out Si, there is one critical question: can we
make masks comparable when they may have different scale and size? In Mask
R-CNN, the mask head branch would first predict a fixed size mask for each
instance and the predicted mask is further resized to have the true size of the
corresponding instance. We reshape the fixed size mask into a feature vector so
that every hand instance can be represented in a comparable form. This feature
representation projects the instances to the feature space that visually similar
instances are close to each other. Feature vectors of all hand instances in training
data are extracted by the same procedure and stored on disk for future use.

Unsupervised learned tree prior approximation Given that the ith hand
instance can be represented by a feature vector fi, we use K nearest neighbours
(KNN) search to find features of training images that lie close to fi in the feature
space, Si is composed of those corresponding training images. In order to learn
p(Xi) from Si, for simplicity, we assume that all hand parts are independent,
the prior p(Xi) is approximated as

p(Xi) ≈ p(x1

i ,x
2

i , ...,x
N
i |fi) =

N
∏

j=1

p(xj
i |fi) (3)

where p(xj
i |fi) is the jth part prior of ith hand instance based on the feature

vector fi. Let coord = (x, y) denote the coordinate of a pixel in image, p(xj
i |fi)

is computed as

p(xj
i |fi) =

{

1 ||coord−mean
j
Si
||p ≤ d

0.5 otherwise
(4)

where || • ||p is the Minkowski distance between two points and mean
j
S
is the

mean coordinate of the jth part in Si. d is a hyper-parameter that adjusts the
influence of p(Xi). We adopt this formulation because it allows faster compu-
tation than other common probabilistic distributions and it is mainly defined
to refine joint confidence maps. Though in our formulation we assume that all
joints are independent, joint relationships are implicitly preserved by the subset
of training data in Si. Fig. 3 shows an example of this process. The absence of
joint(s) is inferred by the absent joints in Si, e.g., if the number of absent tips
of the ring finger from Si result is greater than a threshold τ , the ring finger tip
is deemed as invisible for the ith hand instance.

2D Multi-Hand Pose Estimation 7

Fig. 3: KNN for hand instance kinematic prior approximation. A hand instance
(a) is expressed by a feature vector f1, training data with similar features are
found out by KNN search (b). The kinematic structure of the hand instance are
learned from those training data (c).

Because the whole process needs to be repeated for every hand instance,
KNN-based tree prior approximation method is computationally heavy. More-
over, features of training data need to be stored, which may require a large
amount of space. These limitations motivate us to find Si via other methods
that require less computation and storage.

Supervised learned tree prior approximation It is possible to use a super-
vised learning method to find out Si, which should be faster than KNN, provided
that a labelling method could be found that is able to distinguish different hand
poses. In our framework, a hand instance is assigned a label L = {j1, j2, ..., jN},
where the index of ji in the label vector indicates the joint name and N is
the number of joints. We first compute distances between each hand joint and
the origin. Those computed distances are stored in a vector v, then we sort
v in decent order. The value of ji is determined by the index of the corre-
sponding joint plus one in sorted v. For example, if a sorted v is of the form
v = {dist(joint2, org), ..., dist(joint1, org)}, where dist is the function computes
the distance between two points, jointi is the coordinate of a joint and org is the
coordinate of the origin, the values of j1 and j2 are N and 1 in the label vector
L . If a joint is not visible, the corresponding entry in L is set to 0. In most
cases, the presented labelling method is able to distinguish different hand poses
and preserve joint spatial relationships, especially when we need to localize all
joints and tips of a hand.

The next step is to choose a proper classifier. We select Random Forest [2]
(RF) because it is naturally designed for multi-class classification and it provides
soft decision boundaries. Moreover, RF is able to handle high dimensional input
data efficiently, which allows fast computation at test time. Fig. 4 shows an
example of how we use RF to predict the kinematic tree prior of a test hand.
Feature vector f2 of the test hand goes through all trees and falls into some leaf
nodes (Fig. 4a). It is assigned a label l by RF and we select training data with the
same label l (Fig. 4b), which is actually the training subset Si. The kinematic

8 L. Duan et al.

Fig. 4: Random forest for hand instance kinematic prior approximation. The
feature vector f2 of hand instance is classified into a class by RF (a). Training
data of the same label in nodes that f2 falls into are selected (b) and used to
compute the kinematic prior (c).

tree prior (Fig. 4c) is estimated by Eq. 3. In practice, kinematic tree priors
learned from each leaf node can be computed offline and it is only necessary to
store joint coordinates, bounding box width and height, i.e., totally N × 2 + 2
numbers, which requires much less storage space compared to our KNN method.
Absences of joints or tips can be directly predicted by RF (entry in the label
vector is 0).

5.2 Final localization

Given p(I|P) and p(Xi), the posterior probability p(P|I) can be computed by
Eq. 2. Joints locations are estimated by finding image positions with highest
probabilities. Note that both our tree prior approximation methods are able to
detect presences of joints; if Mask R-CNN failed to detect the jth joint of the ith
hand, the position of the jth joint is estimated by mean

j
Si
.

6 Data Preparation

We generated two 2-hands datasets, dexter2Hands and NYU2Hands, based on
depth images of the popular single hand datasets dexter1 [23] and NYU hand
pose dataset [25]. For the dexter2Hands dataset, we randomly selected 2504 im-
ages from 3154 images in the dexter1 dataset as a training set, and the remaining
600 images were equally split into a validation set and test set. Because images
of dexter1 only contained hands and the image size was relatively small (320
× 240), images in the final training data of dexter2Hands are of size 640 ×
240, and are generated by the concatenation of randomly selected left and right
hand images from (mirrored-)training set. Same processes are applied to gener-
ate validation data and test data of dexter2Hands dataset. In our experiments,
dexter2Hands training data contained 57404 images, validation data contained
14025 images and test data contained 9925 images. The key point number of a
hand instance is 5, which are thumb finger tip, index finger tip, middle finger tip,

2D Multi-Hand Pose Estimation 9

(a) (b)

Fig. 5: (a) Sample image of Dexter2Hands dataset. (b) Sample image of
NYU2Hands dataset.

ring finger tip and little finger tip, respectively. Fig. 5(a) shows an example of
images in dexter2Hands. Hand masks of the dexter2Hands dataset are generated
by setting pixel values of hand object in each image to 1 and background to 0.

Processes used to generate the NYU2Hands dataset are similar, and we use
only depth images from the view-point 1. However, the image size of NYU2Hands
is the same as NYU, which is 640 × 480. Training data and validation data of
NYU2Hands are generated by copying the mirrored left side hand (in image
coordinate) to be the corresponding right side hand. The key point number of
a hand instance is 19, which are little finger tip (LT), little finger joint 1 (L1),
little finger joint 2 (L2), little finger joint 3 (L3), ring finger tip (RT), ring finger
joint 1 (R1), ring finger joint 2 (R2), ring finger joint 3 (R3), middle finger
tip (MT), middle finger joint 1 (M1), middle finger joint 2 (M2), middle finger
joint 3 (M3), index finger tip (IT), index finger joint 1 (I1), index finger joint 2
(I2), index finger joint 3 (I3), thumb finger tip (TT), thumb finger joint 1 (T1)
and thumb finger joint 2 (T2), respectively. Fig. 5(b) shows a sample image of
NYU2Hands. Because there are 75157 images in the NYU hand pose dataset with
the same background, we randomly selected 62727 images to generate training
data and 10000 images to generate validation data. We applied the same strategy
of generating dexter2Hands training data to generate test data of NYU2Hands,
which contained 6038 images. Synthetic depth images provided by the NYU
dataset are used to generate training hand masks of the NYU2Hands dataset.

7 Implementation details

7.1 Mask R-CNN

Training: In our experiments, parameters of Mask R-CNN backbone are initial-
ized by Imagenet [6] pre-trained weights. Training depth images are converted
into 3-channel images by replication. We train the model on 50K iterations for
dexter2Hands and 60K iterations for NYU2Hands, starting from a learning rate
of 0.002 and reducing it by 10 at 15K and 35K iterations. Models are trained on

10 L. Duan et al.

4 Nvidia GTX 1080 GPUs. Each batch has 1 image per GPU and each image
has 128 sample ROIs. Other implementations are identical as [11].

Inference: At test time, the bounding box branch directly predicts bounding
boxes of hand instances. The instance segmentation branch predicts a mask of
size 28 × 28 and the key point mask branch outputs a 56 × 56 × N joint mask
for each hand instance. N is 5 for dexter2Hands and 19 for NYU2Hands. Those
masks are further resized to the size of the bounding box, and binarized at a
threshold t to obtain the final detection result. t is 0.1 for instance masks and
0.5 for key point masks. Instance threshold is chosen at a low value because we
hope the estimated mask could cover hand finger tips. The feature vector of a
hand instance is generated by reshaping the 28 × 28 mask into a vector of 1 ×
784.

7.2 Tree prior approximation

For KNN search, we set K = 10 and threshold τ = 4 for both datasets. For
our RF approach, we use the RF implementation provided by [19] to construct a
10-tree RF and do not change other parameters. Each tree has a depth of around
30 and around 6000 leaf nodes. We choose Manhattan distance to compute part
prior p(xj

i |fi) in Eq. 4 since it is relatively fast and d is set to 30 for dexter2Hands
dataset and 40 for NYU2Hands dataset.

8 Experiments

8.1 Evaluation

We evaluate our methods on test data of Dexter2Hands and NYU2Hands. Re-
sults of our methods are compared with two versions of Mask R-CNN, i.e., key-
point only and keypoint & mask, as well as groundtruth joint positions. Mask
R-CNN keypoint only indicates that joint positions are localized via finding
positions of joint confidence maps with maximum probabilities. Mask R-CNN
keypoint & mask restricts keypoints lying on estimated masks. We employ two
metrics to evaluate the performance of our proposed method. The first metric is
the average Euclidean distance in pixels between the results and the groundtruth.
The second metric is the percentage of success frames in which all joint errors
are below a certain threshold. In addition, we compute the false positives (FP)
rate and false negatives (FN) rate to infer the presence of each joint to validate
the adequacy of our methods. In our experiments, we found that Mask R-CNN
is able to correctly detect almost all hand instances, with fewer than 5 frames
being wrongly detected.

8.2 Results and discussion

Fig. 6 shows the comparison results of our methods and Mask R-CNN on Dex-
ter2Hands dataset. In all cases, we can see that our methods produce fewer pixel

2D Multi-Hand Pose Estimation 11

Fig. 6: Per-joint mean error distance in pixels on dexter2Hands. (a) Left hand.
(b) Right hand. (c) Both hands.

Fig. 7: Fraction of frames within distance on dexter2Hands. (a) Left hand. (b)
Right hand. (c) Both hands.

errors of each tip on each individual hand and both hands. Because the image
background of this dataset is relatively clean, estimating joint locations via find-
ing positions with maximum probabilities without constraint is noise sensitive.
This is the reason for the large pixel errors in the method of Mask R-CNN key-
point only. As shown in Table 1, the average joint pixel error over all frames of
our KNN method is 4.8, which is better than our RF method (5.7) and Mask
R-CNN keypoint & mask method (6.2). The fraction of good frames over a dif-
ferent threshold for each individual hand and both hands is shown in Fig. 7. For
the left hand, our KNN method achieves the best good frame rate (82%) when
the threshold is 10 pixels, while the good frame rate is 78% for our RF method
and 77% for mask R-CNN keypoint & mask. Similarly, the performance of our
KNN and RF methods outperform other methods on the right hand (Fig. 7b)
and both hands (Fig. 7c).

Table 1: Quantitative evaluation on Dexter2Hands.
Method position error (pixels) FN (%) FP (%)

Our (KNN) 4.8 1 1

Our (RF) 5.7 0 1

Mask RCNN (kpt & mask) 6.2 2 3

Mask RCNN (kpt) 38.5 2 3

12 L. Duan et al.

Fig. 8: Examples of our methods compared to Mask-RCNN on Dexter2Hands
dataset. (a) Groundtruth. (b) Outputs of Mask RCNN (with mask). (c) Outputs
of of our KNN method. (d) Outputs of our RF method.

Another advantage of our methods is that they are able to infer the presence
of joint visibilities. Fig. 8 shows a typical example. Given an input image with
groundtruth that only the middle fingers of both hands are visible (Fig. 8a),
Mask R-CNN wrongly predicts that pinky, ring, middle and index finger tips are
visible on the left hand. Similarly, all finger tips are estimated to be overlapping
on the right hand (Fig. 8b). Our methods successfully detect the presence of
joints and correctly predict visible joint position (Fig. 8c,d). Both versions of
Mask R-CNN produce FN rates of 2% and FP rates of 3%, while FN rate of our
KNN and RF methods are 1% and 0%. The FP rate of our methods are 1%.

We also compare our methods with Mask R-CNN on the NYU2Hands dataset,
which is more challenging since there are 19 joints on each hand. As shown in
Fig. 9, our methods achieve fewer pixel errors than Mask R-CNN in all cases.
Mean pixel errors of the left middle finger tip (MT in Fig. 9) of Mask R-CNN
are 27.3 (keypoint only) and 22.4 (keypoint & mask), while mean pixel errors of
our methods for that joint are 11.2 (KNN) and 12.2 (RF). For the right hand,
though on some joints (e.g., Fig. 9b: L1, RT, MT, etc.) Mask R-CNN keypoint
& mask has fewer pixel errors than our RF method, the largest margin is on the
right middle finger tip, which is 1.4 (11.1 vs 12.5). Table 2 shows the averaged
position errors in pixel for different methods. Mean joint pixel errors over all
frames of our methods are 9.3 (KNN) and 10.1 (RF), which is better than Mask
R-CNN keypoint & mask (12.4) and keypoint only (16.2). The proportion of
good frames over different error thresholds is shown in Fig. 10, and we can see
a clear order of performance of the four methods: our KNN method is better
than our RF method and the proposed methods outperform Mask R-CNN. The
FN and FP rates of our methods are all 0%, while FN rates of both versions
of Mask R-CNN are 2% and FP rates are 0%. Some qualitative results for the
NYU2Hands dataset are shown in Fig. 11. As can be seen, our proposed meth-
ods can better preserve hand joint relationships and provide a more accurate
estimation.

Table 2: Quantitative evaluation on NYU2Hands.
Method position error (pixels) FN (%) FP (%)

Our (KNN) 9.3 0 0

Our (RF) 10.1 0 0

Mask RCNN(kpt & mask) 12.4 1 0

Mask RCNN (kpt) 16.2 1 0

2D Multi-Hand Pose Estimation 13

Fig. 9: Per-joint mean error distance in pixels on NYU2Hands. (a) Left hand.
(b) Right hand. (c) Both hands.

Fig. 10: Fraction of frames within distance on NYU2Hands. (a) Left hand. (b)
Right hand. (c) Both hands.

Runtime The runtime of both versions of Mask R-CNN to process a test im-
age of dexter2hands dataset is 0.45s on average, and it takes 0.5s for our KNN
method and 0.46s for our RF method. For the test image of NYU2Hands dataset,
the averaged process time of both versions of Mask R-CNN is 0.5s because the im-
age size is two times larger than test images of dexter2Hand and needs to locate
more joints. The process time of our KNN method for the NYU2Hands dataset
is around 0.85s per image, including 0.25s for the calculation of mean joint po-
sitions for each joint in KNN search result. Compared to our KNN method, our
RF method is much faster because mean joint positions are already stored after
training, which requires 0.55s to process a NYU2Hands test image.

9 Conclusion and future work

We present a new algorithm based on the PS model for estimating 2D multi-hand
poses from single depth images. The proposed framework utilizes Mask R-CNN
to learn the mapping from local informations of joints and global structures
of hands to their corresponding poses. We formulate a new utilization of the
segmentation output of Mask R-CNN and propose two ways to approximate

14 L. Duan et al.

Fig. 11: Examples of our methods compared to Mask-RCNN on NYU2Hands
dataset. (a) Outputs of Mask RCNN (with mask). (b) Outputs of our KNN
method. (c) Outputs of our RF method.

pose priors of test instances. The estimated pose priors could be used to infer the
presences of joints. Our method addresses issues of interchangeable estimations
by solely using Mask R-CNN for the detection of hand key points. We also
present interplays between Mask R-CNN and the PS model, as well as Mask R-
CNN and random forests. The performance of our algorithm has been validated
on two self-generated datasets with two hands that can also serve as a baseline
for future research.

Future work will encompass generating a real multi-hand dataset with accu-
rate labelling that not only labels the joint position but also provides visibility
information of occluded joints. Our system could be extended to 3D multi-hand
pose estimation and an improved method could be designed to model the rela-
tionships of joints, both in network structure design and the tree prior approxi-
mation step.

References

1. Andriluka, M., Roth, S., Schiele, B.: Pictorial structures revisited: People detection
and articulated pose estimation. In: Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on. pp. 1014–1021. IEEE (2009)

2D Multi-Hand Pose Estimation 15

2. Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001)
3. Chen, Y., Wang, Z., Peng, Y., Zhang, Z., Yu, G., Sun, J.: Cascaded pyramids net-

work for multi-person pose estimation. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). pp. 7103–7112. IEEE (2018)

4. Chu, X., Ouyang, W., Li, H., Wang, X.: Structured feature learning for pose esti-
mation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 4715–4723 (2016)

5. Dai, J., He, K., Sun, J.: Instance-aware semantic segmentation via multi-task net-
work cascades. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 3150–3158 (2016)

6. Deng, J., Dong, W., Socher, R., jia Li, L., Li, K., Fei-fei, L.: Imagenet: A large-scale
hierarchical image database. In: In CVPR (2009)

7. Eichner, M., Ferrari, V.: We are family: Joint pose estimation of multiple persons.
In: European conference on computer vision. pp. 228–242. Springer (2010)

8. Ge, L., Liang, H., Yuan, J., Thalmann, D.: Robust 3d hand pose estimation in
single depth images: from single-view cnn to multi-view cnns. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. pp. 3593–3601
(2016)

9. Ge, L., Liang, H., Yuan, J., Thalmann, D.: 3d convolutional neural networks for
efficient and robust hand pose estimation from single depth images. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. vol. 1, p. 5
(2017)

10. Girshick, R.: Fast r-cnn. In: Computer Vision (ICCV), 2015 IEEE International
Conference on. pp. 1440–1448. IEEE (2015)

11. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the
International Conference on Computer Vision (ICCV) (2017)

12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

13. Insafutdinov, E., Pishchulin, L., Andres, B., Andriluka, M., Schiele, B.: Deepercut:
A deeper, stronger, and faster multi-person pose estimation model. In: European
Conference on Computer Vision. pp. 34–50. Springer (2016)

14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems.
pp. 1097–1105 (2012)

15. Ladicky, L., Torr, P.H., Zisserman, A.: Human pose estimation using a joint pixel-
wise and part-wise formulation. In: proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. pp. 3578–3585 (2013)

16. Li, Y., Qi, H., Dai, J., Ji, X., Wei, Y.: Fully convolutional instance-aware seman-
tic segmentation. In: IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR). pp. 2359–2367 (2017)

17. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature
pyramid networks for object detection. In: CVPR. vol. 1, p. 4 (2017)

18. Oberweger, M., Wohlhart, P., Lepetit, V.: Hands deep in deep learning for hand
pose estimation. arXiv preprint arXiv:1502.06807 (2015)

19. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

20. Pinheiro, P.O., Collobert, R., Dollár, P.: Learning to segment object candidates.
In: Advances in Neural Information Processing Systems. pp. 1990–1998 (2015)

16 L. Duan et al.

21. Pishchulin, L., Insafutdinov, E., Tang, S., Andres, B., Andriluka, M., Gehler, P.V.,
Schiele, B.: Deepcut: Joint subset partition and labeling for multi person pose esti-
mation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 4929–4937 (2016)

22. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detec-
tion with region proposal networks. In: Advances in neural information processing
systems. pp. 91–99 (2015)

23. Sridhar, S., Oulasvirta, A., Theobalt, C.: Interactive markerless articulated hand
motion tracking using rgb and depth data. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision (ICCV) (Dec 2013)

24. Tang, D., Jin Chang, H., Tejani, A., Kim, T.K.: Latent regression forest: Structured
estimation of 3d articulated hand posture. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. pp. 3786–3793 (2014)

25. Tompson, J., Stein, M., Lecun, Y., Perlin, K.: Real-time continuous pose recovery
of human hands using convolutional networks. ACM Transactions on Graphics 33
(August 2014)

26. Yuan, S., Garcia-Hernando, G., Stenger, B., Moon, G., Chang, J.Y., Lee, K.M.,
Molchanov, P., Kautz, J., Honari, S., Ge, L., et al.: Depth-based 3d hand pose
estimation: From current achievements to future goals. In: IEEE CVPR (2018)

27. Zimmermann, C., Brox, T.: Learning to estimate 3d hand pose from single rgb
images. In: International Conference on Computer Vision (2017)

