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Abstract. We propose a new neural network module, Deformable Cost
Volume, for learning large displacement optical flow. The module does
not distort the original images or their feature maps and therefore avoids
the artifacts associated with warping. Based on this module, a new neural
network model is proposed. The full version of this paper can be found
online”.

1 Introduction

Warping has been used in variational methods [1, 6] and neural network models
[4,7,8] for iteratively refining optical flow estimations in a multi-stage frame-
work. The first stage covers large displacements and outputs a rough estimation.
Then the second image (or its feature maps) is warped by the roughly estimated
optical flow such that pixels of large displacements in the second image are
moved closer to their correspondences in the first image. As a result, the next
stage, which receives the original first image and the warped second image as
inputs, only needs to handle smaller displacements and refines the estimation.

Let I : R? — R? denote the first image, J : R? — R? denote the second
image and F : R? — R? denote the optical flow field of the first image. The
warped second image is defined as

J(p)=J(p+ F(p)) (1)

for image location p € R? [4].

The warping operation creates a transformed image reasonably well if the
new pixel locations p + F(p) do not occlude or collide with each other. For
example, affine transform F(p) = Ap+t where A and t are the transformation
parameters. However, for real-world images, occlusions are common (e.g. when
an object moves and the background is still). If an image is warped with the
optical flow which induces occlusions, duplicates will be created.

" https://arxiv.org/abs/1802.07351
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(a) First image (b) Second image (c) Ground truth opti-(d) Warped second
cal flow image

Fig. 1: Artifacts of using image warping. From (d), we can see the duplicates of
the dragon head and wings. The images and the ground truth optical flow are
from the Sintel dataset [2]. Warping is done with function image.warp() in the
Torch-image toolbox.

The effect is demonstrated in Figure 1. The artifacts cannot be cleaned simply
by subtracting the first or the second image from the warped image, as shown
in Figure 1 (e) and (f). Intuitively, imagine a pixel which is moved by warping
to a new location. If no other pixel are moved to fill in its old location, the pixel
will appear twice in the warped image. Mathematically, consider the following
example. Assume the value of J(p1) is unique in J, that is, J(p) # J(p1) for all
p # p1- Then for an optical flow field in which

F(p1) =0, F(p2)=p1— P2, (2)
we have
j(Pl) = J(p1+ F(p1)) (3)
= J(p1+0) = J(p1), (4)
j(P2) = J(p2 + F(p2)) (5)
= J(p2 +pP1 — p2) = J(P1)- (6)

Therefore J(p;) = j(pg) = J(p1)- Since the value of J(p1) is unique in image
J but not unique in J, a duplicate is created on the warped second image J.

2 Deformable Cost Volume

Let I denote the first image, J denote the second image and f; : R? — R and
f7 : R? = R? denote their feature maps of dimensionality d, respectively. The
standard cost volume is defined as

C(p,v) = f1(p) = fs(P+ V)|, (7)

for image location p € R?, neighbor v € [—%, %]2 of neighborhood size k
and a given vector norm || - ||.
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(a) Standard cost volume. For each
location on the feature maps of the
first image, the matching costs of a
neighborhood of the same location
on the feature maps of the second
image are computed.
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(b) Deformable cost volume. For
each location on the feature maps of
the first image, the matching costs
of a dilated neighborhood of the
same location, offset by a flow
vector, on the feature maps of the

second image are computed.

Fig.2: Cost Volumes

The cost volume gives an explicit representation of displacements. To reduce
the computational burden of constructing fully connected cost volumes, one
can embed the cost volume in a multi-scale representation and use warping to
propagate the flow between two stages. However, as discussed in §1, warping
induces artifacts and distortion. To avoid the drawbacks of warping, we propose
a new neural network module, the deformable cost volume. The key idea is:
instead of deforming images or their feature maps, as done with warping, we
deform the cost volume and leave the images and the feature maps unchanged.

The proposed deformable cost volume is defined as

Cp,v,r, F) = |fi(p) = fs(p+7-v+F(p))l (8)

where r is the dilation factor and F'(-) is an external flow field. The dilation
factor r is introduced to enlarge the size of the neighborhood to handle large
displacements without increasing computation significantly. This is inspired by
the dilated convolution [3,9] which enlarges its receptive field in a similar way.
F(-) can be obtained from the optical flow estimated from a previous stage or
an external algorithm. If F'(p) = 0 for all p and r = 1, then the deformable cost
volume is reduced to the standard cost volume. For non-integer F'(p), bilinear
interpolation is used. The deformable cost volume is illustrated in Figure 2.

Since the deformable cost volume does not distort f; or f;, the artifacts
associated with warping will not be created. Optical flow can be inferred from
the deformable cost volume solely without resorting to the feature maps of the
first image to counter the duplicates.

The deformable cost volume is differentiable with respect to f;(p) and f;(p+
r-v + F(p)) for each image location p. Due to bilinear interpolation, the de-
formable cost volume is also differentiable with respect to F(p), using the same
technique as in [4, 5]. Therefore, the deformable cost volume can be inserted in
a neural network for end-to-end learning optical flow.
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Fig.3: Deformable Volume Network (Devon) with three stages. I denotes the
first image, J denotes the second image, f denotes the shared feature extraction
module (a fully convolutional network), R; denotes the relation module (con-
catenation of several deformable cost volumes), g; denotes the decoding module
(a fully convolutional network) and F; denotes the estimated optical flow for
stage t.

3 Deformable Volume Network

Our proposed model is the deformable volume network (Devon), as illustrated
in Figure 3. Compared to previous neural network models, Devon has several
major differences: (1) All feature maps in Devon have the same resolution. (2)
Each stage computes on the undistorted images. No warping is used. (3) The
decoding module only receives inputs from the relation module. (4) All stages
share the feature extraction module.
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