
DrawInAir: A Lightweight Gestural Interface

Based on Fingertip Regression

Gaurav Garg1, Srinidhi Hegde1, Ramakrishna Perla2, Varun Jain2, Lovekesh
Vig, Ramya Hebbalaguppe

TCS Research, India
{ga.gaurav,sri.hegde,r.perla,

varun.in,lovekesh.vig,ramya.hebbalaguppe}@tcs.com

Abstract. Hand gestures form a natural way of interaction on Head-
Mounted Devices (HMDs) and smartphones. HMDs such as the Microsoft
HoloLens and ARCore/ARKit platform enabled smartphones are expen-
sive and are equipped with powerful processors and sensors such as mul-
tiple cameras, depth and IR sensors to process hand gestures. To enable
mass market reach via inexpensive Augmented Reality (AR) headsets
without built-in depth or IR sensors, we propose a real-time, in-air gestu-
ral framework that works on monocular RGB input, termed, DrawInAir.
DrawInAir uses fingertip for writing in air analogous to a pen on paper.
The major challenge in training egocentric gesture recognition models
is in obtaining sufficient labeled data for end-to-end learning. Thus, we
design a cascade of networks, consisting of a CNN with differentiable

spatial to numerical transform (DSNT) layer, for fingertip regression,
followed by a Bidirectional Long Short-Term Memory (Bi-LSTM), for a
real-time pointing hand gesture classification. We highlight how a model,
that is separately trained to regress fingertip in conjunction with a clas-
sifier trained on limited classification data, would perform better over
end-to-end models. We also propose a dataset of 10 egocentric pointing
gestures designed for AR applications for testing our model. We show
that the framework takes 1.73s to run end-to-end and has a low memory
footprint of 14MB while achieving an accuracy of 88.0% on egocentric
video dataset.

Keywords: egocentric gestures, coordinate regression, augmented real-
ity

1 Introduction

Most popular interfaces in HMDs/Smartphones are speech and gestures. How-
ever, the accuracy of speech recognition tends to suffer in an industrial or an
outdoor setting due to ambient noise [1]. To this end, gestural interfaces are
preferred in the areas of human-computer interaction and human-robot inter-
action [1–3] as one does not require sophisticated skills to communicate, and

1 2 The authors contributed equally.

2 G. Garg, S. Hegde, R. Perla, V. Jain, L. Vig, R. Hebbalaguppe

they enable wider accessibility without bias on speech accents. However, real-
time gesture tracking and recognition in First Person View (FPV) for wearable
devices is still a challenging task (refer Figure 1). Expensive AR devices such
as the Microsoft HoloLens, Daqri and Meta Glasses are equipped with gestural
interface powered by a variety of on-board sensors including a depth sensor and
customized processors making the product expensive and unaffordable for mass
adoption.

carret circle del star

Fig. 1. Users performing egocentric in-air gestures in complex backgrounds such as
outdoor environments, reflective backgrounds and different lighting conditions. Note:
Variations in the speed of gestures and gesture trajectories between individuals are
some of the issues that affect in-air hand gesture recognition [4].

In this paper we propose a novel gestural framework without the need of
specialized hardware that would provide mass accessibility of gestural interfaces
to the most affordable video-see-through HMDs such as Wearality Sky (50 USD)
and Google Cardboard 1 (15 USD). These devices provide immersive AR expe-
riences with the help of stereo rendering of the smartphone camera feed. The
immediate applications are industrial inspection and repair, tele-presence, and
FPV photography. Google Cardboard still employs primitive modes of user in-
teraction, that is magnetic trigger and conductive lever, and any development is
restricted to the hardware and sensors available on a smartphone. Hence, we aim
to design pointing gesture based user interaction for frugal HMDs/smartphones.

3D CNNs and RNNs are found to be effective in analysis of egocentric ges-
tures. However, these networks are highly reliant on the large scale video dataset
and pixel-level depth information while training, often hindering real-time per-
formance. In this work, we present a neural network architecture comprising
of a base CNN and a differentiable spatial to numerical transform (DSNT) [5]
layer followed by a Bidirectional Long Short-Term Memory(Bi-LSTM). The layer
transforms the heatmap from CNN, that is rich in spatial information, to output
spatial location of fingertip. The Bi-LSTM effectively captures the dynamic mo-
tion of user gesture that aids in classification. Feeding the fingertip keypoints to
the Bi-LSTM, as opposed to traditional approaches of inputting featuremaps or
images, reduces the computational cost in classification. Our key contributions
are:

1 https://vr.google.com/cardboard/

DrawInAir: A Lightweight Gestural Interface Based on Fingertip Regression 3

1. We propose DrawInAir, a neural network architecture, consisting of a base
CNN and a DSNT network followed by a Bi-LSTM, for efficient classification
of user gestures. It works in real-time, uses only RGB image sequence with no
depth information, and can be ported on mobile devices due to low memory
footprint.

2. EgoGestAR: a dataset of spatio-temporal sequences representing 10 ges-
tures suitable for AR applications. We have published the dataset online at:
https://github.com/varunj/EgoGestAR.

CheckMark 0.920

Right 0.021

Rectangle 0.020

X 0.018

… …

45, 395

290, 340

560, 410

….

Fully
Convolutional

Network
DSNTVideo

Frames
Heatmap

Fingertip
(x, y)

Predictions

Bi-LSTM

Fingertip Regressor

Fig. 2. DrawInAir framework. DrawInAir comprises a Fingertip Regressor module
which accurately localizes the fingertip (the fingertip is analogous to a pen-tip in HCI)
and a Bi-LSTM network is used for classification of fingertip detections on subsequent
frames into different gestures (Images at the bottom show input/output at different
stages).

2 Related Work

Despite being intuitive and natural, gestures are prone to inherent ambiguity
which makes them a topic of interest to the research community [6]. Most of the
early gesture recognition frameworks involve either (i) low-level image analysis
such as detection of contours, texture, segmentation, histograms [7] or (ii) vision
approaches such as feature extraction, object detection followed by tracking, and
classification [8].

Recently using CNNs for object classification and detection has shown to give
promising results. Huang et al. [9] proposed bi-level cascade CNNs approach for
hand and key point detection in egocentric view using HSV color space infor-
mation. Tompson et al. [10] proposed a pipeline for real-time pose recovery of

4 G. Garg, S. Hegde, R. Perla, V. Jain, L. Vig, R. Hebbalaguppe

human hands from a single depth image using a CNN. Coming to the gesture
classification methods, in [11], Liu et al. presented two real-time third-person
hand gesture recognition systems - (i) utilizing the stereo camera hardware setup
with DTW classifier and (ii) using dual-modality sensor fusion system with HMM
classifier. Dardas et al. [12] presented a system for hand gesture recognition via
bag-of-features and multi class Support Vector Machines (SVM). The Random-
ized Decision Forest classifier has also been explored for hand segmentation [10]
and hand pose estimation [13]. Jain et al. [14] have shown the efficacy of using
LSTM networks for the classification of 3-dimensional gestures.

In a recent work, Hegde et al. [1] discussed simple hand swipe gestures for
Google Cardboard in egocentric view using GMM based modeling of skin pixel
data. Further, this work was extended in [15] for accurate hand swipe clas-
sification. Implementing such ad-hoc recognizers is very challenging when the
number and type of gestures increase. This is due to high inter class similarity
among the gesture classes [16]. Unlike the works [17–19], which use RGB-D in-
puts to recognize multi pose gestures and occluding fingers in egocentric view,
our proposed framework focuses on computationally efficient pointing pose-based
gesture recognition using just RGB data.

In our work, we specifically deal with pointing finger gestures which requires
detecting fingertip coordinates. We are inspired by the recent work of Nibali et
al. [5] which proposed DSNT layer for numerical coordinate regression for esti-
mating human body joints position. But they use a fully convolutional networks
(FCN), a stacked hourglass network and other complex networks for generating
heatmaps which makes their method slow in comparison to ours.

3 DrawInAir

A recent trend in the deep learning community has been to develop end-to-
end models that learn several intermediate tasks simultaneously. While this has
obvious benefits for learning joint tasks like object detection, regression and
classification, it is reliant on the presence of sufficient labelled data to learn all
the tasks in a pipeline.

We, hence, propose a pointing hand gestural framework in egocentric view
with limited labelled classification data. We focus on classifying the point gesture
motion patterns into different gestures. Figure 2 shows the blocks which are: (a)
the Fingertip Regressor that takes an RGB input image and accurately localizes
the fingertip, (b) a Bi-LSTM network for classification of the fingertip detection
on subsequent frames into different gestures.

We assume that the subjects are stationary while performing gestures to
interact with the device. Slight errors introduced due to the head movement
can be rectified by post-processing the Fingertip Regressor output and by the
Bi-LSTM network used in classification. Bi-LSTM also has the ability to handle
unexpected impulses/peaks arising in gesture pattern due to false detections or
fingertip localizations for short duration.

DrawInAir: A Lightweight Gestural Interface Based on Fingertip Regression 5

Input
Image

166_3x3

2 x 2

32_3x3

2 x 2

64_3x3

128_3x3

256 x 256 x 3

256_3x3

2 x 2

2 x 2

2 x 2

256_3x3

Heatmap

DSNT
x

y

Convolutional Layers
Max Pooling Layers

Fingertip
Coordinates

2 x 2

Fig. 3. Overview of our proposed fingertip regressor architecture for fingertip local-
ization. The input to the network is 3 × 256 × 256 sized RGB images. The network
consists of 6 convolutional blocks, each with different convolutional layers followed by
a max-pooling layer. Then we have a convolutional layer to output a heatmap which
is input to DSNT. Finally, we get 2 coordinates denoting fingertip spatial location.

3.1 Fingertip Regression

Estimating human pose by localizing human joints has been an important study
in computer vision. Toshev et al. [20] propose DeepPose, which formulates the
human pose estimation problem as a CNN based regression over body joints. In
a similar context, we employ a CNN architecture followed by DSNT layer [5]
(refer Figure 3) for localizing fingertip by regressing over the coordinates, (x, y),
of the fingertip.

Differentiable Spatial to Numerical Transform (DSNT): The pro-
posed architecture consists of a CNN that produces a heatmap, Z, containing
the spatial information of fingertip location. The heatmap is passed on to a dif-
ferentiable spatial to numerical transform (DSNT) layer which transforms the
heatmap to numerical coordinates of the fingertip location. The DSNT layer has
no trainable parameters, preserves the differentiability and generalizes spatially,
hence allowing the entire network to learn by back-propagation. DSNT normal-
izes the heatmap Z to Ẑ such that all the elements of normalized heatmap are
non-negative and sum to one. After normalization, the heatmap coordinates are
scaled such that the top-left corner of the heatmap is at (−1,−1) and bottom-
right is at (1, 1). This is followed by outputting the expected coordinates in the

scaled coordinate system with normalized heatmap, Ẑ, as probability distribu-
tion map.

For training the network we use Euclidean loss as follows:

L(Ẑ,p) = ‖p−DSNT (Ẑ)‖2 + λLreg(Ẑ) (1)

where p is the ground truth coordinates and λ is a regularization constant.
DSNT (Ẑ) is the expected scaled coordinates that is produced by the DSNT
layer. Nibali et al. [5], suggest different regularizers, Lreg, for training the net-
work. We find that using Kullback-Leibler divergence (KLD) as regularizer gave
us the best results. Thus, we have Lreg as follows:

Lreg(Ẑ,p) = KLD(Ẑ‖N (p, σ2

t)) (2)

6 G. Garg, S. Hegde, R. Perla, V. Jain, L. Vig, R. Hebbalaguppe

where σ2

t is a variance hyper-parameter of a target normal distribution, N .
This regularizer encourages the heatmap to resemble a isotropic target Gaussian
distribution.

3.2 Gesture Classification

The localization network discussed in the previous section outputs the spatial
location of the fingertip (x, y), which is then fed as an input to our gesture
classification network. Since we use the gestures that have only pointing fingers,
the classification task reduces to analyzing the motion of the fingertip. Thus, we
input (x, y) coordinate instead of the entire frame to the network. Motivated by
the effectiveness of LSTMs [21] in learning long-term dependencies of sequential
data [22], we employ a Bi-LSTM [23] network for the classification of gestures.
We found that Bi-LSTM performs better than LSTM for classification as it
processes the sequence in both forward and reverse direction.

We found the raw fingertip coordinates from the fingertip regressor to be
noisy. This is due to the relative motion of head and hand of the user in an
egocentric setting. Thus, we applied smoothing operation on the sequence of
fingertip points as an egocentric correction measure (refer Figure 4). We used
Savitzky-Golay filter [24] on the fingertip sequence with window size of 15 and
polynomial order 1 yielding the best classification accuracies on applying this
filter. This filter operates by increasing the signal-to-noise ratio without greatly
distorting the signal. The entire framework is also adaptable to videos/live feeds
with variable length frame sequences. This is particularly important as the length
of gestures depends on the user performing it.

Raw DSNT coordinates

Smoothened coordinates

Fig. 4. Effect of Smoothing for Egocentric Correction. (Left to right) Output of
Savitzky-Golay filter [24] for samples of classes – Circle, Square, Star and Up respec-
tively. The highlighted point in each gesture indicates the starting position of the
gesture.

DrawInAir: A Lightweight Gestural Interface Based on Fingertip Reg ression 7

4 Datasets

4.1 Hand Dataset

We use the SCUT-Ego-Finger benchmark Dataset [9] for training the base CNN
followed by DSNT layer model. Twenty four subjects in di�erent environments
(such as basketball �eld, canteen, teaching building, library, lake) contributed
to the dataset to gather variations in illumination conditions, background and
to address challenges such as variation in hand shape, hand color diversity, and
motion blur. The dataset includes 93; 729 frames with corresponding labels in-
cluding hand candidate bounding boxes and index �nger key point coordinates.

4.2 EgoGestAR Dataset

To train and evaluate the proposed Bi-LSTM architecture, we presentEgoGes-
tAR : a spatio-temporal sequence dataset for AR wearables. The dataset includes
spatial patterns representing 10 gestures and inspired by industrial applications,
we divided the gestures patterns primarily into 3 categories. (a) 4 swipe gesture
patterns (Up, Down, Left, and Right) for navigating/selecting user preferences
in AR HMDs. (b) 2 gesture patterns (Rectangle and Circle) for RoI highlighting
in user's FoV for tele-support applications. (c) 4 gesture patterns (Checkmark:
Yes, Caret: No, X: Delete, Star: Bookmark) for evidence capture in inspection,
maintenance and repair applications.

Fig. 5. EgoGestAR dataset: The �rst 3 columns show standard sequences shown to
the users before the data collection and the last 3 columns (captured at a resolution
of 640� 480) depict the variations in the data samples. The highlight ed point in each
sequence indicates the starting position of the gesture.

We collected the data from 50 subjects in our research lab with ages in the
range 21 to 50 with average age 27:8 years. The dataset consists of 2500 gesture
patterns where each subject recorded 5 samples of each gesture. The gestures
were recorded by mounting a 10:1 inch display HP Pro Tablet to a wall. The
gesture pattern drawn by a user's index �nger on a touch interface application
with position sensing region was stored. The data was captured at a resolution
of 640� 480. Figure 5 describes the standard input sequences shown to the users
before data collection and a sample subset of gestures from the dataset showing
the variability introduced by the subjects. Detailed statistic s of the EgoGestAR
dataset is available athttps://github.com/varunj/EgoGestAR .

