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Abstract. We focus on the problem of estimating human hand-tremor
frequency from input RGB video data. Estimating tremors from video
is important for non-invasive monitoring, analyzing and diagnosing pa-
tients suffering from motor-disorders such as Parkinson’s disease. We
consider two approaches for hand-tremor frequency estimation: (a) a La-
grangian approach where we detect the hand at every frame in the video,
and estimate the tremor frequency along the trajectory; and (b) an Eule-
rian approach where we first localize the hand, we subsequently remove
the large motion along the movement trajectory of the hand, and we
use the video information over time encoded as intensity values or phase
information to estimate the tremor frequency. We estimate hand tremors
on a new human tremor dataset, TIM-Tremor, containing static tasks
as well as a multitude of more dynamic tasks, involving larger motion of
the hands. The dataset has 55 tremor patient recordings together with:
associated ground truth accelerometer data from the most affected hand,
RGB video data, and aligned depth data.

Keywords: Video hand-tremor analysis, phase-based tremor frequency detec-
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1 Introduction

We focus on human hand-tremor frequency estimation from videos captured with
common consumer RGB cameras. The problem has a considerable importance
in medical applications for aiding the medical personnel in the task of motor-
disorder patient monitoring and tremor diagnosing [2IT32534]. Traditionally the
clinical practice uses body-worn accelerometers which offer excellent measure-
ments, yet is intrusive, slow to setup, and allows only measuring a single location
per accelerometer. Replacing accelerometers with a common RGB camera brings
forth a non-intrusive method of measuring full-body tremors, offering a strong
advantage in the clinical practice.

In the context of tremor analysis, existing approaches require the use of
specialized sensors [6ISIT4YT5], which makes it difficult to apply these methods
in practice. Moreover, the targeted application of these approaches are the more
high-level tremor diagnosing problem [14l26] or tremor/no-tremor classification
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[28]. We propose to estimate human hand-tremor frequency from RGB videos,
and compare against ground truth accelerometer data.

The main challenge, when performing human tremor frequency estimation,
is the current lack of openly available realistic datasets. Existing work on human
tremor analysis either evaluates using in-house data that is not publicly available
[6/T4)37], or on simulated tremor data where no ground truth tremor statistics
are provided [28]. This limits the assessment of human tremor analysis methods
and, thus, its progress. An open evaluation dataset is needed.

In this work: (i) we evaluate the frequency of human hand-tremors from RGB
videos and we analyze two possible approaches: (i.a) a Lagrangian approach that
focuses on the motion of the hand in the image plane, and estimates tremors over
the hand positions; (i.b) an Eulerian approach that aligns the hand position over
a temporal window, by tracking it, and subsequently uses the image information
over time as extracted from intensity values and phase-images, to perform a
windowed Fourier analysis at every hand pixel; (ii) we bring forth the TIM-
Tremor dataset, containing: 55 RGB patient videos, together with associated
ground-truth accelerometer recordings on the most affected hand, as well as
aligned depth-data; (iii) we analyze two variants of the Lagrangian approach
and two variants of the Eulerian approach and evaluate them numerically on
our proposed TIM-Tremor human tremor dataset.

2 Related work

2.1 Motion analysis

Periodic motion. The work in [22] performs action recognition by using space-
time repetitive motion templates. Similar to using templates, in [5] a self-similarity
relying on time-frequency analysis is used for action recognition. The work in [12]
performs a spectral decomposition of moving objects to encode periodic motions
for object recognition, while [30] performs eigen decomposition and describes pe-
riodic motion by the circularity or toroidality of an associated geometric space.
Following a similar trend, in [I9] complex motion is decomposed into a sequence
of simple linear dynamic models for motion categorization. The work in [24]
focuses on pedestrian detection through periodic movement analysis. Similar to
us, the work in [28] performs tremor analysis, however in [28] videos are classi-
fied into tremor /no-tremor using optical flow features and SVM. In the recent
work in [29] a CNN is used for discriminating between Parkinson patients and
non-Parkinson patients, using wrist-worn senors. In this work we also focus on
periodic motion analysis, however our end goal is tremor frequency estimation
rather than action recognition, object tracking or recognition.

Differently, in [I8I27I33] deep network architectures are trained for counting
action repetitions. These actions must be clearly visible and recognizable in
the camera view for the deep network architectures to work, while we focus on
tremors which are subtle motions.

The most similar work to our work is the work performed in [31J32] where
tremor frequency is measure from pixel intensities in the video. However these
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methods assumes the location of the body part at which the tremor is measured
to be known in advance and moreover, the frequency is estimated over intensity
values rather than detected hand location over time, or image phase-information
over time, as we propose here. The authors do not publicly provide either code
or data, which makes it impossible for us to compare with their approach.

Subtle motion. Small motion, difficult to see with the bare eyes, can be magni-
fied [T7I35] through a complex steerable pyramid. In the more realistic case, when
the subtle motion is combined with a large motion, follow up work can magnify
subtle motions such as tremors in the presence of large object motion such as
walking [9139]. Video frequency analysis has been also employed for estimating
the properties of physical materials [7]. We also employ signal analysis in the
Fourier domain, however rather than magnifying the subtle motion or estimat-
ing material properties, we estimate the frequency of the subtle tremor motion.
The works in [I415] use specialized sensors or a digital light-processing projec-
tor, and a high frame-rate camera to detect small vibrations. Unlike [T4/15], we
do not employ specific cameras or expensive sensors, we estimate the tremor
frequency from common RGB videos.

2.2 Human body pose estimation

Works such as [3I21] perform body pose estimation over multiple people, in deep
networks. In [34I23/36] cascaded prediction or iterative optimizations are used
for body pose estimation. We use the method in [36] for estimating where to
measure the tremors. We opt for [36] due to its ease of usage and robustness. In
this work we use the MPII Human Body Pose dataset [I] for training the human
body pose estimation models.

3 Hand-tremor frequency estimation

We start by localizing the affected hand. Subsequently, we consider two methods
for hand-tremor frequency estimation: (a) Lagrangian hand-tremor frequency
estimation, and (b) Eulerian hand-tremor frequency estimation.

3.1 Hand location estimation

A first step in estimating human hand-tremors, is localizing the affected hand.
For this, we use the robust human body pose estimation proposed in [36]. This
method provides us a hand location per frame (z;,y;). We perform the tremor
analysis on shorter temporal windows of the video, w(t).

3.2 (a) Lagrangian hand-tremor frequency estimation

Figure [1| depicts the idea behind the Lagrangian hand-tremor frequency estima-
tion. We start by detecting the hand locations (x4, ¥;)icw) over the temporal
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Fig. 1. Lagrangian hand-tremor estimation is based on frequency estimation of (z,y)
coordinates. We detect the hand position (z:, yi)icw () at every frame ¢ over a temporal
window w(t). The hand motion is characterized by a large motion, depicted by the black
line, and a small motion, depicted by the red dotted line. We smooth this information
over time, using a Kalman tracker to obtain the smooth coordinates of the hand.

window w(t). The hand motion is typically characterized by a combination of
two motions: a large hand trajectory motion, depicted through the continuous
black line, and a small motion corresponding to the tremor, depicted in Figure
by the dotted red line. We first apply a Kalman-filter tracker [38] to the ini-
tial hand locations, detected by the pose estimation algorithm [36]. This step is
used for smoothing the hand trajectory, to obtain the large hand motion. We
subsequently subtract this smooth trajectory from the original hand locations
to retain only the z and y locations of the small hand motion, corresponding
to the tremor. Thereafter, we apply the windowed Fourier transform over these
corrected locations. This provides us a PSD (Power Spectrum Density) function.
We use the maximum frequency as the estimated hand-tremor frequency.

3.3 (b) Eulerian hand-tremor frequency estimation

Figure [2]illustrates the Eulerian frequency estimation. The first step is the same
as in Figure[I] where the hand locations are detected using the pose estimation
method in [36], and subsequently, we smooth the trajectory given by these hand
detections using a Kalman tracker. This gives us the smooth trajectory of the
hand over time, in the video. We crop image windows around the temporally
smoothed locations of the hand in the video — along the black line depicted
in Figure [2}(1). For each such image crop, we extract local motion information
encoded as phase over different scales and orientations. Thereafter, we compute
the frequency of the hand-tremor by using the most informative phase-image.
Figure |2| depicts these individual steps.

Phase-image computation. Works such as [T0J20/35/39] claim that the phase
responses over time contain descriptive information regarding the motion present
in the image. In [35] the use of complex steerable filters [I1] is proposed for
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Fig. 2. Eulerian hand-tremor estimation is based on frequency estimation in images.
(1) The fist step is the same as in the Lagrangian illustrated in Figure [I} detecting
a Kalman-filtered smoothed hand position at every frame over a temporal window
w(t). (2) We crop image windows around the smoothed hand locations. Each such
cropped image is transformed into a phase-pyramid with 4 orientations and 3 scales
using a steerbale filter bank. (3) For every pixel, in every phase-image over the temporal
window w(t) we estimate a PSD (Power Spectrum Density). We accumulate these over
the pixels in one phase-image, to obtain one PSD per phase-image. (4) We select the
most informative phase-image PSD and use it to estimate the tremor-frequency.
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extracting local motion information. Given an input image I(x,y) and a set of
complex steerable filters of the form: Gg +1H g, where ¢ = v/—1, o defines the

scale of the filter, and @ the orientation, we obtain a complex steerable pyramid
by convolving the image with this set of filters

(G2 +iH?) ® I(z,y) = A% (x,y)e'Pa @), (1)

where ® denotes the convolution operations, and A% (z,y) is the resulting am-
plitude for scale o and orientation @, and ¢’ (z,vy) is the corresponding phase
information. To obtain a phase-image, we set the amplitude to 1 and apply the
inverse transformation [TI] to reconstruct back the image. Examples of phase-
images are depicted in Figure (2) We use 4 orientations: 6 € {0,%,%, 3¢
and 3 scales: o € {1.0,0.5,0.25}, giving rise to 12 phase-images. In addition to
the 12 phase-images, we add the grayscale version of the cropped hand-image.
Therefore, we have in total 13 images, which we merge into a single image with
13 channels, over which we estimate the hand-tremor frequency.

Hand-tremor frequency estimation. We filter each one of the 13 input
channels over time with a 4*"-order Butterworth band-pass filter. This eliminates
noisy frequencies that cannot correspond to a natural human tremor.

To reduce the effect of the considered temporal window, w(t), we use an
adjustable Tukey window with the parameter « set to ijl, where f is the
sampling rate and N is the total number of frames in w(¢). This ensures that
the video signal over time is processed in a consistent manner while allowing for
adjustable temporal window sizes, w(t).

Within each temporal window, w(t), we estimate a PSD function, over ev-
ery input channel, at every pixel location. For an input channel, ¢, we estimate
the final PSD, P;(t)( f), by averaging spatially the PSDs over the pixels in that
channel. We repeat this process for all 13 channels, giving rise to 13 PSD func-
tions.

In [5] the power spectrum is considered to be periodic at a certain frequency,
f, if the PSD response at that frequency is at least a few standard deviations
away from the mean PSD response. This is indicative of how noisy is the PSD
function. We use this same criterion to pick the most informative image channel;
this is the channel over which we estimate the final hand-tremor frequency. We
define for each channel a score, S¢(f):

c 1 c
=@ ;‘) (Pao(1) = mrs, —kow, ) @

where | w(t) | is the number of temporal windows per video, [P, represents
the mean of the PSD response, and op,,, denotes the standard deviation, while
k is an adjustable parameter. We set k = 3 in our experiments.

The final predicted frequency over the 13 channels becomes:

fr= arg?laX(mgX S(f))- ®3)



Rest

Months_backward

Hand tremor frequency estimation in videos 7

Rest_in_supination  Hands_in_prontation Thumbs_up Top_top Weight
P lr, 3

Extra_pose

(a) Recorded tasks.

Task Description

Rest

Rest Resting the arms on the chair handles.

Rest_in_supination = Resting the arms on the chair handles, hands in supination position.

Postures

Hands_in_pronation Both arms outstretched forward, hands in pronation position.

Thumbs_up Both arms outstretched forward, thumbs up.

Top-top Both hands in front of the chest with tips of the index fingers almost touching
each other, elbows lifted sideways at approx. 90 degrees angle.

Weight Affected arm outstretched forward, with a weight (1 kg) attached to the wrist.

Extra_pose

Holding a pose proposed by the medical expert to better visualize the tremor.

Actions
Top-nose_left
Top-nose_right
Writing_left
Writing_right
Spiral_left
Spiral_right
Extra_writing

Touching the top of the nose with the left index finger.

Touching the top of the nose with the right index finger.

Writing a given sentence with the left hand.

Writing a given sentence with the right hand.

Drawing a spiral with the left hand.

Drawing a spiral with the right hand.

Extra writing task with a special pen, or diverging from the standard writing task
with the affected hand.

Distraction
Months_backward™
Counting™
Finger_tapping®
Playing_piano™

Following™

Naming the months backwards.

Counting backwards (100 minus 7).

Tapping with the index finger and thumb of the contralateral hand.

Moving the thumb of the contralateral hand across all fingers, from the index
to the pinky finger and back.

Following a moving pointer with the index finger of the contralateral hand.

Entrainment
2_Hz_higher™®

2_Hz_lower™

Tapping with the contralateral hand in the rhythm of a flashing light,
2 Hz higher than the estimated tremor frequency of the affected hand.
Tapping with the contralateral hand in the rhythm of a flashing light,
2 Hz lower than the estimated tremor frequency of the affected hand.

*During these tasks, the affected hand was kept in the posture in which the tremor was most pronounced
(i.e. arm on chair handle, arm outstretched with hand in pronation or thumbs up, or in front of the chest).

Fig. 3.

(b) Explanation.

(a) We record motor-disorder patients in 21 tasks. Each task may elicit a

tremor. (b) Short explanation of what each task involves.
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Fig. 4. Examples from the recording setup together with the predicted body joint
locations using [36]. We use this to obtain the location of the hand where we estimate
the tremor frequency.

4 Experiments

We test the considered frequency estimation approaches on our tremor patient
dataset, TIM-Tremor, containing a multitude of tasks. The anonymized TIM-
Tremor patient data can be found at https://doi.org/10.4121/uuid:522d14ed-
3019-4206-b49e-a4e674b6440a.

4.1 Patient data evaluation

Data description. We recorded the TIM-Tremor dataset, in which 55 patients
are videotaped sitting in a chair and performing a multitude of tasks. The data
is recorded with a Kinect”™ v2 device, and it consists of short RGB videos of
resolution 1920 x 1080 px, and associated depth video recordings of 512 x 424
px using a 16-bit encoding, as well as depth videos aligned with the RGB videos
following the method in [16]. To reduce the storage requirements, we rescale
the video resolution to 960 x 540 px. The ground truth tremor frequency is
measured on the wrist of the most affected hand: left /right. On this hand, during
the recording, we position an accelerometer. The accelerometer recordings are
included in the dataset. The hand on which the accelerometer is positioned,
is annotated in the dataset for each patient. Thus, for each patient and each
performed task, we provide a set of recorded videos of approximately 1 minute
each, together with a corresponding aligned depth map video, and the ground
truth accelerometer recording from the most affected hand.

Data collection occurred in parallel to the standard tremor clinical evaluation.
The standard tremor evaluation consists of a set of 21 tasks, which are illustrated
in Figure [3| (a) and described in Figure 3] (b). The tasks vary with respect to the
adopted posture: e.g. arm supported by the arm rest, or held outstretched in front
of the patient, the amount of motion involved: e.g. rest — no motion, or touching
the top of the nose — intention-oriented motion, as well as the focus of attention:
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Fig. 5. (a) Total number of videos recorded per task. (b) Average frequency and stan-
dard deviation for all tasks across all 55 patient recordings.

e.g. distraction by mental task. Changes in tremor frequency between these tasks
are analyzed by the medical expert to classify the tremor. For example, certain
types of tremor are present across most or all tasks (e.g. “Parkinsonian tremor”),
while other types of tremor may only occur when performing a specific task (e.g.
“postural tremor” occurs only when a patient maintains a specific posture such
as Thumbs_up), while other tremors may show considerable variation in tremor
frequency between tasks (e.g. “functional tremor”).

Figure 4 displays a few examples of the recording setup together with the
estimated joint locations using [36]. In Figure 5 we show the total number of
videos recorded for each task, and the average hand tremor frequency, as es-
timated by the accelerometer, together with the standard deviation, computed
across all 55 patients. The average tremor frequency is around 5 Hz, which is a
common in tremor affections such as Parkinson and Dystonia.

Experimental evaluation. We estimate the body pose in the videos using
the method in [36], pretrained on the MPII dataset [1]. We apply the method
a every frame. We use a temporal window, w(t), of 60 frames for frequency
estimation. Unless stated otherwise, we evaluate our method in terms of MAE
(Mean Absolute Error) with respect to the ground truth frequency detected
by the accelerometer. We only evaluate on video segments in which a periodic
tremor has been detected, using the accelerometer data.
























