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leandro.lich@deepvisionai.com

Abstract. With the growing quantity and diversity of publicly available
image data, computer vision plays a crucial role in understanding and
organizing visual information today. Image tagging models are very often
used to make this data accessible and useful. Generating image labels
and ranking them by their relevance to the visual content is still an open
problem. In this work, we use a bilinear compatibility function inspired
from zero-shot learning that allows us to rank tags according to their
relevance to the image content. We propose a novel listwise structured
loss formulation to learn it from data. We leverage captioned image data
and propose different “tags from captions” schemes meant to capture
user attention and intra-user agreement in a simple and effective manner.
We evaluate our method on the COCO-Captions, PASCAL-sentences
and MIRFlickr-25k datasets showing promising results.

Keywords: learning to rank, zero-shot learning, image tagging, visual-
semantic compatibility, multimodal embedding

1 Introduction

In the past decade, we have witnessed a tremendous growth in the quantity and
diversity of media resources, especially images and videos. With all this infor-
mation being stored and shared across social and media platforms, the ability
to search and to organize such data efficiently is a problem of great practical
importance.

One of the main characteristics of social media data is its multimodal nature:
images and videos are frequently associated with user generated textual descrip-
tions (brief captions, tags, hashtags, etc.), providing complementary information
not necessarily present or apparent in the visual domain. Besides enriching and
complementing the visual information, the textual information can be used to
index the data, facilitating their access and analysis.

For computer agents trying to organize the data in an autonomous manner,
being able to automatically generate and rank tags and labels is an important
task. An alternative is to rely on a large pool of image classifiers and/or object
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detectors. However, using off-the-shelf classifiers for image tagging leads to re-
sults that does not resemble tags that a human user would choose to describe
the content of an image. For instance, predictions cast by models trained on Im-
ageNet [1] correspond to leaf nodes in the WordNet [2] lexical ontology and tend
to be overly specific. Moreover, image datasets annotated with object categories
usually consist of a restricted set of labels that reflects the presence or absence of
objects in images, disregarding other objects or visual properties that sometimes
are more relevant from the perceptual point of view. For instance, if we look at
some of the examples in Table 1 we see that annotations based on a fixed set of
object categories often miss important visual information (e.g. the mirror in the
first image) or give the same “relevance” to all objects, irrespective of their role
in explaining the semantic content of the scene (e.g. apple vs. refrigerator in the
third image).

Using annotations from tagging datasets, e.g. NUS-WIDE [3] or MIRFlickr
[4], where annotations correspond to actual tags generated by users on the Flickr
website, has also some difficulties. First, tags might be unrelated to the actual
visual content of the images, e.g. pictures tagged with the camera brand/model
they were captured with. Second, the set of possible tags, although richer, is still
restricted to a closed set of possible words.

In this work, we aim at learning a visual-semantic compatibility function that
allow us to rank textual descriptions (tags) according to their relevance to the
image content, without restricting ourselves to a fixed vocabulary at test time.
We propose a novel structured listwise ranking loss that encodes explicitly the
relevance of the tags to the actual content on the visual domain. Our approach
assumes the availability of a training set of image and ranked tags pairs. We
build such a training set by leveraging captioned image data like the COCO
Captions dataset [5]. Using multiple caption annotations, we propose a simple
and yet effective method for the extraction of image tags and to rank them
according to their relevance on explaining the visual scene. Our approach is
based on the following observations: i) common words chosen by different users
are good candidates for image tags (intra-user agreement), and ii) terms named
earlier in a sentence are visually more relevant than those named at the end
(user attention). We run extensive experimental evaluations on three different
datasets.

The rest of the paper is organized as follows. First, we present an overview
of related work. Then, we describe our model and propose different methods to
infer ranked tags from image captions. Last, experiments, results and discussion
are presented to conclude the paper.

2 Related Work

We now review related work on research areas that we believe are closely related
to our work, namely: image tagging, zero-shot learning (ZSL) and embeddings
for multi-modal data.
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Tag assignment and refinement. We focus on tagging methods that use informa-
tion provided by images and tags. A common intuition in such methods is that
visually similar images should share a similar set of tags. In the TagProp model
[6], tags for a test image are predicted based on a weighted sum of the annota-
tions of the most visually similar images on the training set. In [7], a distance
metric learning scheme is proposed, exploiting both image and tag information
in a transductive way. The learning formulation involves a triplet-based max-
margin objective, solved by stochastic gradient descent (SGD). TagCooccur+
[8] combines visual and tag information into a relevance score based on the co-
occurrence frequencies both on the visual and textual domain. RobustPCA [9]
factorizes the image-tag association matrix using a low rank decomposition with
an ℓ1 sparsity constraint. [10] proposes an approach based on Markov random
walks on a graph built from image similarities and image-tag associations. The
method proved to scale to very large datasets. [11] uses both images and tags
to build a graph. Learning takes place on the structure of this graph based
on samples and a pseudo-relevance measure. Different from other graph-based
approaches, edge weights are also learned, allowing to minimize the effect of un-
informative tags and visual words. We refer the reader to [12] for an extensive
review of the problems and different approaches proposed in the literature.

Zero-shot Learning and Recognition. Zero-shot learning aims at recognizing ob-
ject categories that might not have been seen during training [13–16]. In the
literature, there exists two formulations of this problem. In the original formu-
lation, it is assumed that train an test classes are disjoint. In the generalized
version of the zero-shot learning problem (GZSL) this assumption is relaxed and
the sets are allowed to overlap. This problem has shown to be more difficult than
ZSL. We refer the reader to [17] and [18] for recent surveys on the topic.

Most approaches dealing with either ZSL or GZSL assume that images and
class labels can be encoded as points in some vector spaces, e.g. feature vectors
extracted based on a pre-trained network [19, 20] and word/attribute embeddings
derived from side information [13, 21–23]. A compatibility function between (the
representations of) images and class labels is then learned from training data.
In this case, the most common approach is based on the use of bilinear forms
[16] and which we also follow in this work.

Multi-modal Embeddings. In the fields of computer vision (CV) and natural lan-
guage processing (NLP), the use of convolutional neural networks (CNN) and
distributional semantic models has lead to major advances. The combination of
both modalities [24–26] has shown great potential on several linguistic tasks. For
instance, [26] extends the skip-gram model of [22, 23] by taking into account the
visual information associated with a restricted set of words. The model showed
good performance on a variety of semantic benchmarks. [27] uses autoencoders
to learn grounded meaning representations from images and textual data. Ex-
perimental results on word similarity and word categorization showed that mul-
timodal information improves over unimodal counterparts. Even though our ap-
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proach does not learn a multimodal representation explicitly, we do constraint
the visual and textual spaces to be aligned in terms of their semantics.

3 Our Model

Given an image x ∈ X and a tag y ∈ Y, our goal is to learn a function s :
X × Y → R that provides us with a score regarding the compatibility between
the semantics of y and the visual content in x. Following [16], we model s as a
simple bilinear map:

s(ψ,φ)(x, y;W ) = ψ(x)
T
Wφ(y), (1)

where ψ : X → R
D and φ : Y → R

E denote image and word embeddings,
respectively. For a given choice of (ψ, φ), our goal is to learn W ∈ R

D×E from a
suitable set of training samples.

In our work, we assume the availability of a training set D = {(xn, Yn)}
N
n=1

consisting of images xn and ordered tag-sets Yn = {yn1 , · · · , y
n
|Yn|

}, with r(yn1 ;xn) ≥

· · · ≥ r(yn|Yn|;xn) for a given relevance measure r, i.e. (Yn,≥r(·;xn)) is a partially
ordered set. In what follows, we assume r is given, and thus the preference order
of the tags in Yn is known, for all n. Later, in Sec. 3.2 we will discuss differ-
ent formulations for r based on some consistencies observed in human-generated
captions, when different annotators are asked to describe the content of an image.

3.1 Learning Formulation

We consider loss functions of the form:

L(W ; r) =

N
∑

n=1

ℓ(Ŷ (xn), Yn), (2)

with Yn = {yn1 , . . . , y
n
|Yn|

} the tags for xn as ranked by ≥r(·;xn) and Ŷ (xn) the
same set of tags but ranked according to ≥s(ψ,φ)(·,xn;W ), i.e. the loss function ℓ
encodes the cost of predicting an order for the tags in Yn different from that
induced by the ground-truth measure r.

Structured Joint Embedding (SJE). First, we follow [16] and consider loss
functions of the form:

ℓSJE(x, Y ) = max
1≤i≤|Y |

[

∆(1, i) + s(ψ,φ)(x, yi)− s(ψ,φ)(x, y1)
]

+
, (3)

with [z]+ ≡ max(0, z). We explore two different formulations for the structured
term ∆ : N× N → R over relative orders, namely:

∆(I)(k, k′) = 1− δk,k′ (4)

∆(II)(k, k′) = 1− (k′ − k + 1)
−1
, k′ ≥ k (5)
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Eq. (4) corresponds to the structured loss of [16] when we assume the top-
ranked tag to be the only relevant tag for the image under consideration. Eq. (5)
considers the relative order of the tags. Its effect on Eq. (3) is to ensure that the
ground truth tag (top-1 in Y ) receives a higher score than the other tags in the
list.

Listwise Structured Joint Embedding (ListSJE). One of the shortcomings
of the previous formulation is that it penalizes wrong associations only w.r.t to
the most relevant tag in the list. Inspired by the likelihood loss formulation of
Xia et al. [28], we propose the following cost function:

ℓ
Ktop

ListSJE(x, Y ) =

Ktop
∑

k=1

∑

k<i≤|Y |

[

∆(k, i) + s(ψ,φ)(x, yi)− s(ψ,φ)(x, yk)
]

+
(6)

where we assume Ktop ≤ |Y | and ∆(k, k′) ≡ ∆(II)(k, k′). Compared to Eq. (3),
the loss given by Eq. (6) does also considers the relative ordering of the tags
within the set of relevant annotations.

3.2 From Image Captions to Ranked Tags

Our formulation assumes the availability of a dataset D = {(xn, Yn)}
N
n=1 of im-

ages, each of which is annotated with a list of tags sorted by decreasing relevance
according to a given measure r. Note that, given a set of possible tags for an im-
age, different definitions of r will lead to different preference relations for the tags
in the set. Defining r is also challenging, since the notion of “visual relevance”
for a tag might be influenced by external factors which are rather subjective and
difficult to grasp, e.g. user intentions, pre-existing knowledge, social context,
etc. Our approach is to build D from data by leveraging existing datasets like
COCO [5] where, besides object categories, each image is annotated with a set
of 5 different captions describing its visual content. Some example annotations
are shown in Table 1. Next, we describe different approaches to extract a list of
ranked tags from the captions available for each image.

Let C(x) = {c1, . . . , cQ} be the set of captions corresponding to image x. We
denote as t(ci) ≡ ti = {w : w ∈ ci and w is a noun} the set of nouns extracted
from ci ∈ C(x). Also, let loc(w; c) denote the relative location of word w within
c, e.g. loc(w = ”dog”; c = ”The dog bites.”) = 2/3 as “dog” is the second word
on a three-word sentence, and count(w; c) the number of times word w appears
in c. We define the following scores:

rloc(w) = max
c∈C(x)

{1− loc(w; c) : w ∈ c} (7)

rfreq(w) =
count(w; c1) + · · ·+ count(w; cQ)

|t1|+ · · ·+ |tQ|
(8)

The first is a proxy for visual attention (under the hypothesis that objects that
are mentioned earlier in a sentence are those which are more relevant to the
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Table 1. COCO example annotations (best viewed with magnification) and ranked
tags obtained by the relevance score of Eq. (9) on nouns and α = 0.5.

Categories Captions Tag / rnn0.5

clock

1. A brown mirror hanging on the wall.
2. there is a mirror where u can see the

reflection of a clock
3. a clock in the reflection of a mirror
4. A mirror on a wall reflecting a

wooden clock.
5. A mirror with a reflection of a clock

in it.

mirror 0.633
clock 0.580
reflection 0.425
wall 0.371

backpack
dog
person
surfboard

1. Two people walking with surf boards
and two dogs.

2. People with surf boards walking from
the shoreline accompanied by dogs
on a sunny day.

3. A group of people and dogs carry
their surfboards in hand.

4. Two boys with dogs carry surfboards
down the beach.

5. Two people standing next to a river
holding surfboards.

people 0.591
surf 0.483
group 0.481
boy 0.473
board 0.452
dog 0.441
surfboard 0.318
shoreline 0.304
river 0.223
beach 0.123
hand 0.106
day 0.085

apple
bottle
bowl
orange
oven
refrigerator
sink
wine glass

1. A bright red retro refrigerator in a
mostly white kitchen

2. Cooking utensils and bowls hanging
on a rack above an oven sitting in a
kitchen with a refrigerator, sink and
a window.

3. a kitchen with a fridge and a sink be-
low a window

4. a kitchen with a sink a refrigerator
and a window

5. This kitchen has a red refrigerator
and a black stove.

kitchen 0.568
cooking 0.523
utensil 0.502
refrigerator 0.391
rack 0.377
retro 0.373
sink 0.368
fridge 0.341
oven 0.314
window 0.118
stove 0.114

visual scene) while the second acts as a proxy for the agreement between different
users and the terms they choose when asked to describe the content of a scene.
We consider a simple combination of these scores and define a parameterized
measure as follows:

rα(w) = α rfreq(w) + (1− α) rloc(w), 0 ≤ α ≤ 1 (9)

Here, the hyper-parameter α controls the strength of the frequency score w.r.t
the location score.

We also consider two variations of the above based on the parse tree of each
caption, namely:

1. Use compound nouns instead of only nouns, e.g. {“soccer field”} instead of
{“soccer”, “field”}.

2. Use a syntactic version of the relative location score: the relative distance of
the word to the root in the syntactic dependency tree of the caption. Relevant
nouns do not necessarily appear first in a sentence, but they always appear
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Fig. 1. Syntactic dependency trees for two COCO captions. Edges point from parents
to children. Nouns are highlighted and annotated with their (absolute) distances to
the root word. The first caption is a nominal phrase with root noun “mirror”. The
second caption is a declarative sentence with nouns “boys” and “surfboards” as subject
and object respectively. Here, “dogs” occurs before “surfboards” but is less relevant
according to the tree.

at the top of dependency trees. In particular, main nouns are at the root of
nominal phrases, the most common caption type, and subject/object nouns
are directly attached to the root verb of declarative sentences. Examples of
these are shown in Fig. 1. As a drawback, a natural language parser must
be used, so errors made by the parser propagate to the score.

We denote the different combinations as rnnα , rcnα , rnn−syntacticα and rcn−syntacticα ,
where the superscripts nn and cn denote nouns and compound-nouns, respec-
tively.

We note that, choosing a particular form of relevance completely defines the
training set D on which future models will be trained on. In what follows, when
we refer to “a model” we refer not only to the loss function used to train the W
matrix in Eq. (1) but also to the dataset (set of image and ranked tags pairs)
used to train it.

4 Experiments

In this section we present experimental results regarding the models described
above. We first present the datasets used in our experiments and the experi-
mental setup we followed. Next, we discuss the benefits and limitations of the
proposed approach and how it compares to other approaches in the literature.

4.1 Datasets

In our experiments, we use three different datasets: COCO Captions [5], PASCAL-
sentences [29] and MIRFlickr-25k [4] that we describe next.
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COCO. We use the training and validation sets of the 2014 release of the
dataset, consisting of 123k images (∼83k for training and ∼40k for validation)
annotated with 5 different human descriptions each. In all our experiments, the
bilinear model of Eq. (1) is trained on the train set of the COCO dataset. To
tune the parameters (learning rate, number of epochs, etc.) we use a subset of
the training data. We use the validation set to evaluate different aspects of the
model.

PASCAL-sentences. The dataset contains 1k images from the PASCAL VOC
2008 Challenge [30], each of which was annotated with 5 different captions. We
use the PASCAL-sentences dataset as an independent set on which to test our
model. Note that, although the images from COCO and PASCAL are similar
in the sense that both datasets focus on generic object recognition in natural
scenes (no iconic views), the number of objects per image differs considerably.
For instance, around 10% for COCO images contain a single object while this
number increases to 60% for the images in PASCAL VOC [5].

MIRFlickr-25k. The dataset contains 25k images collected from Flickr to-
gether with the tags that users assigned to them. There are 1386 different tags,
with an average of 8.94 tags per image. Besides providing generic user tags, the
images were also manually annotated for a set of 24 different concepts. A second
round of annotations was performed for 14 of the original concepts, where the
images were deemed relevant for a given concept only if a significant part of the
concept appeared in the image.

4.2 Experimental Setup

Textual Features. In our experiments, we use pretrained word2vec4 [22, 23],
GloVe5 [31] and fastText6 [32] word embeddings. Nouns are lemmatized before
computing the vectors. For compound nouns, we compute the average vector
of the lemmatized constituent words. We use spaCy7 [33] to process caption
sentences and extract nouns, compound nouns, their lemmatized versions and
syntactic dependency trees.

Visual Features. We use VGG [19] and ResNet [20] convolutional architectures
to extract visual features from the images. Additionally, we also implemented
a simplified version of the multiscale R-MAC feature extractor [34] from the
retrieval literature, where we do not include the PCA whitening step after the
region-level feature pooling operation. Visual features are extracted from the

4 https://code.google.com/archive/p/word2vec/
5 https://spacy.io/models/en#en_core_web_md
6 https://fasttext.cc/docs/en/english-vectors
7 https://spacy.io/
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penultimate fully connected layer of a pre-trained VGG-19 or ResNet-152 ar-
chitecture. For R-MAC we consider three different scales (1, 2 and 4) and pool
features from activations of the last convolutional layer of a VGG-16 network.
We L2-normalize the max pooled features, average them and re-normalize the
resulting vector.

Model Training. To train our model we use mini-batch gradient descent with
a batch size of 16 over 10 epochs. We use the Adam optimizer with an initial
learning rate of 0.0001. All models were implemented in PyTorch v0.4.0 [35].
To train our models we used 3 NVIDIA GTX 1080Ti cards on an Intel Xeon
machine @ 2.6GHz with 64 GB of RAM. Training a single bilinear model took
approximately 2 hrs.

4.3 Experimental Results

In this section, we evaluate and discuss different aspects of our model. These
evaluations are carried out on the COCO and PASCAL-Sentences datasets. Next,
we compare the performance of our approach with other methods proposed in
the literature on the challenging MIRFlickr-25k dataset.

Tags from Captions. In Sec. 3.2 we presented a simple approach to extract
a set of tags from the captions describing a given visual scene. These tags cor-
respond to the nouns (or compound nouns) extracted from each image caption.
As such, they can all be considered as “relevant” to the actual visual content.
In our approach, however, what matters is not the relevance score of any par-
ticular tag but the order in which they appear in the annotation list. Instead
of trying to predict a ground truth order, we rank the different approaches ac-
cording to their ability to lead to predictable tags. That is, we train a bilinear
model as in Eq. (1) for each of the losses in Sec. 3.1. We chose the best tag
generation scheme based on the performance on the validation set of the COCO
dataset. For these experiments, we rely on VGG-19 and word2vec as image and
tag features, respectively. We use precision@1 and precision@5 as performance
metrics. Tables 2–4 show results for the different formulations and parameter α,
for each of the losses presented in Sec. 3.1. Best results are highlighted in bold.
For ℓListSJE we set Ktop = 5.

From the tables we see that, when considering p@1, the models based on
simple nouns and α = 0.75, rnn0.75, perform best for all loss functions. Among
them, the ℓSJE formulation with the ∆(II) structured loss leads to the best p@1
score on the COCO validation set. This behavior changes when we consider p@5
as the evaluation metric. In this case, the model based on compound nouns leads
to the best performance for all losses. We also note that, for p@5, setting α = 0
gives the best results. Interestingly, in these models the word frequencies play
no role. Only relative location scores are considered.
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Table 2. Tag predictability measured on the COCO validation set, using VGG-19 and
wor2vec features and the loss function of Eq. (3) with ∆ = ∆

(I).

Method
α

0.0 0.25 0.5 0.75 1.0

p@1

Nouns 0.4621 0.5752 0.6332 0.6457 0.5744
Nouns (syntactic) 0.4108 0.6203 0.6257 0.6350 0.5730

Compound-nouns 0.4435 0.5561 0.6095 0.6155 0.5018
Compound-nouns (syntactic) 0.4540 0.6019 0.6086 0.6140 0.5035

p@5

Nouns 0.6876 0.6814 0.6788 0.6786 0.6634
Nouns (syntactic) 0.6812 0.6791 0.6808 0.6782 0.6628

Compound-nouns 0.6952 0.6915 0.6920 0.6868 0.6438
Compound-nouns (syntactic) 0.7015 0.6977 0.6973 0.6880 0.6438

Table 3. Tag predictability measured on the COCO validation set, using VGG-19 and
wor2vec features and the loss function of Eq. (3) with ∆ = ∆

(II).

Method
α

0.0 0.25 0.5 0.75 1.0

p@1

Nouns 0.4810 0.5848 0.6395 0.6527 0.5865
Nouns (syntactic) 0.4391 0.6257 0.6309 0.6389 0.5859

Compound-nouns 0.4638 0.5664 0.6161 0.6243 0.5205
Compound-nouns (syntactic) 0.4755 0.6069 0.6137 0.6195 0.5191

p@5

Nouns 0.7162 0.7118 0.7031 0.7003 0.6747
Nouns (syntactic) 0.7064 0.7024 0.7029 0.6981 0.6752

Compound-nouns 0.7230 0.7169 0.7124 0.7055 0.6537
Compound-nouns (syntactic) 0.7200 0.7119 0.7109 0.7037 0.6537

Also interesting is that the best performance is observed for the listwise
formulation of Eq. (6).8 For the SJE loss of Eq. (3), ∆(II) is preferred over ∆(I).
In what follows, we focus on the rnn0.75 and rcn0.0 relevance measures.

Influence of the parameter Ktop. Next, we focus on the listwise ranking loss
of Eq. (6). In particular, we evaluate the influence of the parameter Ktop and dif-
ferent word embeddings on tag predictability. Results are shown in Fig. 2 for rnn0.75
and rcn0.0. Considering the choice of word embedding, fastText and word2vec ex-

8 In preliminary experiments, we explored the use of the tag scores, as given by the
relevance measure r, directly into the structured loss term in Eqs. (3) and (6).
However, we did not observe any improvement w.r.t to the simpler formulations
given by Eqs. (4) and (5).
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Table 4. Tag predictability measured on the COCO validation set, using VGG-19 and
wor2vec features and the loss function of Eq. (6) with Ktop = 5.

Method
α

0.0 0.25 0.5 0.75 1.0

p@1

Nouns 0.4660 0.5619 0.6250 0.6424 0.5791
Nouns (syntactic) 0.4284 0.6085 0.6166 0.6274 0.5797

Compound-nouns 0.4488 0.5391 0.5972 0.6123 0.5092
Compound-nouns (syntactic) 0.4722 0.5897 0.5979 0.6027 0.5098

p@5

Nouns 0.7415 0.7411 0.7417 0.7385 0.6899
Nouns (syntactic) 0.7302 0.7322 0.7329 0.7322 0.6897

Compound-nouns 0.7472 0.7468 0.7461 0.7405 0.6646
Compound-nouns (syntactic) 0.7392 0.7391 0.7382 0.7335 0.6639

hibit a similar performance, outperforming GloVe vectors for all values of Ktop.
When comparing different image features, VGG-19 shows better performance
than ResNet-152 and R-MAC features for both rnn0.75 and rcn0.0 measures for all
values of the parameter. In what follows, we choose VGG-19 and word2vec fea-
tures as the best configuration.

Results on PASCAL-sentences. We now turn to the evaluation of our model
on the PASCAL-sentences dataset. Fig. 3 shows precision@k for different values
of k for (ψ, φ) = (VGG-19, word2vec) and the ranking loss of Eq. (6). We also
consider a varying number of distractors, i.e. tags sampled at random from the
set of all tags extracted from all the images in the dataset which are different
from those of the query. Distractors are only sampled at test time. Additionally,
we show the performance of a random ranker (dashed lines).

From the figure we observe that precision increases with k. This is to be
expected since we rank a fixed pool of potential tags per image. However, the
relative gain w.r.t to the random ranker is greater for a larger number of dis-
tractors. For instance, for the model trained on the rnn0.75 setting and k = 5 the
gain in performance is +25%, +68%, +110% and +176% for 0, 5, 10 and 20
distractors per image, respectively. It is also interesting to note that for k = 1,
there is a large gap between the noun and compound-noun based systems, with
the former giving +0.2 absolute improvement w.r.t the latter. For larger values
of k, the difference decreases significantly.

Results on MIRFlickr-25k. In this section we compare the performance of
our approach against other methods proposed in the literature on the MIRFlickr-
25k dataset. We report mean average precision (MAP) and image-centered mean
average precision (MiAP) on the set of 14 more restrictive (“relevant” set) tags
as in [12]. We compare our method to TagProp and the SVM-based method pro-
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Fig. 2. Precision@{1,5} for rnn

0.75 (left) and r
cn

0.0 (right) as a function of Ktop in Eq. (6),
measured on the validation set of the COCO dataset (best viewed in color).

Fig. 3. Precision@k on the PASCAL-sentences dataset using VGG-19 and word2vec
features (best viewed in color).
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posed by the authors in [6]. We also compare to some of the methods reported in
[12], namely: the UserTags baseline and two of the CNN-based models (TagCooc-
cur+ [8] and RobustPCA [9]) trained on a 100k images dataset. These methods
where shown to be among the top performing on the task of tag assignment and
refinement [12].

For the experiments on this dataset, we build an image-tag affinity matrix
whose entries are the average of two normalized similarity terms:

s1(x, y) =
φ(x)T W ψ(y)

‖φ(x)‖ ‖Wψ(y)‖
, s2(x, y) =

φ(x)T φy
‖φ(x)‖ ‖φy‖

(10)

where φy denotes the average feature vector for the images in the training set
tagged with term y. In the above, s1 is a normalized (on the image embedding
space) version of the similarity score of Eq. (1) while s2 encodes the intuition
similar images should share similar tags. To compute φy, we generated train and
test splits as in [6] and divided the dataset by taking every second image for
training and the rest for testing. The matrix W was trained as before using the
ranked tags derived from the train set of the COCO dataset. Results are shown
in Table 5.

Compared to the handcrafted feature-based methods of [6] (SVM and Tag-
Prop) our approach compares favorably. Although this is to be expected (we
rely on more robust visual features), we opted to present the original results of
[6] for reference. Note, however, that both TagProp and SVM achieve a better
MAP score than CNN+TagCooccur+ [8] which is based on VGG-16 convolu-
tional features. Compared to CNN+RobustPCA [9], our models are behind in
terms of MAP but compare favorably in terms of MiAP.

Table 5. Results on the MIRFlickr-25k set.

Method MAP MiAP

TagProp (Rank) [6] 0.404 -
SVM [6] 0.466 -

UserTags [12] 0.263 0.204
CNN + TagCooccur+ [12, 8] 0.381 0.277
CNN + RobustPCA [12, 9] 0.627 0.376

Our (rnn

0.75, Ktop = 1) 0.521 0.389
Our (rcn0.0, Ktop = 7) 0.514 0.370

5 Conclusions

In this paper, we proposed a new method to learn a visual-semantic compatibility
based on a structured listwise ranking loss formulation. Since there is no dataset
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containing per-image ranked tags in the literature –which is required to train our
model– we take advantage of images captions from publicly available datasets
and proposed several methods to automatically extract a list of tags from image
captions, sorted according to its relevance to the visual content of the scene.
Based on the this, we were able to train models that compare favorably to some
other methods proposed in the literature, showing promising results. In future
work, we want to explore different tag inference mechanisms as well as to include
explicit models of visual attention, integrating the visual and semantic feature
generation into an end-to-end architecture.
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