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Abstract. Accurate position and orientation estimations are essential
for navigation in autonomous robots. Although it is a well studied prob-
lem, existing solutions rely on statistical filters, which usually require
good parameter initialization or calibration and are computationally ex-
pensive. This paper addresses that problem by using an end-to-end ma-
chine learning approach. This work explores the incorporation of multiple
sources of data (monocular RGB images and inertial data) to overcome
the weaknesses of each source independently. Three different odometry
approaches are proposed using CNNs and LSTMs and evaluated against
the KITTI dataset and compared with other existing approaches. The
obtained results show that the performance of the proposed approaches
is similar to the state-of-the-art ones, outperforming some of them at
a lower computational cost allowing their execution on resource con-
strained devices.

Keywords: Navigation, visual, inertial, odometry, machine learning,
CNN, LSTM

1 Introduction

Motion estimation is one of the main pillars of mobile robotics. It provides a robot
with the capability to know its position and orientation in an unknown environ-
ment and it can be combined with mapping approaches to develop Simultaneous
Localization and Mapping (SLAM), which is essential to perform human assis-
tance and exploration tasks. A robot can use different sources of data to perform
such motion estimation depending on the type of sensor: proprioceptive, when
it offers the robot’s internal information such as Inertial Measurement Units
(IMU), or exteroceptive, when it offers information of the robot’s surroundings
such as cameras or LiDARs. Due to the autonomous nature of a robot, it should
be able to perform such motion estimation on board in real time, often resource-
limited. Thus, finding a solution that can run in an embedded device under such
restrictions is desirable.

This paper explores the performance of different end-to-end machine learning
based systems depending on the type of sensor used. The contributions of this
paper are:
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– Three end-to-end trainable networks using different kind of sensor data are
proposed.

– The proposed networks are tested on real world data and compared with
other state-of-the-art approaches.

The rest of the paper is organized as follows: Section 2 shows existing visual
and inertial odometry approaches based on both classical and machine learning
techniques. Section 3 shows the architecture of the proposed approaches. In
Section 4, the training parameters, optimizer and objective function used are
explained. The results of the training as well as their performance comparison
is done in Section 5. Section 6 presents the conclusions of this work and shows
the future work that can be done.

2 Related work

This section analyzes and highlights different works that have been done to solve
the pose estimation problem with classic approaches and, more recently, with
deep learning techniques.

Cameras capture the surroundings of the robot and can be used to track the
robot’s movement, this process is known as Visual Odometry (VO)[1]. Classic
VO approaches estimate motion from geometry constraints, and can be divided
into two groups: sparse feature based methods and direct methods. On one
hand, sparse feature based methods extract and match feature points to estimate
the motion between frames such as in LIBVISO2 [2]. In addition, some VO
approaches such as ORB-SLAM [3] add and maintain a feature map in order to
correct the drift suffered due to the presence of outliers and noisy images. On
the other hand, direct [4] and semi-direct [5] [6] methods use all the image pixels
to estimate the pose by minimizing the photometric error between consecutive
images.

However, classical VO approaches need external information (such as camera
height or templates) to perceive the scale and recover distances in real world
units. Castle et al. address this problem by combining a monocular SLAM system
with object recognition [7]. Pillai et al. combine ORB-SLAM [3] with object
recognition, introducing a multi-view object proposal and an efficient feature
encoding method [8].

Nevertheless, VO systems are not reliable in the presence of rapid movements
or when there are sudden changes in illumination. To solve this lack of reliability,
the camera information can be combined with inertial sensors, which can pro-
vide acceleration and angular rate information. This sensors usually offer data
at much higher frequencies (about 10 times faster) than a camera. Therefore,
inertial information can be used to overcome VO systems’ weaknesses in the case
of rapid camera motion.

Visual-Inertial Odometry (VIO) systems take advantage of visual and inertial
information to provide position and orientation estimations. In state-of-the-art
methods, the visual-inertial data fusion is done by using probabilistic filter ap-
proaches such as Extended Kalman Filter (EKF) or Unscented Kalman Filter
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(UKF), which are compared in [9]. In [10], the visual-inertial data fusion is per-
formed with an EKF based system, which they used to compare different fusion
models using only gyroscope data, or gyroscope and accelerometer data. Other
variations of the EKF have been used for this purpose, such as the Multi-state
Constraint Kalman Filter (MSCKF). Mourikis et al. implemented a MSCKF
system in which several past camera poses were used to detect static features
and add a constraint to the state vector [11].

In recent years, deep learning approaches have overcome the weaknesses of
classic VO approaches, such as lack of robustness to blurred or noisy images
or when changes in illumination or occlusion occurs. Convolutional Neural Net-
works (CNN) have shown to perform well even with blurred and noisy images,
providing a robust method for extracting image features [12]. CNNs have been
also used to compute the Optical Flow between two consecutive images [13][14].
The Optical Flow represents the change in location of the objects on the camera
view [15], therefore it is related to the motion that the camera has experienced
between two consecutive frames. The image features extracted by the Optical
Flow network in [13] have been used in [16] along with two Long Short Term
Memory (LSTM) [17] layers to implement a monocular VO system in an end-
to-end deep learning manner, clearly outperforming a classic monocular VO
approach based on LIBVISO2 [2].

VIO approaches based on probabilistic filters for sensor fusion may require
a hard and complex calibration process in order to bring camera and IMU mea-
surements to the same reference coordinate system [18][19]. In [20] the calibration
process is done in real time while a tracking system is running, adding complexity
to the filtering process. Moreover, some IMU’s parameters are difficult to model,
such as the noise scaling over the measurements found in most commercial IMUs
[21]. Deep Learning techniques have been used in order to solve the issues with
the sensor fusion process. In [22], Rambach et al. use an LSTM to track past
IMU raw measurements (accelerometer and gyroscope) to estimate the pose of
a robot, which is then fused with a VO system. LSTMs have been also used in
VINet [23] to extract encoded features from IMU’s raw measurements. These
encoded features are combined in a features vector with features extracted from
a CNN, being this features vector tracked over time by a second LSTM, which
provides a pose estimation of a robot. VINet approach outperforms OKVIS [24],
which is an optimization-based sensor fusion approach.

3 Proposed approaches

This work explores the performance of different end-to-end trainable neural net-
work architectures, varying the amount and type of the input. Three different
networks have been trained for this purpose. The first one takes as input RGB
images, the second one takes as input IMU raw measurements and the last one
is a combination of the previous networks, taking as input both RGB images
and IMU raw measurements. All the networks are trainable in an end-to-end
manner, eliminating any need of calibration or preprocessing.
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The networks have been trained to produce at every frame a pose estimation
relative to the previous frame. Each pose estimation represents a transforma-
tion, which is usually represented as elements of the Special Euclidean Group of
transformations SE(3), which is described in [25]. All the transformations repre-
sented in SE(3) (Equation 1) are composed of a rotation matrix and a translation
vector, being that rotation matrix part of the Special Orthogonal group SO(3),
described in [25].

SE(3) : (R|T ), R ∈ SO(3), T ∈ R
3 (1)

Finding a transformation in the SE(3) is not straightforward for the network
because R has to be orthogonally constrained. Thus, to make easier the learning
process, the estimated transformations are represented in the Lie Algebra se(3)
(Equation 2) of SE(3).

se(3) : (ω|t), ω ∈ so(3), t ∈ R
3 (2)

The pose estimations in se(3) are 6-D vectors and are not orthogonally con-
strained. Once estimated, the poses in se(3) can be converted into transforma-
tions of the SE(3) by doing an exponential mapping: se(3) → SE(3) (Equation
10) as described in [25].

θ =
√
ωTω (3)

A =
sinθ

θ
(4)

B =
1− cosθ

θ2
(5)

C =
1−A

θ2
(6)

ωx =





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



 (7)

R = I +Aωx +Bω2
x (8)

V = I +Bωx + Cω2
x (9)

se(3) → SE(3) : exp(ω|t) = (R|V t) (10)

Matrices R and V can be calculated using Equations 8 and 9, respectively.
A, B, C and θ can be obtained through Equations 4, 5, 6 and 3. ωx matrix is
composed by ω values (Equation 7).
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3.1 Network 1: Visual Odometry

The first proposed network is illustrated in Figure 1. It takes as input two consec-
utive RGB images, which are stacked composing an input tensor of size 512x384
with 6 channels. This image size has been used because it has shown to contain
enough features while resulting in a light CNN. FlowNetS [13] has been used
to extract images’ features, as its good performance for motion estimation was
shown in [16] and [23]. This network was trained on a synthetic dataset to learn
how to estimate the Optical Flow between frames, which represents the motion
undergone by the robot over time.

Fig. 1. Architecture of the proposed visual odometry network. All the layers are fol-
lowed by a LeakyReLU activation layer except the last two FC layers.

FlowNetS is taken up to its 9th convolutional layer, followed by an additional
convolutional layer to reduce the output size of the CNN to a 2x3x256 tensor.
After the CNN, a series of Fully Connected layers combine the extracted features
to produce an output 6-D vector pose that represents the transformation of
the current frame (t) relative to the previous frame (t-1 ), expressed in the Lie
Algebra of SE(3).

3.2 Network 2: Inertial Odometry

The second proposed network is shown in Figure 2. In this case, only inertial data
is used as input to the network. Specifically, the input is a subsequence composed
by 10 6-D vectors with the x-y-z raw data components from accelerometer and
gyroscope. This subsequence of 10 measurements is ordered in time, being the
last one the most up to date, encoding the motion that the sensor has experienced
over time.
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Fig. 2. Architecture of the proposed inertial odometry network. The first two FC layers
are followed by a LeakyReLU activation layer.

An LSTM is used as a regression layer to track measurements over the subse-
quence and extract motion information as it is able to store in its hidden states
short and long term dependencies produced by past inputs. Each input is com-
bined with the hidden state as it passes through the LSTM, finding temporal
correspondences between the current and past measurements. The LSTM used
has 1 layer, 1024 units and is followed by 4 Fully Connected layers that output a
6-D vector representing the transformation undergone by the robot from the last
to the first element of the subsequence. These architecture and parameters have
been selected as a result of their performance in a montecarlo analysis, which
was done to explore different combination of layers.

3.3 Network 3: Visual-Inertial Odometry

The third proposed network is shown in Figure 3. It combines the networks
1 and 2, taking advantage of both visual and inertial sensors. The input is a
pair of consecutive RGB images and a subsequence of 10 inertial measurements
following the idea of the VIO networks, which combine inertial and visual data
to overcome the weaknesses of each other, as stated in Section 1. The structure
of the VO network remains up to its third Fully Connected layer. Similarly, the
Inertial Odometry (IO) network is used up to its second FC layer. The idea
behind this is to maintain both VO and IO networks until the last layer that
provides useful features.

Then, vision and inertial feature vectors are concatenated into a 128-D vector
and passed through three FC layers to output a pose estimation. As before, each
pose estimation represents the transformation undergone by the robot at the
current frame with respect to the previous one.
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Fig. 3. Architecture of the proposed sensor fusion odometry network. The structure
of the VO and IO networks remains, so LeakyReLU activation layers are applied after
every layer except after the last two FC layers.

4 Training setup

This section describes the parameters used to train the networks as well as the
dataset structure. All the networks described have been trained separately but
maintaining the same parameters and training data in order to be able to do a
fair comparison between them.

The data used for training is part of the raw data section of KITTI Vision
Benchmark Suite [26], which involves a car based odometry problem suitable for
the analysis carried out in this paper. The odometry dataset is composed by 22
sequences, being the first 11 of these provided with its groundtruth transforma-
tions. Sequences 11-22 are intended to be used as evaluation, so no groundtruth
is provided. Sequences 00, 02, 08 and 09, which contain the highest number of
frames, are used for training and sequences 05, 07 and 10 for evaluation. The
training data is augmented by randomly applying gaussian noise, gaussian blur
and changes in intensity to the images as follows:

– 2/3 of the data: gaussian noise (mean=0, standard deviation=[0,32]) and
change in pixels intensity [-25%,25%]

– 1/3 of the data: gaussian blur with kernels 3, 5 and 7.

After augmenting the data, the training dataset has a total of 22912 image
frames. The images recorded in the dataset are sampled at 10 Hz as well as the
groundtruth. The IMU data arrives at 100 Hz, meaning that there are 10 IMU
measurements per image frame. However, there are frames where some IMU data
are missing. In that case, the first IMU measurement of the frame is used to pad
the missing measurements to fill the subsequence.

The loss function (Equation 11) used represents the euclidean distance be-
tween every estimated relative pose and its respective groundtruth, expressed in
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se(3). This loss function was inspired by VINet paper [23].

Lse(3) = Σ||ω − ω̂||+ β||t− t̂|| (11)

ω , ω̂, t and t̂ represent the estimated and groundtruth rotation and translation in
se(3), respectively. The parameter β is useful to balance the different magnitude
order between ω and t, and it is fixed to 0.1 in all trainings. Nesterov Accelerated
Gradient (NAG) [27] is used as optimizer (Equations 12 and 13). It speeds up
the convergence with respect to the standard Gradient Descent, as stated in [28],
measuring the gradient of the loss function not at the local position but slightly
ahead in the direction of the momentum, m.

m = βm+ λ∇(wse(3) + βm) (12)

wse(3) = wse(3) −m (13)

β acts as a friction factor, preventing the momentum from growing too large and
λ is the learning rate. The weights wse(3) are then updated according to m. For
training, a friction factor β = 0.9 was used. Senior et al. performed an empirical
study of different learning rate schedules [29], showing that implementing an ex-
ponential schedule (Equation 14) leads to a faster convergence and it is easier to
implement in comparison with other methods such as the performance schedule.

λ(t) = λ02
−t/r (14)

An initial learning rate (λ0) of 10−5 and a step (r) of 50 were used. With
these parameters, the learning rate is divided by 2 every 50 iterations. All the
networks have been implemented on TensorFlow and trained using a NVIDIA
GeForce GTX Titan X GPU. In order to reduce the training time, FlowNetS’
[13] weights were frozen during training.

5 Results

This section shows the evaluation results of all the networks. Initially, the VO
and VIO are compared separately with existing approaches that use the same
type of data. Then, the evaluation performance of all the networks proposed in
this paper are compared.

The proposed VO network has been evaluated using the metrics proposed in
KITTI’s odometry development kit. According to these metrics, the network is
executed on sequences 05, 07 and 10, getting the absolute pose for every frame
with respect to the first one. Then, the Root Mean Squared Error (RMSE) is
calculated for different trajectory lengths (100m, 200m, 300m, ...800m) over the
sequence. These results are shown in Table 1 along with VISO2 M and DeepVO
for comparison.

The VO network proposed in this paper outperforms VISO2 M in terms of
both translation and rotation errors for Sequences 05 and 10, being slightly worse
in translation for Sequence 07.
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Table 1. All the errors represent the average RMSE for all the possible sequence
lengths. trel is translation error and rrel is rotation error. DeepVO and VISO2 M
results are taken from [16].

trel(%) rrel(deg/m)

Seq Proposed VO VISO2 M DeepVO Proposed VO VISO2 M DeepVO

05 14.03 19.22 2.62 0.10 0.17 0.03

07 28.6 23.61 3.91 0.21 0.29 0.04

10 11.83 41.56 8.11 0.08 0.32 0.08

The proposed VIO network has been compared with the method proposed
by Hu and Chen in [30], which uses a MSCKF to perform monocular VIO.
They evaluate their VIO method in the first section of sequence 00. Therefore,
in order to do a fair comparison, the proposed VIO network has been trained
again eliminating the first 1000 frames of sequence 00 from the training dataset.
Then, the trained network has been evaluated in frames 0-800 of sequence 00,
which involve a total translation distance of 556.1 m. The estimated trajectory
is shown in Figure 4 and the end point translation and rotation errors are shown
in Table 2.

(a) Proposed VIO method estimated tra-
jectory.

(b) Hu and Chen VIO method estimated
trajectory.

Fig. 4. Estimated trajectory comparison between the proposed VIO and Hu and Chen
VIO methods. The evaluation trajectories have been made over the first frames of
sequence 00. Subfigure (b) has been taken from [30], in which Proposed method refers
to the VIO method proposed by Hu and Chen.

Although the proposed VIO method translation error is considerably bigger
than the one obtained by Hu and Chen, most of the contribution to that error
comes from Y axis error, which represents the height of the robot. X, Y and
Z errors for the end point are 6.90, 34.59 and 11.84 respectively. Moreover, the
translation percentage errors show that the translation error of the proposed VIO
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Table 2. Final point position and orientation error for the proposed VIO method and
the method proposed by Hu and Chen [30]. The translation error is shown both in
terms of absolute error of the final point and of percentage of that error with respect
of the total distance covered in frames 0-800.

Proposed VIO method Hu and Chen VIO [30]

Translation (m)/(%) 37.20 / 6.68 6.44 / 1.15

Rotation (deg) 15.64 1.05

method represents a 6.68% with respect to the total distance covered, meanwhile
this percentage is 1.15% for the Hu and Chen VIO approach.

In addition, the VIO network has been compared with VINet [23]. For this
purpose, the network has been executed over the whole sequence 10 and the
evaluation results have been calculated with KITTI metrics for paths of length:
100m, 200m, 300m, 400m and 500m. These results are shown in Figure 5 along
with VINet results.

(a) Proposed VIO method translation er-
ror.

(b) VINet method translation error.

(c) Proposed VIO method rotation error. (d) VINet method rotation error.

Fig. 5. The boxplot graphs show the translation and rotation errors distribution for the
different path lengths. In VINet error graphs, three different approaches are shown for
each path length . According to VINet paper [23], from left to right: VINet vision only,
VINet and EKF+Viso2. Subfigures (b) and (d) have been taken from VINet paper.

In order to compare the performance of the networks proposed, all of them
have been evaluated on sequences 05, 07 and 10. The results of this evaluation
are presented in Figure 6 and Figure 7. The checkpoint size of the proposed
IO, VO and VIO networks are 34MB, 173MB and 207MB respectively. Figure
6 shows graph errors for translation and rotation depending on the path length
and speed. On one hand, the IO network outperforms the VO network in terms
of rotation and it gets similar results to the VIO network. The reason behind



Sensor Analysis for Machine Learning Odometry 11

this result might be that inertial information is better suited for movements
that imply big changes in the frontal view of the robot. That is because when
the robot is turning, the images captured by the camera suffer from temporary
changes in illumination and blurring, causing the Optical Flow extracted by the
CNN to become unreliable.

(a) Translation error / length (b) Rotation error / length

(c) Translation error / speed (d) Rotation error / speed

Fig. 6. Average translation and rotation RMSE for different path lengths (100m to
800m) and speeds.

On the other hand, the VO network outperforms the IO network in terms
of translation error. This result shows that pure IMU based odometry suffer
from drift over time. This can be seen in Figure 7, which shows the estimated
trajectory for every network on Sequences 05, 07 and 10.

Analyzing Sequence 07, the IO network, while maintaining a good perfor-
mance in rotation, gets drifted in translation. In contrary, the VO network per-
forms better in terms of translation, but fails in estimating rotations. The best
performance, in sequences 05 and 07, is achieved by the VIO network. The tra-
jectories obtained with this network show that the combination of visual and
inertial information allows the network to provide better estimations both in
term of translation and rotation, maintaining a better transformation scale over
time.
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(a) Sequence 05 (b) Sequence 07

(c) Sequence 10

Fig. 7. Evaluation trajectories for the three network proposed run on Sequences 05, 07
and 10.

6 Conclusions and Future work

This work proposed, trained and evaluated three end-to-end approaches for
Odometry estimation. A performance comparison between them was carried out
in order to show how different combinations of a camera and an IMU can lead
to different results. The Inertial Odometry network has shown a large drift error
over time. However, when it is combined with the Visual Odometry network, the
drift is considerably reduced. Moreover, the Visual Inertial Odometry showed a
better performance when the robot is turning, outperforming the Visual Odom-
etry network. This showed how the IMU compensates the large displacement of
the objects in the camera. These networks have been compared with existing
approaches, showing promising results and outperforming (in the case of the Vi-
sual Odometry network) classical methods at a smaller memory footprint than
existing approaches.

Nevertheless, the proposed networks performance may be improved by in-
creasing the amount of data used for training to include indoor scenarios and
drone flying as they present a bigger challenge for Visual Inertial Odometry
systems due to the sudden and unstable movements. Further research is be-
ing performed on the introduction of sensor reading failures and approaches to
overcome them.
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