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Abstract. Segmentation and tracking of epithelial cells in light micro-
scopy (LM) movies of developing tissue is an abundant task in cell-
and developmental biology. Epithelial cells are densely packed cells that
form a honeycomb-like grid. This dense packing distinguishes membrane-
stained epithelial cells from the types of objects recent cell tracking
benchmarks have focused on, like cell nuclei and freely moving individ-
ual cells. While semi-automated tools for segmentation and tracking of
epithelial cells are available to biologists, common tools rely on classical
watershed based segmentation and engineered tracking heuristics, and
entail a tedious phase of manual curation. However, a different kind of
densely packed cell imagery has become a focus of recent computer vi-
sion research, namely electron microscopy (EM) images of neurons. In
this work we explore the benefits of two recent neuron EM segmentation
methods for epithelial cell tracking in light microscopy. In particular we
adapt two different deep learning approaches for neuron segmentation,
namely Flood Filling Networks and MALA, to epithelial cell tracking.
We benchmark these on a dataset of eight movies with up to 200 frames.
We compare to Moral Lineage Tracing, a combinatorial optimization ap-
proach that recently claimed state of the art results for epithelial cell
tracking. Furthermore, we compare to Tissue Analyzer, an off-the-shelf
tool used by Biologists that serves as our baseline.

1 Introduction

Epithelia are thin tissues that cover body structures like organs and cavities.
They are commonly composed of a single layer of cells tightly connected by
junctions. In a developing organism, cells in epithelia are very dynamic. They
move greatly, to the extent that they change neighbors over time despite the
tight connections. They undergo cell divisions, cell death, and a large variety of
shape changes.

Biologists are interested in a mechanistic understanding of the principles that
govern epithelial development on the level of individual cells. A powerful ap-
proach towards this goal are high throughput studies, where membrane-stained
developing epithelia are imaged over time with fluorescence light microscopy
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(LM), and cells are segmented and tracked in the resulting movies to allow for
quantitative analysis.

Current computational tools that Biologists use to segment and track epi-
thelial cells rely on non-learned methods watershed or thresholding for 2d seg-
mentation, combined with heuristics for tracking cells over time [1–3]. So far
the computer vision community has shown little interest in this problem despite
its abundant importance for Cell Biologists. Recent cell tracking challenges [4, 5]
have excluded epithelial cells from their benchmarks, and to our knowledge, only
one recent approach has tackled epithelial cell tracking with modern methodol-
ogy, namely the Moral Lineage Tracing (MLT) approach and its fast variants [6–
8].

However, the related image analysis problem of segmenting neurons in 3d
electron microscpy (EM) images has recently become a subject of study for a
number of computer vision groups. Neurons are tree-structured densely packed
cells, and the membranes that separate them are so thin that they are prone to
fall prey to partial volume effects. In essence, it cannot be assumed that even a
single pixel of membrane separates two neurons in EM imagery. These properties
hold analogously for 2d+t epithelial cell tracks in light microscopy data.

There are however two key structural difference between neurons in 3d EM
data and epithelial cell tracks in 2d+t LM data: First, when a neuron branches,
the two emerging branches diverge immediately, making it unlikely to share a
boundary later on. Conversely, when an epithelial cell divides, the daughter cells
may reside next to each other for a long time. Consequently, in general, methods
for 3d neuron EM segmentation are not directly applicable to cell tracking.
Second, the location of the root of a tree-shaped neuron is not known a priori,
whereas the root of a cell lineage tree is known to lie in the first frame of a movie.
This known direction of object branchings can be leveraged for cell tracking.

In this work, we propose extensions of two state of the art deep learning
based 3d neuron segmentation methods to make them applicable to 2d+t track-
ing of densely packed objects, namely MALA [9] and Flood Filling Networks
(FFN) [10]. The core contribution of our work is a benchmark on a dataset of
eight epithelial cell movies. We benchmark against a current state of the art tool
used by Biologists, namely the Tissue Analyzer [1] (formerly known as Packing
Analyzer [11]). Furthermore we benchmark against the current state of the art
for epithelia tracking in the computer vision literature, namely the MLT ap-
proach [6–8]. Here, to allow for a fair comparison of MLT to our deep learning
based methods, we have “modernized” MLT to be based on a U-Net [12] as op-
posed to a Random Forests [13] as employed in the original MLT. In particular,
we use cell candidates and tracking scores as predicted by the MALA approach.
This allows us to investigate the difference between a combinatorial optimization
method (MLT) compared to greedy agglomeration and matching (MALA).

Our comparative evaluation of the standard segmentation and tracking er-
ror metrics SEG and TRA [5] reveals that MALA, FFN and the U-Net based
MLT significantly outperform Tissue Analyzer. Differences among the three deep
learning based methods are more subtle, yet their run-times differ significantly.
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Fig. 1: The MALA method for cell tracking. A lineage (left, cell divisions are
indicated by horizontally striped labels in the frame preceding the division)
is represented by labelling affinity edges (right) as ”cut” (red) or ”connect”
(green) between neighboring pixels within and across frames. Given that cells in
subsequent frames overlap, this formulation allows to segment (in 2d) and track
cells (over time). Shown on a coarsened pixel grid for illustration purposes.

Our results suggest that MALA, which is the fastest approach, performs en par
with MLT and slightly better than FFN in terms of accuracy. We therefore sug-
gest MALA as our method of choice to be employed for epithelial cell tracking
by biologists. Our code for both MALA and FFN is freely available on github.4

2 Methods

MALA for Cell Tracking. MALIS plus agglomeration (MALA [9]) is a
method that has recently been proposed to address the problem of segment-
ing neurons in EM volumes: There, a 3d U-Net is trained to predict affinities on
edges between voxels using a variant of the MALIS loss [14], such that edge affini-
ties are high if the incident voxels are part of the same object and low otherwise.
The prediction of affinities is followed by a simple hierarchical agglomeration,
where initial fragments obtained by a watershed are iteratively merged according
to the predicted affinities between them until a given threshold.

Acknowledging the similarity between the problem addressed here and the
segmentation of neurons in (anisotropic) volumes, we modified the MALAmethod
to segment and track cells in 2d+t videos. For that, we treat a movie sequence
as a 3d volume, indexed by (x, y, t). The affinities between voxels are now spatial
(in x and y) or temporal (in t). Affinities in space represent a segmentation of
a single image into individual cells, whereas affinities across time encode the
continuation of a lineage (see Figure 1).

Since agglomeration on the resulting 2d+t affinity graph is not guaranteed
to produce a moral lineage (i.e., cells can only split, not merge), we diverge
from the MALA approach and create a segmentation and tracking in two steps:
First, we perform a watershed segmentation and agglomeration for each frame
independently to find cells (thus ignoring affinities in t). Second, we track the
found cells with a simple forward heuristic: we enumerate potential links between

4 github.com/anonymous/repository
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Fig. 2: FFN at test time: From left to right, a few steps of FoV movement are
shown, with resulting predictions. These steps cover a cell division, visible as
a sudden wider diameter of the object. The FoV can only move backwards in
time, and hence does not jump into the second daughter cell that stems from
this division (not depicted). Very right: Resulting binary segmentation.

each pair of spatially overlapping cells in consecutive frames and score them with
the mean t-affinity predicted on the overlap. A lineage is then found by greedily
accepting links as long as they do not result in a merge.

Flood Filling Networks for Cell Tracking. Flood Filling Networks (FFNs)
for segmenting neurons in EM volumes [10] are based on a CNN for pixel-wise
foreground-background segmentation. They differ from traditional CNNs in that
they are applied iteratively, with previous predictions recurrently fed into the
CNN as additional input. The input predictions are initialized to 0.5. To be
able to cope with densely packed objects, FFNs are applied individually to each
object to be segmented, starting from automatically determined seed points.

At test time, to segment a single object, foreground probability is predicted
in a field of view (FoV) around a seed location. Then a set of next FoV locations
is determined and stored in a queue to be processed until empty: If a prediction
one step away from the seed exceeds a user-defined probability threshold, it
forms the center of a subsequent FoV. Here, a step is an axis-aligned offset
of user-defined length. A binary segmentation of a single object is derived by
thresholding the final full foreground probability image. Figure 2 shows a few
exemplary FoV steps at test time. At training time, input FoVs are first formed
at seed locations. Once training yields predictions above a user-defined threshold,
additional training data is formed one step, but never further, away from the
seed, employing previous predictions as input.

FFNs are designed for pixel-wise foreground-background segmentation of in-
dividual objects. This makes them not well-suited for objects that touch them-
selves: For the example of a dividing epithelia cell, the mother cell as well as the
two daughter cells belong to the same foreground object, where the daughter
cells often reside right next to each other, and partial volume effects often cause
little to no boundary to be visible in the time dimension. Hence FFNs would
not allow for distinguishing these daughter cells.

We overcome this limitation of FFNs for cell tracking applications by levera-
ging the knowledge that cells can divide over time but not merge. This leads
us to propose the following modification: (1) We pick seeds reversely in time.
(2) During training as well as testing, we allow for the FoV to only move back-
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Fig. 3: Overview of the used datasets: Left: peripodial tissue with large cells in
the center and thin elongated cells at the edge. Right: proper disc tissue with
small roundish cells.

wards in time. This yields non-branching leaf-to-root tracks for all cells that form
leafs in the lineage forest: When the FoV encounters a cell division site while
filling a daughter cell, it is not allowed to move into the respective sibling cell.
(3) Given the single-cell tracks resulting from (2), we detect cell divisions, i.e.
pairs of single-cell tracks that stem from the same mother cell, by a simple Dice-
score based overlap criterion. As with MALA, the resulting tracking graph is not
guaranteed to be moral, as it may contain cell merges. Analogous to MALA, we
greedily enforce morality by adding edges from our tracking graph to our final
feasible solution one by one as long as morality is not violated, while rejecting
edges that do lead to a violation.

3 Results and Discussion

We evaluate MALA, FFN, MLT, and Tissue Analyzer (TA) on 2d+t movies
of developing Drosophila wing epithelia. These epithelia consist of two layers,
namely the proper disc layer that develops into the fly’s wing, and the peripodial
layer whose biological function is a current research topic. Each layer can be
captured individually as a 2d+t movie as described in [15]. Our dataset contains
8 movies: 5 proper disc and 3 peripodial layers (see Fig. 3), containing between
160 and 200 frames. We perform leave-one-out cross-validation of MALA, FFN,
and MLT on all 8 movies. For each fold, a validation movie is held out from the
training set to check for early stopping during training. The validation movie is
chosen to be of the same class (i.e. proper disc or peripodial) as the test movie.

For MALA, we trained a 3D U-Net with a receptive field of 88 × 88 pixels
in xy, and 28 time frames. The U-Net follows the architecture proposed in [12],
consisting of four layers with downsampling factors of 2. We trained the network
for 150,000 iterations using the Adam optimizer [16] with an initial learning rate
of α = 5 · 10−5, β1 = 0.95, β2 = 0.999, and ǫ = 10−8.

We used the same network as for MALA to generate affinities for MLT. We
employed the fast MLT solver GLA (see [7]) since neither other MLT solver
terminated within 100 hours of runtime on a single movie.

For FFN, we trained a 3D Conv Net with 8 layers and 32 filters, FoV of
25 × 25 × 25 pixels, step size of 6 pixels for moving the FoV, and probability
threshold 0.9.

For Tissue Analyzer results on proper disc movies, we evaluate the automated
tracking results that formed the basis for our ground truth data via manual
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Fig. 4: Qualitative results of the investigated methods. Cell divisions are indi-
cated by horizontally striped labels in the frame preceding the division. The red
highlight in the first row indicates the same pixel line in the xy and xt views.
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Peripodial Proper disc

SEG TRA SEG TRA

Mala 0.907 ± 0.029 0.997 ± 0.001 0.817 ± 0.009 0.995 ± 0.001
FFN 0.879 ± 0.035 0.985 ± 0.012 0.796 ± 0.013 0.987 ± 0.006

MLT-GLA 0.904 ± 0.026 0.993 ± 0.004 0.818 ± 0.010 0.995 ± 0.001
TA − − 0.758 ± 0.009 0.865 ± 0.003

Table 1: Quantitative results of the investigated methods. Shown are the mean
and standard deviation of the SEG and TRA measure over each of the used
datasets (peripodial: 3 movies, proper disc: 5 movies).

curation by biologists. In this sense, our reported Tissue Analyzer results are
biased towards an unfair advantage. On peripodial movies however, automated
Tissue Analyzer results were deemed too inaccurate to form a suitable basis for
manual curation. Instead, biologists used the interactive mode of Tissue Analyzer
to generate ground truth, iteratively curating each frame individually and then
using it to initialize segmentation of the next frame. For this reason we do not
report automated Tissue Analyzer results for peripodial movies.

We evaluate the standard tracking error metrics SEG and TRA [4] to measure
2d segmentation and tracking accuracy, respectively (see Table 1). Both measures
range from 0 to 1, where 1 indicates a perfect result. Figure 4 shows some
exemplary results. The average run-times of our methods for processing a single
movie are 35 min (MALA), 42 min (MLT) and 90 min (FFN).

Discussion. Concerning TRA scores, MALA and MLT yield almost perfect
tracking performance, with scores very close to 1 on all eight individual movies.
FFN yields slightly lower TRA scores than MALA and MLT. We note two
technicalities that put FFN at a disadvantage w.r.t. the TRA score: (1) The
ground truth is a dense tesselation of the image. While MALA and MLT produce
a dense tesselation without boundary, FFN often leaves a few background pixels
between objects. In case of a cell death, an FFN track of a cell might stop
a few slices earlier in time than the respective ground truth track, which is
counted as “missing segmentations” that contribute ten-fold to TRA compared
to a superfluous segment that would be counted if the space was filled. (2) FFN
maintains a queue of seeds and iteratively picks them for filling a new object if
they have not been covered by a previous object. Towards the end of the seed
queue, seeds can lie on the aforementioned background regions. In this case,
filling will produce an object that lies mostly within a pre-existing object, and
only a few pixels will be added as a new segment. This “noise” counts as false
split errors in the TRA measure. We hypothesize that some more steps of simple
postprocessing, like morphological growing of labels and sorting out very small
components, may alleviate these disadvantages.

However, in addition to the above technical disadvantages, in some videos
we did find some “catastrophic merge errors” yielded by FFN, where two neigh-
boring cells are merged over their entire tracks. This may happen if the iterative
FFN filling “leaks” into a neighboring cell early on, which cannot be amended
later. In contrast, MALA and MLT first perform pure 2d segmentations and link
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them over time in a second step, which makes the results less prone to such large
merge errors.

Concerning SEG scores, MALA and MLT are en par again, whereas FFN
yields slightly lower scores, potentially again caused by the fact that it may
leave a few pixels between cells blank, whereas neither ground truth nor MALA
nor MLT do. All methods yield smaller scores for proper disc as compared to
peripodial movies, which is simply due to the smaller size of the respective cells
and the nature of the Dice score.

4 Conclusion

We have shown that FFN can be extended successfully for tracking applications.
However we were unable to get FFN to outperform the cheaper MALA and
MLT. MALA is fastest and most accurate method in our study and should
hence make for a useful tool for biologists to segment and track epithelial cells,
once integrated into a manual correction framework as e.g. provided by Tissue
Analyzer. The flourescence microscopy data analyzed in this work is of such
quality that cheap greedy agglomeration of local deep learning based predictions
is not outperformed by expensive combinatorial optimization as in MLT.
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5. Ulman, V., Maška, M., Magnusson, K.E., Ronneberger, O., Haubold, C., Harder,
N., Matula, P., Matula, P., Svoboda, D., Radojevic, M., et al.: An objective com-
parison of cell-tracking algorithms. Nature methods 14(12) (2017) 1141

6. Jug, F., Levinkov, E., Blasse, C., Myers, E.W., Andres, B.: Moral lineage trac-
ing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. (2016) 5926–5935

7. Rempfler, M., Lange, J.H., Jug, F., Blasse, C., Myers, E.W., Menze, B.H., Andres,
B.: Efficient algorithms for moral lineage tracing. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. (2017) 4695–4704

8. Rempfler, M., Kumar, S., Stierle, V., Paulitschke, P., Andres, B., Menze, B.H.:
Cell lineage tracing in lens-free microscopy videos. In: International Conference on
Medical Image Computing and Computer-Assisted Intervention, Springer (2017)
3–11



A Benchmark for Epithelial Cell Tracking 9

9. Funke, J., Tschopp, F., Grisaitis, W., Sheridan, A., Singh, C., Saalfeld, S., Turaga,
S.C.: A deep structured learning approach towards automating connectome recon-
struction from 3d electron micrographs. CoRR abs/1709.02974 (2017)

10. Januszewski, M., Kornfeld, J., Li, P.H., Pope, A., Blakely, T., Lindsey, L., Maitin-
Shepard, J.B., Tyka, M., Denk, W., Jain, V.: High-precision automated recon-
struction of neurons with flood-filling networks. bioRxiv (2017) 200675

11. Aigouy, B., Farhadifar, R., Staple, D.B., Sagner, A., Röper, J.C., Jülicher, F.,
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