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Abstract. Thermal Infrared (TIR) cameras are gaining popularity in
many computer vision applications due to their ability to operate un-
der low-light conditions. Images produced by TIR cameras are usually
difficult for humans to perceive visually, which limits their usability. Sev-
eral methods in the literature were proposed to address this problem by
transforming TIR images into realistic visible spectrum (VIS) images.
However, existing TIR-VIS datasets suffer from imperfect alignment be-
tween TIR-VIS image pairs which degrades the performance of super-
vised methods. We tackle this problem by learning this transformation
using an unsupervised Generative Adversarial Network (GAN) which
trains on unpaired TIR and VIS images. When trained and evaluated on
KAIST-MS dataset, our proposed methods was shown to produce sig-
nificantly more realistic and sharp VIS images than the existing state-
of-the-art supervised methods. In addition, our proposed method was
shown to generalize very well when evaluated on a new dataset of new
environments.

Keywords: Thermal Imaging - Generative Adversarial Networks - Un-
supervised Learning - Colorization

1 Introduction

Recently, thermal infrared (TIR) cameras have become increasingly popular due
to their long wavelength which allows them to work under low-light conditions.
TIR cameras require no active illumination as they sense emitted heat from
objects and map it to a visual heat map. This opens up for many applications
such as object detection for driving in complete darkness and event detection in
surveillance. In addition, the cost of TIR cameras have gone significantly down
while their resolution have improved significantly, resulting in a boost of interest.
However, one limitation of TIR cameras is their limited visual interpretability
for humans which hinders some applications such as visual-aided driving.

To address this problem, TIR images can be transformed to visible spectrum
(VIS) images which are easily interpreted by humans. Figure 1 shows an example
of a TIR image, the corresponding VIS image and the VIS image generated
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(a) TIR image (b) Target VIS (¢) Generated VIS

Fig.1: An example of a TIR image (a), its corresponding VIS image (b) from
the KAIST-MS dataset [4] and the VIS image (c) generated by our proposed
method using only the TIR image (a) as an input.

directly from the TIR image. This is similar to colorization problems, where
grayscale VIS images are mapped to color VIS images. However, transforming
TIR images to VIS images is inherently challenging as they are not correlated
in the electromagnetic spectrum. For instance, two objects of the same material
and temperature, but with different colors in the VIS image, could correspond
to the same value in the TIR image. Consequently, utilizing all the available
information, i.e. spectrum, shape and context, is very crucial when solving this
task. This also requires the availability of enormous amount of data to learn the
latent relations between the two spectrums.

In colorization problems, only the chrominance needs to be estimated as the
luminance is already available from the input grayscale images. Contrarily, TIR
to VIS transformation requires the estimation of both the luminance and the
chrominance based on the semantics of the input TIR images. Besides, generat-
ing data for learning colorization models is easy as color images could be com-
putationally transformed to grayscale images to create image pairs with perfect
pixel-to-pixel correspondences. In contrast, datasets containing registered TIR/
VIS image pairs are very few and requires a sophisticated acquisition systems
for good pixel-to-pixel correspondence.

The KAIST Multispectral Pedestrian Detection Benchmark (KAIST-MS) [4]
introduced the first large-scale dataset with TIR-VIS image pairs. However, it
was shown by [1] that the TIR-VIS image pairs in KAIST-MS does not have
a perfect pixel-to-pixel correspondence, with a pixel error of up to 16 pixels
(5%) in the horizontal direction. This would degrade the performance of super-
vised learning methods which tries to learn the pixel-to-pixel correspondences
between image pairs and leads to corrupted output. To our knowledge there exist
no large-scale public dataset of TIR-VIS image pairs with perfect pixel to pixel
correspondence. Therefore, the method used for TIR to VIS image transforma-
tion need to control for this imperfection.
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In this paper, we propose an unsupervised method for transforming TIR im-
ages, specifically long-wavelength infrared (LWIR), to visible spectrum (VIS) im-
ages. Our method is trained on unpaired images from the KAIST-MS dataset [4]
which allows it to handle the imperfect registration between the TIR-VIS im-
age pairs. Qualitative analysis shows that our proposed unsupervised method
produces sharp and perceptually realistic VIS images compared to the existing
state-of-the-art supervised methods. In addition, our proposed method achieves
comparable results to state-of-the-art supervised method in terms of L1 error de-
spite being trained on unpaired images. Finally, our proposed method generalizes
very well when evaluated on our new FOI dataset, which demonstrates the gen-
eralization capabilities of our method contrarily to the existing state-of-the-art
methods.

2 Related Work

Colorizing grayscale images has been extensively investigated in the literature.
Scribbles [9] requires the user to manually apply strokes of color to different
regions of a grayscale image and neighboring pixels with the same luminance
should get the same color. Transfer techniques [16] use the color palette from a
reference image and apply it to a grayscale image by matching luminance and
texture. Both scribbles and transfer techniques require manual input from the
user. Recently, colorization methods based on automatic transformation, i.e., the
only input to the method is the grayscale image, have become popular. Promising
results have been demonstrated in the area of automatic transformation using
Convolutional Neural Networks (CNNs) [3,5,8,17] and Generative Adversarial
Networks (GANs) [2,6,13] due to their abilities to model semantic representation
in images.

In the infrared spectrum, less research has been done on transforming thermal
images to VIS images. In [10], a CNN-based method was proposed to transform
near-infrared (NIR) images to VIS images. Their method was shown to perform
well as the NIR and VIS images are highly correlated in the electromagnetic
spectrum. Kniaz et al. [7] proposed VIS to TIR transformation using a CNN
model as a way to generate synthetic TIR images. The KAIST-MS [11] dataset
introduced the first realistic large-scale dataset of TIR-VIS image pairs which
opened up for developing TIR-VIS transformation models. Berg et al. [1] pro-
posed a CNN-based model to transform TIR images to VIS images trained on the
KAIST-MS dataset. However, the imperfect registration of the dataset caused
the output from their method to be blurry and corrupted in some cases.

Generative Adversarial Networks (GANs) have shown promising results in
unsupervised domain transfer [6,12,18,19]. An unsupervised method does not
require a paired dataset, hence, eliminating the need for pixel to pixel corre-
spondence. In [14,15], GANs have demonstrated a very good performance on
transferring NIR images to VIS images. Isola et al. [6] has shown some quali-
tative results from the KAIST-MS dataset as and example for domain transfer.
Inspired by [18], we employ an unsupervised GAN to transform TIR images to
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Fig. 2: The unpaired model is mapping between two different domains, X (TIR)
and Y (VIS), using G : X — Y and F : Y — X. This model produces three
different losses; two adversarial losses based on Dy and Dy, and one cycle
consistency loss.

VIS images which eliminates the deficiencies caused by the imperfect registra-
tion in the KAIST-MS dataset as the training set does not need to be paired.
Different from [1], our proposed method produces a very realistic and sharp
VIS images. In addition, our proposed method is able to generalize very well on
unseen data from different environments.

3 Method

Here we describe our proposed approach for transforming TIR images to VIS
image while handling data miss-alignment in the KAIST-MS dataset.

3.1 Unpaired TIR-VIS Transfer

Inspired by [18], we perform unsupervised domain transfer between TIR and
VIS images. Given TIR domain X with images {z; : z; € X}, and VIS
domain Y with images {y; : y; € Y}jj\i17 we aim to learn two transformations
G and F between the two domains as shown in Figure 2. TIR input images
are transformed from the thermal domain X to the visible spectrum domain Y
using the generator GG, while the generator F' performs in the opposite direction.
An adversarial discriminator Dx aims to discriminate between images x and the
transformed images F'(y), while another discriminator Dy discriminates between
images y and G(x).

3.2 Adversarial Training

The main objective of a GAN with a cyclic loss is to learn the two transformations
G:X =Y, F:Y — X and their corresponding discriminators Dx, Dy [18].
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During training, the generator G¢ transforms an image x € X into a synthetic
image §. The synthetic image is then evaluated by the discriminator Dy . The
adversarial loss for the G is defined as:

‘CGG (GG7 Dy, ,T) = EINPdam(m) [(DY(GG(x)) - 1)2] (1>

where pgata(e) is data distribution in X. The loss value becomes large if the
synthetic image § was able to fool the discriminator into outputting a value
close or equal to one. On the other hand, the discriminator tries to maximize
the probability for real images while also minimizing the output on synthetic
images, achieved by minimizing the following formula:

Lpy (Dy,2,Y) = Bonpyorni [(Dy (Ga(2)))?] + Eyapyorai [(Dy (y) — 1% (2)
The total adversarial loss for the G transformation is then defined as:

EGAN(GG7 DY>337Z/) = ‘CDY (DY7y) + %in%&X,CGG (GGvDYa:L') (3>
G Y

A similar loss is utilized to learn the transformation F. To reduce the space of
possible transformations, a cycle-consistency loss [18] is employed which ensures
that the learned transformation can map only a single input to the desired
output. The cycle-consistency loss is defined as:

Leye(Ga, GF) = Epnp oo () I|GF(Ga()) — 2||1]+
Eympinra 1Ga(GE(y)) — yll]

Combining the above losses gives our total loss which is defined as:

4)

L(Ga,Gr,Dx,Dy) = Loan(Gg, Dy, z,y)+
Loan(Gr,Dx,y,x)+ (5)
)\Ecyc(GG; GF)

where A is a factor used to control the impact of the cyclic loss.

4 Experiments

For evaluation, we compare our proposed method with the existing state-of-the-
art method on TIR to VIS transfer TIR2Lab [1]. The evaluation is performed
on the KAIST-MS, the FOI dataset and the generalization capabilities of the
evaluated methods are tested by training on the former and evaluating on the
latter.

4.1 Datasets

The KIAST-MS dataset [4] contains paired TIR and VIS images which were
collected by mounting a TIR and a VIS cameras on a vehicle in city and suburban
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environments. The KAIST-MS dataset consists of 33,399 training image pairs
and 29,179 test image pairs captured during daylight with a spatial resolution
of (640 x 512). Because the TIR camera used, FLIR A35, is only capable of
capturing images with a resolution of (320 x 256) we resized all images to (320 x
256). The images were collected continuously during driving, resulting in multiple
image pairs being very similar. To remove redundant images, only every fourth
image pair was included in the training set, resulting in 8,349 image pairs. For
the evaluation, all image pairs from the test set were used.

The FOI dataset was captured using a co-axial imaging system capable of, the-
oretically, capturing TIR and VIS images with the same optical axis. Two cam-
eras were used for all data collection, a TIR camera FLIR A65% and VIS camera
XIMEA MC023CG-SY*. All images were cropped and re-sized to 320 x 256
pixels. This system was used to capture TIR-VIS image pairs in natural envi-
ronments with fields and forests with a training set of 5,736 image pairs and
1,913 image pairs for the test set. The average registration error for all image
pairs were between 0.8 and 2.2 pixels.

4.2 Experimental Setup

Since we use the architecture from [18], we crop all training and test images from
the center to the size (256 x 256). TIR2Lab [1] was trained and evaluated on the
full resolution of the images. All experiments were performed on GeForce GTX
1080 Ti graphics card ®.

KAIST-MS dataset experiments A pretrained model for TIR2Lab [1] trained
on the KAIST-MS dataset was provided by the authors. Our proposed model
(TTRcGAN) was trained from scratch for 44 epochs using the same hyperparam-
eters as [18]. Those parameters were batch size = 1, A = 10 and for the ADAM
optimizer we used learning rate= 2e — 4, 81 = 0.5, S = 0.999 and ¢ = 1le — 8.
Some examples from pix2pix model [6] on the KAIST-MS dataset were provided
by the authors and are discussed in the qualitative analysis.

FOI dataset experiments When training the TIR2Lab model, we used the same
hyperparameters as mentioned in [1], except that we had to train for 750 epochs
before it converged. For our TIRcGAN model, we trained for 38 epochs, using
the same parameters as in the KAIST-MS dataset experiments.

FEvaluation Metrics For the quantitative evaluation we use L1, root-mean-square
error (RMSE), peak signal-to-noise ratio (PSNR) and Structural Similarity (SSIM)
calculated between the transformed TIR image and the target VIS image. All
metrics were calculated in the RGB color space normalized between 0 and 1 with
standard deviation denoted as =+.

3 http://www.flir.co.uk /automation/display/?id=56345

* https://www.ximea.com/en/products/usb-31-gen-1-with-sony-cmos-xic/mc023cg-
sy

® https://www.nvidia.com/en-us/geforce/products,/10series/geforce-gtx-1080-ti
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Model ‘Trained on |Evaluated on‘ L ‘RMSE‘PSNR‘SSIM‘

TIR2Lab KAIST-MS | KAIST-MS | 0.13 | 0.46 | 14.7 | 0.64
40.04| £0.09 |+2.20|£0.08
TIRcGAN (Ours)| KAIST-MS | KAIST-MS | 0.15 | 0.21 | 13.92 | 0.55
40.05|40.06| +2.48 |4+0.10
TIR2Lab FOI dataset| FOI dataset | 0.12 | 0.15 | 17.05| 0.81
£0.04 | £0.05 | £2.52|£0.07
TIRcGAN (Ours)|FOI dataset| FOI dataset | 0.11 | 0.14 |17.63]| 0.77
+0.05|£0.05|+-2.83|+0.10
TIR2Lab _ |KAIST-MS | FOI dataset | 0.32 | 0.39 | 8.48 | 0.54
+0.11| £0.11 | £2.68 |+0.06
TIRcGAN (Ours)| KAIST-MS | FOI dataset | 0.20 | 0.23 |13.10| 0.60
+0.07|£0.08|+£2.82|£0.10

Table 1: This table shows the qualitative results for the experiments calculated
on RGB values normalized between 0 and 1. The standard deviation is denoted
as +.

4.3 Quantitative Results

Table 1 shows the quantitative results for the state-of-the-art method TIR2Lab
[1] on the task of TIR to VIS domain transfer and our proposed method. Our
method achieves comparable results to TIR2Lab in terms of L; despite the fact
that our proposed method is unsupervised. On the other hand, our proposed
method has a significantly lower RMSE than TTR2Lab which indicates its ro-
bustness against outliers. On the FOI dataset, our proposed method marginally
outperforms TIR2Lab with respect to all evaluation metrics.

Model Generalization To evaluate generalization capabilities of methods in com-
parison, we train them on the KASIT-MS dataset and evaluate on the FOI
dataset. The former was captured in city and urban environment, while the lat-
ter was captured in natural environments and forests. As shown in Table 1, our
proposed method maintains its performance to a big extent when evaluated on
a different dataset. On the other hand, TTR2Lab model failed to generalize to
unseen data.

4.4 Qualitative Analysis

The KAIST-MS dataset As shown in Figure 3, our proposed TIRcGAN produces
much sharper and saturated images than the TIR2Lab model on the KAIST-
MS dataset. In addition, TIRcGAN is more inclined to generate smooth lines
and other objects as an attempt to make the transformed TIR image look more
realistic. On the other hand, images from TIR2Lab are quite blurry and lacks de-
tails in some occasions. Pix2pix performs reasonably and produces sharp images,
however, objects and lines are smeared out in some cases.
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(a) TIR input  (b) pix2pix [6] (c) TIR2Lab [1] (d) TIRcGAN (e) Target VIS

Fig. 3: Example images from the KAIST-MS dataset experiment. It is possible to
note that the pix2pix and TIRcGAN produce sharper images than the TTR2Lab
model. TTRcGAN model is able to distinguish between yellow and white lanes
as seen in the third row. Note: in the third row, the corresponding frame for the
pix2pix model was not available, so the closest frame was used.

The FOI dataset Figure 4 show the results for the TIR2Lab and our proposed
TIRcGAN models on the FOI dataset. TIRcGAN consistently outperform the
TTIR2Lab model when it comes to producing perceptually realistic VIS images.
TIR2Lab produces blurry images that lacks a proper amount of details, while
TIRcGAN produces a significant amount of details that are very similar to the
target VIS image.

Model Generalization Figure 5 show the TTR2Lab and our TIRcGAN ability
to generalize from one dataset collected on one environment to a new dataset
from a different environment. Both models struggle at generating accurate col-
ors or perceptually realistic images since the two datasets have different colors
distribution. However, TIRcGAN was able to predict objects in the image with
a reasonable amount of details contrarily to TIR2Lab which completely failed.
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(a) TIR input (b) TIR2Lab [1] (c) TIRcGAN (d) Target VIS

Fig.4: Example images from the FOI dataset experiment. We can see that the
unpaired model produce much sharper and more realistic images.

4.5 Failure Cases

Figure 6 shows examples where different models fail on the KAIST-MS dataset.
For all methods, predicting humans is quite troublesome. Road crossing lines
are also challenging as they are not always visible in the TIR images. Figure 7
shows some failure case on the FOI dataset. Both models fails in predicting dense
forests, side-roads and houses since they are not very common in the dataset.
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5 Conclusions

In this paper, we addressed the problem of TIR to VIS spectrum transfer by em-
ploying unsupervised GAN model that train on unpaired data. Our method was
able to handle misalginments in the KAIST-MS dataset and produced perceptu-
ally realistic and sharp VIS images compared to the supervised state-of-the-art
methods. When our method was trained on the KAIST-MS dataset and eval-

(a) TIR input (b) TIR2Lab [1] (c) TIRcGAN (d) Target VIS

Fig. 5: Examples for methods output when trained on the KAIST-MS dataset [4]
and evaluated on the FOI dataset. Both models struggle with predicting the
colors since the two datasets were captured in different environments. However,
TIRcGAN can still predict the objects in the scene.
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(a) TIR input  (b) pix2pix [6] (c¢) TIR2Lab [1] (d) TIRcGAN (e) Target VIS

Fig. 6: Example images where different models fail on the KAIST-MS dataset.
In the first row, we see that the model produces an inverse shadow, i.e., painting
shadow only where there should not be shadow. In the second row we show
that all the models struggle with producing perceptually realistic VIS images of
humans.

(a) TIR input (b) TIR2Lab [1] (c) TIRcGAN (d) Target VIS

Fig. 7: Example images where models fail on the FOI dataset experiment. Here
we see that the models are not able to accurately colorize houses and some roads.

uated on the new FOI dataset, it maintained its performance to a big extent.
This demonstrated the generalization capabilities of our proposed method.
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