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Abstract. In this paper, we develop a method to transform a sequence
of images to a sequence of events. Optical flow, which is the vector fields
of pointwise motion computed from monocular image sequences, de-
scribes pointwise motion in an environment. The method extracts the
global smoothness and continuity of motion fields and detects collapses
of the smoothness of the motion fields in long-time image sequences using
transportation of the temporal optical flow field.

1 Introduction

Optical flow is fundamentally pointwise local motion on an imaging plane (retina)
[1–4]. This pointwise motion is low-level information for perception of global mo-
tion [5–8, 34, 35]. In this paper, we introduce a model for the extraction of queues
for perception of global motion from the optical flow fields using the temporal
transportation [9, 10] of optical flow fields along times.

Flow vectors locally extract point correspondences between a pair of succes-
sive images on the retina [1]. These local correspondences are applied to motion
tracking because temporal evolution of a correspondence describes the temporal
trajectory of a point in a video stream of images.

In Field VI of the human brain for motion perception, independent compo-
nents of optical flow field on the retina [11, 36] are transmitted from the medial
superior temporal area (MST) to the middle temporal area (MT) [12, 13, 11,
14–16]. Then, pointwise local motion is transformed to intermediate-level infor-
mation for motion cognition. Flying insects also control motion using optical
flow. Honey bees navigate using optical flow [17–21]. The compound eyes [18,
19, 38, 39] of insects perceive spherical optical flow fields [38, 39]. The divergence
on the spherical optical flow filed indicates the direction of flying in the global
environment [19]. Disparities of optical flow fields between the fields on the left
and right hemi-spheres control the direction of fling in the local environment.
Therefore, temporal optical flow fields generated on the spherical retina of an
omnidirectional camera system provide queue for navigation [39]. These geo-
metric properties of optical flow fields on the spherical retina are the basis of
insect-inspired visual navigation. Geometrical processing of optical flow fields on
the spherical retina yields syntactical information for robot navigation [37–39].
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Autonomous vehicles navigate using images captured by a planar retina [40,
41]. We have develop an algorithm for the generation of motion semantics from
optical flow fields generated on a planar retina, which is a common imaging
process for non-compound eye systems.

In the previous paper, we introduced a model for the extraction of queue
for recognising global spatial motion from scene flow fields using the temporal
transportation of the vector field [40]. As a comparative study with our previous
results, we apply the same idea to the optical flow field on a planar retina. This
comparative study implies that for global motion perception, the optical flow
fields, which is computed from monocular image sequence, possess the similar
properties with those of the scene flow fields.

2 Metric for Optical Flow Fields

Setting u(x) = (u(x), v(x))⊤ for x = (x, y)⊤ ∈ R
2 to be the optical flow field

on two-dimensional Euclidean space, the directional histogram [22] of u(x) is
obtained by integration of the magnitude of u(x) in the region of interest (ROI),
that is,

hx(θ;u) =
1

|Ω(x)|

∫

Ω(x)
u(y)
|u(y)|

=(cos θ,sin θ)⊤
|u(y)|dy, (1)

where Ω(x), |Ω(x)| and x ∈ R
2 are the ROI, the area measure of the ROI and

thereference point of the ROI, respectively.

The distance between two optical flow fields u(x) and v(x) in the region Λ

is defined as

D(u,v)

=

(∫

Λ

(

min
φ

min
c(θ,θ′)

∫ 2π

0

∫ 2π

0

|hx(θ − φ;u)− hx(θ
′;v)|2cx(θ, θ

′)dθdθ′
)

dx

)

1
2

,

(2)

where
∫ 2π

0

cx(θ, θ
′)dθ ≤ hx(θ

′;u),

∫ 2π

0

cx(θ, θ
′)dθ′ ≤ hx(θ;v), (3)

for cx(θ, θ
′) ≥ 0, using the transportation [9] of the directional histograms [22]

of the fields.

For the discrete optical flow field umn = (umn, vmn)
⊤ at the point (m,n)⊤

on discrete plane Z
2, let {fmn(p)}

N−1
p=0 be the cyclic directional histogram for

the directions ωN = (cos 2π p
N
sin 2π p

N
)⊤. For the discrete cyclic histograms

Fmn = {fmn(i)}
N−1
i=0 and Gmn = {gmn(i)}

N−1
i=0 , such that fmn(i +N) = fmn(i)

and gmn(i+N) = gmn(i), we define the transportation between the histograms
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as

dmn(Fmn, Gmn) =



min
k

min
cmn
ij

N−1
∑

i=0

N−1
∑

j=0

|fmn(i)− gmn(j − k)|2c(k)mn
ij





1
2

, (4)

N−1
∑

i=0

cij(k)
mn ≤ gmn(j − k),

N−1
∑

j=0

cij(k)
mn ≤ fmn(i), cmn

ij ≥ 0. (5)

Setting Amn
ij (k) = |fmn(i)− gmn(j − k)|2, the minimisation of Jmn(k)

Jmn(k) = min
c(k)mn

ij

N−1
∑

i=0

N−1
∑

j=0

Amn
ij (k)c(k)mn

ij , (6)

with the constraints of eq. (5) is solved by linear programming for each k =
0, 1, · · · , N − 1. Then, we define the metric between discrete vector fields umn

and vmn in the ROI Λ on the two-dimensional discrete plane Z
2 as

d(u,v) =

√

∑

(m,n)⊤∈Λ

dmn(Fmn, Gmn)2, dmn(Fmn, Gmn) = min
k

√

Jmn(k). (7)

Figure 1 shows the process of transportation of a pair of circular histograms
f and g. (a) and (b) show two probabilistic distribution on a circle. and their
samples on the circle. The top row in (c) shows the residual values after the
maximum flows moved from each bin of P to bins of Q. The bottom row in
(c) shows the flows that moved from P to Q as the maximum flow between
histograms.

3 Symbolisation of Global Motion

The temporal trajectory of the distance between a successive pair of optical flow
fields u(x, t+ 1) and u(x, t) of the spatiotemporal image f(x, t) is

H(t; f) = d(u(x, t+ 1),u(x, t)). (8)

Setting Ht(t; f) and Htt(t; f) to be the first and second derivatives, respec-
tively, of the histogram H(t : f), we define the interval Ii = [ti, ti+1] along the
time axis t using a pair of successive points for extremals Htt(t; f) = 0. Using
the l1 linear approximation of H(t; f) such that

H̄(t; f) = ait+ bi, (9)

which minimises the criterion

J(ai, bi) =

n
∑

i=1

n(i)
∑

j=1

|H(ti(j); f)− (aiti(j) + bi)|, (10)
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Fig. 1. Examples of the computation of the transportation distances. (a) and (b) show
two probabilistic distributions on a circles and their samples on the circles. The top
row in (c) shows the residual values after the maximum flows move from each bin of
P to the bins of Q. The bottom row in (c) shows the flows that move from P to Q as
the maximum flow between samples. (d) The state at the end of the computation. All
sampled values of P are moved to bins of Q.

where ti(j) ∈ Ii, we allocate signs for spatial motion.
From the sign of ai, we define the symbols of motion of f(x, t) in the interval

Ii = [ti, ti+1] as {ր,→,ց}, where

S(H(t; f)) =







ր if ai > 0 if t ∈ Ii,

→ if ai = 0 if t ∈ Ii,

ց if ai < 0 if t ∈ Ii,

S(logH(t; f)) =







ր if ai > 0 if t ∈ Ii,

→ if ai = 0 if t ∈ Ii,

ց if ai < 0 if t ∈ Ii.

(11)

4 Numerical Examples

Table 1. Statuses of three sequences from KITTI sceneflowDataset2015[44].

No. motion of car front car inter-vehicle dist. oncoming car additional conditions

1 accelerating with increasing without

2 turning right with outside of screen with
in the first frame

3 stopping with without approaching
after braking to road crossing

For numerical experiments, three image sequences from left images of KITTI-
Scene Flow Dataset2015 [44] are selected.



5

(a) 1: image (b) 2: image (c) 3: image
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(f) 3: logH(t; f)
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(h) 2: H(t; f)
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(i) 3: H(t; f)

Fig. 2. Examples of the Wasserstein distances

For event extraction using eq. (11), we employ S(H(t; f)) and S(logH(t; f)),
since S(logH(t; f)) allows us to detect symbols from small perturbations of
H(t; f).

Table 1 lists statuses of the images. Figure 2 shows the temporal trajecto-
ries of the transportation of the vector fields. Table 2 shows the event strings
extracted by linear approximation by using eq. (10) and symbolisation by using
eq. (11). These experiments show that the algorithm extracts symbol strings,
which describe the states in front of driving cars in various environments.

5 Dictionary Generation

Tables 4 and 3 show status and speed of objects in synthetic video sequences.
Figure 3 shows top views of geometric configurations of objects in synthetic video
sequences. Table 5 shows combinations of events as symbol strings captured by
vehicle mounted camera in a synthetic world. In Figs 4, 5 and 6, (a) and (b)
show a frame view of the image sequence and its ptical flow field, respectively.
In Fig. Figs 4, 5 and 6, (c), logH(t; f) and H̄(t; f) are the blue curve and red
polygonal curve, respectively.
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Table 2. Extracted events

No. status car in front oncoming car
WD graph

S(logH(t; f)) S(H(t; f))

1 acceleration exists no →ցցցցր ցրցցցր

2 turn right out of the view exists →ցցցցր րրցցցց

3 deceleration and stop exists no րցրցրր րցրցրր

Tables 6 and 7 show the strings S(logH(t; f)) and S(H(t; f)) detected by
the algorithm using logH(t; f) and H(t; f), respectively. Since both logH(t; f)
and H(t; f) are approximated by polygonal curves for the extraction of symbol
strings, events are described by using ∨, ∧ and M based on the semi-local shapes
of the curves.

Table 3. Speed of objects in synthetic image sequences.

object ac-/de-celeration the first frame the last frame
spd. [km/h] spd.[km/h]

ego-vehicle no 30 30

oncoming vehicle no 40 40

ego-vehicle acceleration 5 30

ego-vehicle deceleration 30 5

vehicle no 30 30

vehicle in front no 45 45

vehicle in front no 15 15

Table 4. Geometry in synthetic image sequences.

objects position[m] width[m] length[m]

camera 1.5 base line width 0.3

white line 0.05 0.4

lane 2.8

pavement 1.0∼1.5

oncoming vehicle 2.0× 4.5× 1.75

Five pairs 1 and 2, 5 and 7, 6 and 8, 13 and 14, and 15 and 16 provide
same environments with and without oncoming vehicles. These examples show
that pairs 1 and 2, 5 and 7, 6 and 8, 13 and 14, possess same properties for
symbol string. Pairs 1 and 2, and 13 and 14 imply that the temporal transporta-
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Table 5. Events in synthetic data

motion car oncoming event event
No. in front car label

1

straight

no

no straight const. spd
2 exist straight const. spd+obstacle
3 no accelerate → straight accelerate
4 no straight → deceleration deceleration
5

turn

no straight → right curve turn
6 no straight → left curve turn
7 exist straight → right curve turn +obstacle
8 exist straight → left curve turn +obstacle

9

straight
exist

no inter-vehicle dist. car in front
10 no inter-vehicle dist. increase car in front
11 no inter-vehicle dist. decrease car in front
12 no passing in passing lane car in front
13 no passing in the opposite lane car in front
14 exist passing in the opposite lane with obstacle
15

no
no straight const. spd

16 exist straight with obstacle

Table 6. Symbol strings extracted from
logH(t; f)

No. signal shape symbols

1 M րցրրցց

2 M րցրցց

3 ∨∧ →→→ցրց

4 ∧ րրցց→→

5 ∧∨ րրցրցց

6 ∧∨ րրցրցց

7 ∧∨ րրցրցց

8 ∧∨ րրցրցց

9 (∨∧)n ցրրցցր

10 (∨∧)n ցրրցցր

11 (∨∧)n ցրցրցրց

12 polygonal curve →→→→→ց

13 M2 րցրրրրց

14 M2 րցրրրրց

15 (∧∨)n րցրցր

16 ∨ 2 →→ցրր→

Table 7. Symbol strings extracted from
H(t; f)

No. signal shape symbols

1 flat →→→→→→

2 flat →→→→→→

3 ∨∧ →→→ցրց

4 ∧ րրցց→→

5 ∧∨ րրցրցց

6 ∧∨ րրցրցց

7 ∧∨ րրցրցց

8 ∧∨ րրցրցց

9 flat →→→→→→

10 flat →→→→→→

11 flat →→→→→→

12 polygonal curve →→→→→ց

13 M2 րցրրրրց

14 M2 րցրրրրց

15 flat →→→→→→

16 flat →→→→→→
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(a) Straight lane (b) Curve lane

Fig. 3. Top views of geometric configurations of objects in synthetic video sequences
simulating city environments. The blue car is the ego-vehicle for experiments. The
green car is the object-vehicle for experiments. The lane width is 2.8m. The pavement
width is 1m∼1.5m.

tion of optical flow vector fields achieves recognition of oncoming vehicles. The
algorithm detects acceleration and deceleration of the ego-vehicle.

The results observed in a pair 7 and 8 show that for the detection of the
directions of turning additional information is required, since the optical flow
fields for left and right turning possess the same statistical properties.

The difference of the results observed in a pair 15 and 16 depends on the
background properties caused by trees, since the correspondences between a pair
of natural scene contains ambiguities. Moreover, for the detection of oncoming
vehicle, the pointwise optical flow vectors are required.

The algorithm does not distinguish left and right turns, since the time tra-
jectory of the distance between to field possess the shape profiles. However, it
is possible to detect the stating frame of the turns, since the symbol ∧ is de-
tected on the frame. For detection of the straight motion from real sequences,
symbol strings both S(H(t; f)) and S(logH(t; f)) are necessary, since in real
sequences of the straight motion temporal local-perturbation of the optical flow
vectors are detected. This local-perturbation derives perturbations on H(t; f)
and logH(t; f).

6 Discussions

For the function f(x, t) defined in R
n, the total derivative with respect to the

variable t is
df

dt
= ∇f⊤ dx

dt
+ ft. (12)

Mathematically, optical flow is the solution of the linear equation df
dt

= 0. This
inconsistent linear equation is solved by regularisation [3, 23] and using local
geometric constraints [1, 33].
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Fig. 4. Motion of synthetic image No.7. (a) A frame view of the image seqence. (b)
Optical flow field. (c) logH(t; f) and log H̄(t; f) are drawn in the blue curve and red
polygonal curve, respectively.
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Fig. 5. Motion of synthetic image No.8. (a) A frame view of the image seqence. (b)
Optical flow field. (c) logH(t; f) and log H̄(t; f) are drawn in the blue curve and red
polygonal curve, respectively.
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Fig. 6. Motion of synthetic image No.16. (a) A frame view of the image seqence. (b)
Optical flow field. (c) logH(t; f) and log H̄(t; f) are drawn in the blue curve and red
polygonal curve, respectively.
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In the medical volumetric-image analysis, for instance, the motion analysis
of the moving organs, we are required to deal with volumetric images defined in
three-dimensional Euclidean spaceR3. In computer vision, optical flow is usually
computed from planar images.

For motion analysis with range data, setting f(x, y, t) to be a grey-label
image, we deal with the following system of equations

df

dt
= fx

dx

dt
+ fy

dy

dt
+ ft = 0,

dg

dt
= hx

dx

dt
+ hy

dy

dt
−

dz

dt
+ ht = 0, (13)

where g(x, y) = h(x, y, t) − z for depth z of the temporal range image h(x, y, t)
[24].

For colour and multi-channel images, the system of equations

dfα

dt
= fα

x

dx

dt
+ fα

y

dy

dt
+ fα

t = 0, α = 1, 2, · · · , k (14)

is derived from the k-channel images [25, 26].
For the left image f(xl, yl, t) and the right image g(xr, yr, t) of temporal

stereo-pair images, the system of equations

df

dt
= fxul + fyvl + ft = 0 (15)

dg

dt
= gxur + gyvr + gt = 0 (16)

derive the optical flow vectors ul = (ul, vl)
⊤ and ur = (ur, vr)

⊤ on the left and
right images, respectively. After establishing correspondences between xl and xr

and between xl +ul and xr +ur, the stereo reconstruction algorithm computes
scene flow Ẋ in the space using disparities between temporal stereo-pair images.
Estimation of correspondences is established by solving system of equations

f(x+ d, y, t) = g(x, y, t), f(x+ul + d′1, y+ vl + d′2, t) = g(x+ur, y+ vr, t) (17)

for the displacement d = (d, 0)⊤ and d′ = (d′1, d
′
2)

⊤.
For images on a manifold M, the optical flow vector filed is the solution of

the equation
df

dt
= ∇Mf⊤ dν

dt
+ ft = 0 (18)

where ∇M is the gradient operation on the manifold. For example, if M is the
unit sphere S2 in three-dimensional Euclidean space R

3, the gradient operation
is

∇Mf =

(

∂

∂θ
f,

1

cos θ

∂

∂φ
f

)⊤

. (19)

Equation (18) allows us to compute the optical flow vectors on a spherical retina,
which is the mathematical model of compound eyes.
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In this paper, we have shown a method to extract intermediate queues for
motion perception from optical flow on flow fields on the plane [34, 36, 35, 41].
It is possible to apply the event extraction method based on the transportation
of optical flow fields for scene flow [40] and the optical flow field on non-planar
retina [38]. In ref. [38], we have shown a method to extract intermediate queue
for motion perception from optical flow fields on a sphere.

Moreover, we have developed a method to decompose the optical flow fields
[27, 28] on the surface of the moving organs [42] employing three-dimensional
optical flow computation.

The optical flow fields between a pair of successive images in a sequence pro-
vide queues for image alignment. Aligning images along the time axis achieves
the tracking of images in a video sequence [2]. Therefore, tracking is a sequen-
tial alignment. Multiple alignment in a space by deformation fields derives the
deformation-based average of images.

For a collection of images {fi(x)}
m
i=1, setting ui(x) to be the deformation

fields, the minimiser f of the energy functional

J =

m
∑

i=1

∫

Rn

(f(x+ ui(x))− fi(x))
2dx (20)

with appropriate constraints derives the deformation-based average of the col-
lection of mages {fi(x)}

m
i=1 [43, 29]. The deformation-based average was applied

for motion analysis of a volumetric beating-heart sequence.
The directional gradient of an image f(x) at the point x = (x, y)⊤ in the

direction of ω = (cos θ, sin θ)⊤ is computed as ω⊤∇f . The directional gradient
evaluates the steepness, smoothness and flatness of f(x) along the direction of
vector ω. Setting F to be a injective mapping for gradient, the gradient-based
feature constructed by F satisfies the relations F (∇f) = 0 and F (∇f) = F (∇g)
if f = 0 and f = g + a for constant a, respectively.

The census transform is computed by

s(x) =
1

2π

∫ 2π

0

u(ω⊤∇f)dθ (21)

where u is the Heaviside function. The directional histogram (DH) is computed
by

hx(θ) =
Gf (θ,x)

∫ 2π

0
Gf (θ,x)dθ

, Gf (θ,x) =

∫

Ω(x)

ω⊤∇f(y)dy, (22)

such that hx(θ + 2π) = hx(θ), where x ∈ R
2 is the centre of the region Ω(x).

The vector x is used as the index of the DH. We call hx(θ) the HoG signature
of f .

The census transform encodes local geometric property of the gradient vec-
tor fields as scalar function. The HoG signature encodes semi-global geometric
properties of the gradient vector field as a scalar function. These encoded fea-
tures are used for matching of images and motion detection [30]. Our transform
in eq.(1) encodes the global geometric properties of motions on the retina as a
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scalar function using optical flow vector fields. Then, using this encoded motion
vector field, we define a metric between a pair of motion fields for the extraction
of events on video streams.

Since v = −ft
|∇f |2∇f is a solution of df

dt
= 0, the optical flow vector is expressed

as u = −ft
|∇f |2∇f + α∇f⊥ for an appropriate scalar α, where ∇f⊤(∇f⊥) = 0. If

the motion perpendicular to the gradient of the edges of the segments is small,
that is, α is small, u ∼ µ∇f for an appropriate real number µ. This relation
between the optical flow filed and the gradient field implies that events in the
image stream detected by the features encoded by eq. (1) are those caused by
the temporal fluctuations of the gradient of the foreground.

In ref. [32] the on-line algorithm for detection of a polygonal curve from a time
signal of a string of conversation dialogs. was proposed based on the randomized
Hough transform. This algorithm is pre-processing for the construction of the
syntactic trees of conversation dialogs. The event detection from video sequence
is an extension of syntactic analysis of dialog signals to image sequences.

In pedestrian detection, annotated data for designing classifier is generated
using artificially generated virtual world [31]. It is possible to extend the idea
for event detection from image observed by vehicle mounted camera system. We
generated symbol sequences from events in virtual world. Events detected from
generated symbol strings coincide with the events detected from real world test
data sequences.

7 Conclusions

We proposed a method for the symbolisation of the temporal transition of envi-
ronments using statistical analysis of the flow field. The algorithm allows us to
interpret a sequence of images as a string of events.

A machine can control a car to avoid incidents by detecting abnormalities
using event strings stored in a dictionary. The symbolisation of temporal optical
fields is suitable for the generation of entries in such a dictionary.

We have introduced a framework for syntactical interpretation of dynamic
scenes using the temporal transportation of the optical flow fields. The future
work for us is to derive semantics of the motion fields from strings of symbols.
Multiscale image analysis of the dynamic scenes provides hierarchies of the mo-
tions [32] in the scenes from temporal local deformation to global fluctuations.
Therefore, these hierarchies of motions would define the syntactic structure and
semantic meaning of dynamic scene. The optical flow fields are the important
queries for linguistic analysis of the dynamic scene.
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