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Abstract. Segmenting filamentous structures in confocal microscopy
images is important for analyzing and quantifying related biological pro-
cesses. However, thin structures, especially in noisy imagery, are diffi-
cult to accurately segment. In this paper, we introduce a novel deep
network architecture for filament segmentation in confocal microscopy
images that improves upon the state-of-the-art U-net and SOAX meth-
ods. We also propose a strategy for data annotation, and create datasets
for microtubule and actin filaments. Our experiments show that our pro-
posed network outperforms state-of-the-art approaches and that our seg-
mentation results are not only better in terms of accuracy, but also more
suitable for biological analysis and understanding by reducing the num-
ber of falsely disconnected filaments in segmentation.

Keywords: Image segmentation - Filaments segmentation - Neural Net-
works - Microscopy images.

1 Introduction

Filamentous structures are ubiquitous among biological systems and can be im-
aged by confocal fluorescence microscopy. Segmentation of these filamentous
structures is important for understanding the mechanism of their formations
and behavior.

There have been several attempts at segmenting filament structures based
on traditional image processing techniques [2,9,6,1,15,14,12]. Most of these
traditional image processing approaches are based on photometric and geomet-
ric properties of filamentous structures. Because our aim is to study dynamic
movements with high magnification microscopy, the images collected which con-
tain higher levels of noise cause many traditional approaches to fail. Another
common feature of these traditional methods is that appropriate parameter val-
ues need to be set accordingly to achieve a decent segmentation for different
images [15,13]. Hence, these methods work well only for a small data set, as it
is cumbersome to adjust parameters for every individual image.

More recent approaches for general segmentation tasks are based on neural
networks and have shown impressive performance for these types of tasks. Deep
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learning approaches have been applied to segment structures similar to filamen-
tous structures [11,5, 4]. Deep learning has been proven to work better than con-
ventional image segmentation methods in the tasks mentioned above, but there
is a limited number of works that segment filamentous structures in microscopy
images. Though filamentous structures are similar to vesicular networks, retinal
vessels, and cracks due to their piece-wise linear elements, the photometric and
geometric properties of these structures vary significantly. Moreover, segmenta-
tion of filamentous structures in confocal microscopy images is complicated by
optical blurring, noise, clutter, over exposure, and complex geometric properties
such as overpass, convergence, and dense networks.

In this paper, we propose a new method utilizing a deep learning approach
for automated segmentation of filamentous structures in microscopy images. Our
work is built on U-net architecture [10], and we improve its performance for fila-
ment segmentation. Also, since there is no public data set for filament networks
in microscopy images and it is time-consuming to annotate a large-scale data
set for filamentous structures, we propose a semi-automatic annotation process
based on a traditional segmentation method and a deep learning approach. By
using this strategy, we create two data sets of microtubules and actin filaments.

The rest of this paper is organized as follows. Section 2 gives overview of
work related to this paper. Section 3 details the process of data annotation, the
architecture of network we proposed and training details. Section 4 describes our
experiments, results and evaluations. Conclusions and future work will be given
in section 5.

2 Related Work

Filament segmentation.There have been many works segmenting filamen-
tous structures by using traditional methods like morphological approach [2],
region-based approach [9, 6, 1] and curve fitting approaches [15, 14, 12]. To make
segmentation more robust to noise, Guiyang et al. [16] applied morphological op-
eration and diffusion filtering algorithm to make the segmentation more robust
to excessive white noise. Xu et al. [14] proposed a method called regulated se-
quential evolution. Combined with Stretching Open Active Contours (SOACs),
they achieved more robust segmentation results. Based on SOACs method, Xu
et al. [15] developed a convenient software tool called SOAX to segment fila-
mentous structures. SOAX provides an easy-to-use user interface and is popular
among researchers to do quantification analysis of biopolymer networks. How-
ever, SOACs method is a time-consuming method due to iterations. Moreover,
to increase accuracy, it is necessary to adjust parameters depending on the type
of filament and quality of the image [15]. As parameters for different images are
mainly chosen empirically, it is hard for researcher to perform large-scale quan-
titative analysis. With appropriate parameters, many false predictions can be
caused by other cell structures, over exposure, artifacts of images and so on. To
improve the efficiency and accuracy, we want to apply deep learning approaches
to filament segmentation. Though SOAX is not efficient in dealing with huge
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volumes of data and lacking accuracy in segmentation, it can assist our data
annotation process and we will present the details in section 3.

Vessel-like structure segmentation. Applying deep learning approaches
to filamentous structure segmentation is rare, but there have been works using
deep learning methods to segment vessel-like structures. Saponaro et al. [11]
adapted U-net architecture to segment vesicular networks of fungal hyphae in
macroscopic microscopy images. Fu et al. [5] utilized fully convolutional neural
networks and fully-connected Conditional Random Field (CRFs) for retinal ves-
sel segmentation in fundus image. Fan et al. [4] proposed a method for pavement
cracks detection based on a convolutional neural network. Since the U-net [10]
works well on vessel-like structure segmentation in microscopy images [11], we
adapted and improved U-net architecture to segment filamentous structures on
our data sets.

Fig.1. An example of data annotation process. (a) Original image of mircrotubules.
(b) SOAX Segmentation result (c) Segmentation result of U-net which is trained with
SOAX segmentation result (d) Manually labeled ground truth based on U-net result

Neural network architecture. Ronneberger et al. [10] proposed U-net
architecture which has achieved remarkable success in segmenting objects in
biomedical microscopy images. This architecture is based on the idea of Fully-
Convolutional Networks, and it contains contracting path to capture features
and an expansion path to retrieve localization information. This architecture
also applies overlap-tile strategy and allows the network training on relatively few
training samples. Costa et al. [3] has applied this network to vessel segmentation
in eye fundus images and it achieved a 0.9755 area under curve (AUC). This
inspired us to apply this network on filamentous structures.

However, sometimes U-net creates small gaps where the hyphal networks
are supposed to be continuous [11]. This can be caused by artifacts of the
image or the U-net architecture itself. Newell et al. [8] introduce stacked hour-
glass networks for human pose estimation. This work has shown that repeatedly
performing pooling and up-sampling with intermediate supervision can improve
the performance of the network. To increase efficiency in a deep neural net-
work, G. Huang et al. [7] introduces Dense Convolutional Network (DenseNet).
In DenseNet, all layers with the same feature-map sizes are connected together
in feed-forward fashion, which can encourage feature reuse, strengthen feature
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propagation and reduce the number of parameters [7]. Inspired by these works,
our neural network architecture can take advantage from these networks to make
our method more robust and avoid creating small gaps in filaments segmentation.

3 Method

Our goal is to create an efficient tool for filament segmentation in microscopy
images. We utilize a semi-automatic scheme to annotate ground truth, and train
our network on the data set.

3.1 Data Annotation

We propose a semi-automatic strategy to annotate filamentous structures in
microscopy image to reduce the work of annotation. The main idea of this strat-
egy is that we use SOAX [15] to segment images to obtain a weakly annotated
mask. Then we use the single U-net module [10] (see Figure 2), to train on these
initially annotated training samples. We use this trained network to obtain seg-
mentations for a larger amount of images. Based on the predicted segmentation
masks, we ask domain experts to modify and correct these masks to finalize the
ground truth. An example is shown in Figure 1. We use the single U-net module
instead of using our proposed network architecture (Section 3.2) to avoid the
network overfitting on the weakly annotated masks.

There are two reasons why we don’t manually adjust the segmentation re-
sults of SOAX directly. First, the average time to run SOAX on a whole image
at an approximate resolution of 2k by 2k pixels takes approximately 6 hours on
high-end workstations. More false positive segmentations will be created due to
noisy areas in the microscopy images, which will increase the work of manual
modification. Therefore, we crop one image to several sub-images and then run
them through SOAX, as shown in Figure 1 (b) and (e). Since U-net takes patches
as input, we only create training patches where there are SOAX segmentations
and use 128 by 128 patches for training. After training, we use U-net to obtain
the initial segmentation results of the entire image. From our experiments, the
predicted initial segmentation results from single U-net module are more accu-
rate than results of SOAX. Many false positive segmentations made by SOAX
are removed, as shown in Figure 1 (b), (¢), (f), and (g). The IoU of results from
SOAX and the single U-net module are 0.6189 and 0.7919 respectively when
compared to the manually labeled images.

In total, we took 24 microscopy images with size of 122.03 x 132.84 pm (1400
x 1524 pixels) and 17 slices in Z direction and obtained maximum intensity
projection(MIP) on Z direction of these images. We cropped these 24 MIP images
into 40 sub-images. By applying data augmentation strategy as in the work of
Ronneberger et al. [10], we performed rigid transformation and ~y correction on
each valid patch and created 709800 training patches in total. We used these
patches to train U-net and ran the trained network on 53 microscopy images
including previous 24 images. In the end, domain experts manually checked and
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modified 53 full-resolution segmentation results, and each image took 10 to 25
minutes. We use 25 full-resolution images as the training set and 28 images as
test set in all our experiments. We also create a data set for actin filaments with
10 microscopy images.

3.2 Network Description
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Fig. 2. An illustration of our proposed network.

In this paper, we build our network architecture based on U-net architecture
[10], and we also adapted features of Stacked Hourglass Network [8]. Similar
to U-net, we build up a module with contracting and expansion paths. Then
we stack multiple modules end-to-end in a feed-forward fashion, which is similar
to how Newell et al. [8] stack their hourglass network . The output of each
module will be the input of next module. This allows the network repeatedly
reevaluate previous prediction and features across all scales. The output of each
U-net module will also go through a shared 1x1 convolutional layer to obtain
a segmentation map. The loss function will take each intermediate output into
consideration by assigning different weights to the loss values of the segmentation
maps. This intermediate weighted supervision process can help each module
optimize individually while attempting to improve upon the previous module’s
segmentation. To help the network maintain the residual information that exists
at intermediary stages, we add cross-connections between layers with the same
feature-map sizes.

The network architecture is shown in Figure 2. It contains three modules,
each module includes two max pooling steps and two up-sampling steps. At each
step, it contains two 3x3 convolutional layers followed by a rectified linear unit
and one drop out layer with rate 0.2 inserted between the two convolutional layers
to facilitate network generalization. For the contracting paths, each step will be
followed by a 2x2 max pooling operation, and the number of feature channels will
be doubled. For expansion paths, 2x2 up-sampling operation will be applied after
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each step halving the number of feature channels, and a concatenation operation
on feature-map with matching size from all previous contracting paths. To obtain
a segmentation map for each module, their output is connected to a shared 1x1
convolutional layer.

3.3 Training and Testing

For the annotation process, we used a single module of our proposed network,
and we train this model for 20 epochs with a batch size of 64. On the microtubule
data set we created, we train our proposed network for 15 epochs with a batch
size of 64. The size of input patches is 128 X 128, and the number of training
patches is 5032407. For each module, the numbers of feature channels are 32,
64, 128 for corresponding stages. All networks are trained using Adam optimizer
with a learning rate of 0.0001 and a dice coefficient loss. Dropout rates of all
dropout layers are set to 0.2. Due to GPU memory constrains, we implemented
a generator to generate data batch-by-batch and fit our model. For our proposed
network, there are multiple outputs. We compile the model and assign a weight of
0.2, 0.3 and 0.5 for the loss of first, second, and third module output separately.
All experiments are conducted on a laboratory server with two NVIDIA GeForce
Titan X (Pascal) GPUs.

4 Experiments

4.1 Evaluation

For evaluation, the Intersection over Union (IoU) method is applied, which is a
commonly used metric. IoU metric can be very sensitive to pixel wise segmen-
tation. Considering that our test data is manually annotated based on results
of U-net and IoU metric can be biased, we propose an auxiliary metric called
Skeletonized IoU (SKIoU) modified from IoU and defined as following:

2 x Skeletonized Intersection of Prediction and Ground Truth
Skeletonized Prediction + Skeletonized Ground Truth ’

1)

This metric will ignore small misalignments and thickness of microtubules,
as curvatures and length is much more important for domain experts. SKIoU
will be much less sensitive and can be a fair metric for different methods.

We used both metrics along with opinions from domain experts to compare
segmentation results of different approaches.

SKIoU =

4.2 Segmentation Results on Microtubules

We have run 6 experiments on microtubules and results are shown in Table 1,
and examples of segmentations results are shown in Figure 3.
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Table 1. Segmentation results on microtubles with different approaches.

Model Epochs Loss Weights IloU SKIoU
SOAX 15 - 0.6189 0.8833
U-net 15 - 0.9335 0.9746
U-net 30 - 0.9336 0.9747
Our network without cross-connection 5 0.20;0.30;0.50 0.9084 0.9650
Our network with cross-connection 5 0.20;0.30;0.50 0.9256 0.9723

Our network without cross-connection 15 0.20;0.30;0.50 0.9432 0.9792
Our network with cross-connection 15 0.20;0.30;0.50 0.9439 0.9775
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Fig. 3. Segmentation of microtubules. From left to right: original image, ground truth,
SOAX, U-net module, proposed network with cross connection

All neural networks perform better than SOAX software with regards to
IoU and SKIoU. Our proposed network achieves highest score in IoU, and the
network without cross connections achieves highest score in SKIoU. In general,
the SKIoUs of all networks are very close to each other and our proposed network
is slightly higher than single U-net Module with respect to IoU metric.

As shown in Figure 3, networks with multiple modules stacked together out-
performs single U-net module. Segmented results of our proposed network con-
tain less disconnected microtubules and fragments than U-net, which is crucial
for future quantification analysis. For example, These fragments will be consid-
ered as single microtubules in the future analysis and influence the final quan-
tification result.

We also train single U-net for 30 epochs. The result is almost the same with
results of 15 training epochs, which indicates that U-net can be hardly improved
by training more epochs. Cross connections can improve the efficiency of our
network. Table 1 showed that after 5 epochs, network with cross connections
learns better than the one without cross connections.

4.3 Segmentation Results on Actin Filament

The structure of actin filaments is more complicated and denser than that of mi-
crotubules. Instead of training our network with actin filaments data, we applied
the network trained with microbules data on actin filaments dataset. From Table
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2, though our network achieves the highest IoU and SKIoU score, difference of
SKIoU is rather small. However, it can be seen in Figure 4 that U-net creates
more fragments and gaps.

Table 2. Segmentation results on actin filaments with different approaches.

Model Loss Weights [IoU SKIoU
SOAX - 0.6247 |0.8946
U-net - 0.8846 |0.9469
Our network with cross-connection|0.20;0.30;0.50/0.9140|0.9580
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Fig. 4. Actin segmentation. From left to right: original image, ground truth, SOAX,
U-net, proposed network with cross connection

5 Conclusion And Perspectives

In this paper, we propose a new densely connected, stacked U-network archi-
tecture and also introduce a semi-automatic strategy to annotate filamentous
structures. From our experiments, we show that the proposed deep network ar-
chitecture not only achieves better accuracy but also produces segmentations
that are more useful for biological analysis by reducing the number of falsely
disconnected filaments and noise in segmentation than other state-of-the-art
methods.

In the future, we will implement an application to quantify length, curvature
and other information of filaments. Also, we will track the movement of fila-
mentous structures over time, and by fusing the results of filaments and other
structures like stromules, domain experts can better understand the formation
and behavior of these structures.
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