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Abstract. To date, top-performing optical flow estimation methods only take

pairs of consecutive frames into account. While elegant and appealing, the idea

of using more than two frames has not yet produced state-of-the-art results. We

present a simple, yet effective fusion approach for multi-frame optical flow that

benefits from longer-term temporal cues. Our method first warps the optical flow

from previous frames to the current, thereby yielding multiple plausible esti-

mates. It then fuses the complementary information carried by these estimates

into a new optical flow field. At the time of writing, our method ranks first among

published results in the MPI Sintel and KITTI 2015 benchmarks.
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1 Introduction

Despite recent advances in optical flow estimation, it is still challenging to account for

complicated motion patterns. At video rates, even such complicated motion patterns are

smooth for longer than just two consecutive frames. This suggests that information from

frames that are adjacent in time could be used to improve optical flow estimates. Indeed,

numerous methods have been developed [2,3,10,9]. However, none of the top three op-

tical flow algorithms on the major benchmark datasets uses more than two frames [4,6].

We observe that, for some types of motion and in certain regions, past frames may

carry more valuable information than recent ones, even if the optical flow changes

abruptly—as is the case of occlusion regions and out-of-boundary pixels. Kennedy and

Taylor [8] also leverage this observation, and select which one of multiple flow esti-

mates from adjacent frames is the best for a given pixel. We propose a method to fuse

the available information. Specifically, we first estimate per-frame optical flow using a

two-frame network module, and then warp multiple optical flow estimates from the past

to the current frame, which we can fuse with a second neural network module.

Our approach offers several advantages. First, it allows to fully capitalize on motion

information from past frames. Second, our fusion network is agnostic to the algorithm

that generates the two-frame optical flow estimates; any standard method can be used as

an input, making our framework flexible and straightforward to upgrade when improved

two-frame algorithms become available. Finally, if the underlying optical flow algo-

rithm is differentiable, our approach can be trained end-to-end. Extensive experiments

show that the proposed algorithm outperforms published state-of-the-art, two-frame op-

tical flow methods by significant margins on the KITTI [6] and Sintel [4] benchmarks.
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To further validate our results, we present alternative baseline approaches incorporating

recurrent neural networks with the state-of-the-art deep-learning optical flow estimation

methods, and show that the fusion approach achieves significant performance gains.

2 Proposed Model: Temporal FlowFusion

For clarity reasons, we focus on three-frame optical flow estimation. Given three input

frames It−1, It, and It+1, our aim is to estimate the optical flow from frame t to frame

t+1, w
f
t→t+1. The superscript ‘f ’ indicates that it fuses information from all the frames.

We use two-frame methods, such as PWC-Net [11], to estimate three motion fields,

wt→t+1, wt−1→t, and wt→t−1. We backward warp wt−1→t using wt→t−1: ŵt→t+1=
W(wt−1→t;wt→t−1), where W(x;w) denotes warping the input x using the flow w.

Now we have two candidates for the same frame: ŵt→t+1 and wt→t+1, we take

inspiration from the work of Ilg et al. who perform optical flow fusion in the spatial

domain for two-frame flow estimation [7]. We extend this approach to the temporal

domain. Our fusion network takes two flow estimates ŵt→t+1 and wt→t+1, the cor-

responding brightness constancy errors E
ŵ

= |It − W(It+1; ŵt→t+1)| and Ew =
|It −W(It+1;wt→t+1)| as well as the current frame It. A visualization of the network

structure is shown at Fig. 1. The dotted lines indicate that two sub-networks share the

same weights, while the double vertical lines denote the feature concatenation.
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Fig. 1: Architecture of the proposed fusion approach.

We also propose two deep-learning baseline methods, shown at Fig. 2. FlowNetS++:

FlowNetS [5] is a standard U-Net structure. We copy the encoded features from the pre-

vious pair of images to the current frame. FlowNetS + GRU: We use GRU-RCN [1]

to extract abstract representations from videos and propagate encoded features in previ-

ous frames through time in a GRU-RCN unit and introduce a network structure, which

we dub FlowNetS + GRU. We preserve the overall U-Net structure and apply GRU-

RCN units at different levels of the encoder with different spatial resolutions. Encoded

features at the sixth level are the smallest in resolution.

3 Experimental Results

We test two architectures as building blocks: FlowNetS [5] for its wide adoption, and

PWC-Net [11] for its efficiency and performance on standard benchmarks. We fol-
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Fig. 2: Baseline network structures.

FlowNetS FlowNetS++ GRU 3 GRU 4 GRU 5 GRU 6 Fusion

EPE All 6.12 5.90 5.26 5.40 5.15 5.32 5.00

EPE Inside 4.03 3.87 3.61 3.64 3.58 3.59 3.14

EPE Outside 28.97 27.57 23.26 24.60 22.28 24.25 25.15

EPE Occlusion 7.44 7.11 5.93 6.27 5.82 6.18 6.14

PWC-Net GRU 3 GRU 4 GRU 5 GRU 6 Fusion

EPE All 2.34 2.17 2.13 2.12 2.16 2.07

EPE Inside 1.60 1.44 1.41 1.40 1.42 1.37

EPE Outside 10.43 10.01 9.94 10.02 9.86 9.71

EPE Occlusion 2.41 2.29 2.24 2.24 2.26 2.27

Table 1: Ablation study on the virtual

KITTI dataset.

low Sun et al. [11] to design our training procedure and loss function. For consistency

among different multi-frame algorithms, we use three frames as inputs.

For fusion networks, the network structure is similar to FlowNet2 [7] except for the

first convolution layer, because our input to the fusion network has different channels.

For the single optical flow prediction output by our fusion network, we set α = 0.005
in the loss function [11] and use learning rate 0.0001 for fine-tuning.

We perform an ablation study of the two-frame and multi-frame methods using the

virtual KITTI and Monkaa datasets, as summarized in Table 1. The Fusion approach

consistently outperforms all other methods, including those using the GRU units. On

the MPI Sintel [4] and KITTI benchmark [6], PWC-Fusion outperforms all two-frame

optical flow methods including the state-of-the-art PWC-Net. This is also the first time

a multi-frame optical flow algorithm consistently outperforms two-frame approaches

across different datasets. We provide some visual results in Figure 3.

EPE Match Unmatch d0-10 d10-60 d60-140 s0-10 s10-40 s40+

PWC-Fusion 4.566 2.216 23.732 4.664 2.017 1.222 0.893 2.902 26.810

PWC-Net 4.596 2.254 23.696 4.781 2.045 1.234 0.945 2.978 26.620

ProFlow 5.015 2.659 24.192 4.985 2.185 1.771 0.964 2.989 29.987

DCFlow 5.119 2.283 28.228 4.665 2.108 1.440 1.052 3.434 29.351

FlowFieldsCNN 5.363 2.303 30.313 4.718 2.020 1.399 1.032 3.065 32.422

MR-Flow 5.376 2.818 26.235 5.109 2.395 1.755 0.908 3.443 32.221

LiteFlowNet 5.381 2.419 29.535 4.090 2.097 1.729 0.754 2.747 34.722

S2F-IF 5.417 2.549 28.795 4.745 2.198 1.712 1.157 3.468 31.262

Table 2: Results of the MPI Sintel [4].

Fl-all-Occ Fl-fg-Occ Fl-bg-Occ Fl-all-Ncc Fl-fg-Ncc Fl-bg-Ncc

PWC-Fusion 7.17 7.25 7.15 4.47 4.25 4.52

PWC-Net 7.90 8.03 7.87 5.07 5.04 5.08

LiteFlowNet 9.38 7.99 9.66 5.49 5.09 5.58

MirrorFlow 10.29 17.07 8.93 7.46 12.95 6.24

SDF 11.01 23.01 8.61 8.04 18.38 5.75

UnFlow 11.11 15.93 10.15 7.46 12.36 6.38

MRFlow 12.19 22.51 10.13 8.86 17.91 6.86

ProFlow 15.04 20.91 13.86 10.15 17.9 8.44

Table 3: Results of the KITTI [6].
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Fig. 3: Visual results of our fusion method. Green in the indication map means that

PWC-Net+Fusion is more accurate than PWC-Net, and red means the opposite.



4 Zhile Ren et al.

4 Conclusions

We have presented a simple and effective fusion approach for multi-frame optical flow

estimation. Multiple frames provide new information beyond what is available from two

adjacent frames, in particular for occluded and out-of-boundary pixels. Thus we pro-

pose fusing the warped previous flow with the current flow estimate. Extensive experi-

ments demonstrate the benefit of our approach: it outperforms both two-frame baselines

and sensible multi-frame baselines based on GRUs. Moreover, it is top-ranked among

all published flow methods on the MPI Sintel and KITTI 2015 benchmark.
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