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Maria Gabrani1, and Haralampos Pozidis1

1 IBM Research – Zurich, 8803 Rüschlikon, Switzerland
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Abstract. Stain normalization is one of the main tasks in the processing
pipeline of computer-aided diagnosis systems in modern digital pathol-
ogy. Some of the challenges in this tasks are memory and runtime bot-
tlenecks associated with large image datasets. In this work, we present a
scalable and fast pipeline for stain normalization using a state-of-the-art
unsupervised method based on stain-vector estimation. The proposed
system supports single-node and distributed implementations. Based on
a highly-optimized engine, our architecture enables high-speed and large-
scale processing of high-magnification whole-slide images (WSI). We
demonstrate the performance of the system using measurements from
different datasets. Moreover, by using a novel pixel-sampling optimiza-
tion we show lower processing time per image than the scanning time of
ultrafast WSI scanners with the single-node implementation and addi-
tional 3.44 average speed-up with the 4-nodes distributed pipeline.

Keywords: Histopathological image processing, whole-slide images, stain
normalization, distributed computing, color deconvolution

1 Introduction

In digital pathology, computer-aided diagnosis (CAD) has become an essential
part of the clinical work with the advent of high-resolution whole-slide imaging
technology. The fusion of machine learning (ML) based image analysis algo-
rithms, and digitized histological slides are assisting the pathologists in terms
of workload reduction, efficient decision support [23], [10] and interpretability
of the results [21]. Given the vast amount of gigapixel-sized whole-slide imaging
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data, and the need to accelerate the time-to-insight, there is an increasing de-
mand to build automated and scalable pipelines for large-scale and fast image
analysis.

Color normalization of stained tissue samples is one of the main preprocess-
ing steps in whole-slide image (WSI) processing [24]. Despite the standardized
staining protocols, variations in the staining results are very frequent due to
differences in the staining parameters, e.g. antigen concentration and incubation
time and temperature, different conditions between slide scanners, etc. [21]. Such
color/intensity variations can adversely affect the performance and accuracy of
the CAD systems. Therefore, stain normalization techniques have been proposed
to generate images with a standardized appearance of the different stains [17,
15, 11, 8, 9, 2, 1, 7].

In this work, we use the Macenko method [11] to implement a high-performance
stain normalization system. The algorithm does not involve intermediate steps
that require training of model parameters and is thus computationally less ex-
pensive. Our stain normalization system is based on an optimized multi-core im-
plementation of the singular-value decomposition-based method (SVD) in [11].
In addition, to support the processing of high-magnification images, where the
size of the image may not fit in the CPU memory (e.g., a 40X magnification
WSI of 160k×80k pixels corresponds to 37.5 GB of data in RGB), we devise an
iterative multi-batch implementation. Furthermore, we design 2 system flavors:
single-node and distributed multi-node versions. The latter offers a scalable solu-
tion that enables large-scale and high-speed processing of high-resolution WSIs
using a cluster of nodes with multi-core CPUs. Finally, our implementation sup-
ports multiple image formats (e.g., .svs, .tiff, .ndpi) which enables the evaluation
of stain normalization on datasets generated by different scanners.

Our contributions are the four-fold as follows:

(a) A high-performance implementation of the Macenko algorithm [11] that en-
ables processing of gigapixel WSI (magnification 40X and beyond);

(b) A distributed architecture that uses computing power of a cluster to further
accelerate the stain normalization workload;

(c) A pipeline that supports multiple execution modes, i.e., single- or multi-
node execution, depending on the image size and the system resources, e.g.,
available RAM, cluster nodes (machines);

(d) An evaluation of the proposed system on WSI datasets generated by different
scanning systems thus having different image formats and characteristics.

In the next sections, we present the architecture and implementation aspects of
our novel stain normalization system. We discuss the optimization steps and the
role of the various parameters in the runtime and accuracy of the algorithm.

2 Stain Normalization of Whole-Slide Images

The stain normalization method presented in [11] belongs to the class of unsu-
pervised normalization methods. The algorithm estimates first the hematoxylin



High-Performance Pipeline for Stain Normalization of WSI 3

and eostin (H&E) stain vectors of the WSI of interest by using an SVD approach
on the non-background pixels. Second, the algorithm applies a correction to ac-
count for the intensity variations due to noise. The algorithm is based on the
principle that the color of each pixel (RGB channels) is a linear combination of
the two stain vectors which are unknown and need to be estimated.

As a reference implementation of the Macenko algorithm [11] we use a pub-
licly available MATLAB implementation [19]. We outline the algorithmic steps
in Algorithm 1. Additional details are available in [22].

Algorithm 1 SVD method for obtaining the stain vectors

1: Convert RGB to optical density (OD)
2: Remove data with negligible optical density
3: Calculate SVD of the OD tuples and use the largest 2 values to create SVD plane
4: Project data onto the plane, normalize to unit length
5: Calculate the angle φ of each point with respect to the 1st (or 2nd) SVD direction
6: Find the robust extremes (αth and (100− α)th percentiles) of the angle φ

7: Find the projection of the extreme values back to OD space
8: Use this projection as optical density matrix (ODM, see [17])
9: Calculate the individual stain concentrations (Ch and Ce) using the inverse of ODM
10: Find the robust max. ((100−α)th percentile) of the individual stain concentrations
11: Normalize and transform concentrations to OD space and then back to RGB

3 High-Performance Stain Normalization Architecture

3.1 Optimized Multi-Core Architecture

We develop two optimized single-node implementations: (a) single-batch and
(b) multi-batch. The single-batch implementation is intended to minimize the
processing time on a single-node, while the multi-batch implementation enables
processing of 40XWSI when their size is larger than RAM of a single node (Table
in Fig. 4(c)). Both implementations follow the steps shown in Algorithm 1. Due
to multiple optimizations, we reorganize the steps as in Fig. 1.

Steps 1-3

B
Steps 1-2, 4-6

BA BB
Steps 7-8

BBBC B
Steps 1-2, 9-10

BBD
Steps 1, 11

BBBE

Fig. 1. Mapping of the Macenko Algorithm 1 steps to our optimized implementation

To enable single-batch processing of 40X images on state-of-the-art machines
with 64GB of RAM, only RGB pixel values are permanently stored in memory.
Steps 1-2 of Algorithm 1 are executed multiple times, in the processing blocks A,
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B and D in Fig. 1, because these blocks operate on non-background pixels in OD
space. Step 1 is executed also in block E, because this block requires all pixels in
OD space. Step 1 is performed using a 256-entry lookup-table that greatly speeds
up the logarithm calculation. Moreover, Step 2 removes the background pixels
which significantly reduces both the processing and the memory load. In the
multi-batch implementation, batches of RGB pixel values are only temporarily
stored in RAM and are read from the file system in the blocks A, B, D, and E.

To speed up the CPU processing we perform the following optimizations:
(a) In block A, during SVD calculation, the covariance matrix is calculated

using the property that the element (i, j) of the matrix, Σij =
1

N2 (
∑

p xp,ixp,j −∑
p xp,i

∑
p xp,j), requires only the sums of OD components.

(b) In blocks B and D, which are benchmarked as the most time-consuming
steps, partial sorting is performed to find the percentiles from Steps 6 and 10.
This partial sorting runs 2-3x faster compared to full sorting. In the multi-batch
implementation, individual batches are partially sorted and then combined using
an optimized merging function to calculate the global robust extremes.

(c) For the exponential function in the processing block B, we use the fast
exponentiation library [4] since it performs 5-10x faster compared to the corre-
sponding function in the standard C library.

(d) Since the processing blocks A, B, D, and E perform many independent
operations on individual pixels, their execution is parallelized across all available
CPU threads using the OpenMP library [13].

Given that the processing blocks B and D are the most time-consuming
due to the difficulty of parallelizing the sorting operation, we propose another
optimization that is using a Monte Carlo sampling technique [5]. In this method,
a sample of non-background pixels is randomly chosen from the set of all non-
background pixels in order to estimate the required robust extremes from Steps 6
and 10. Despite different methods for estimating the population percentiles [18],
estimating the variance of the percentile estimates is unreliable, thus making
the analytical estimation of the required sample size difficult [3]. Therefore, we
derive the optimal sample size based on empirical results in Section 5.

3.2 Distributed Architecture

We present a novel distributed implementation of the Macenko algorithm. This
implementation is useful when the WSI size is significantly larger than the RAM
of a single node. The distributed solution uses all the optimizations presented
in Section 3.1. We provide 2 multi-node implementations: (1) single-batch (the
local image partition is fully read once) and (2) multi-batch (the local image
is split into batches which temporarily reside in RAM and read multiple times
when needed). For inter-node communication we use the MPI library [12].

Fig. 2 shows an overview of the multi-node setup. The WSI typically resides
in a file system shared across all nodes. We split the WSI into partitions WSIi,
i ∈ {0, 1, 2, 3}, and assign each partition to a separate node. Each node reads
only its assigned partition. All nodes run the optimized Macenko algorithm on
their partitions in parallel. Some processing steps need synchronization across
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nodes, e.g. Steps 6 and 10 in Algorithm 1. Thus one node needs to aggregate
the relevant pixel data and compute, e.g. the global robust percentiles. We call
this node master. Fig. 2 shows a cluster of 4 nodes interconnected via a network,
each node being assigned a part of the image. All nodes are slaves and node 0 is
also master. We use this cluster setup for the experiments run in Section 5.

Fig. 2. Cluster setup and image partitioning scheme.

To describe the image partitioning, we define the partitioning element gran-
ularity as being a tile (stripe) for the single-batch implementation and a batch
(e.g., a set of tiles/stripes) for the multi-batch implementation. The tile (stripe)
is a rectangular contiguous part of the image, e.g., a tile is a 256x256-pixel image
region. Let N be the number of nodes (indexed from 0). The image is composed
of elements (tiles or batches) that form a grid with C columns and L rows. The
total number of elements E is equal to CxL. Each element e can be uniquely
described by 2 coordinates c and l, where c ∈ {0, .., C − 1} and l ∈ {0, .., L− 1}.
Given c and l, we compute the element index as e(c, l) = l · C + c. The par-
titioning across nodes is performed by assigning element e(c, l) to node [e(c, l)
mod N ]. Fig. 2 shows a partitioning example, where N = 4, C = 5 and L = 3.
This partitioning scheme is preferred over assigning contiguous sets of elements
to each node in order to reduce the node imbalance due to input content. For
example for 2 nodes and an image in which the top half is background, the con-
tiguous scheme would assign an empty image to node 0. In this case, there will
be a large processing imbalance between the 2 nodes, impacting the scalabil-
ity of the distributed system. For the multi-node single-batch implementation,
given tH the tile height, tW the tile width, H the WSI height and W the WSI
width, all variables expressed in pixels, C = ⌈W/tW ⌉ and L = ⌈H/tH⌉. For the
multi-node multi-batch implementation, the user defines a batch size Bsize as
being the maximum number of pixels that can reside in RAM at any given time.
Assuming square batches, then a batch will have the width and height equal to
⌊
√
Bsize⌋, which implies that C = ⌈W/⌊

√
Bsize⌋⌉ and L = ⌈H/⌊

√
Bsize⌋⌉.

Fig. 3 shows the communication flow across nodes at different algorithm
stages. First, each node reads its partition, runs Steps 1-2 of Algorithm 1 and
computes the local OD sums and number of non-background pixels. Next, we
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Fig. 3. Communication stages across nodes at different stages of the stain normaliza-
tion algorithm.

run an MPI reduction phase to compute on all nodes the global number of non-
background pixels and OD sums. Then, each node runs Steps 3-5 and sends its
local vectors of angles to the master, where the global 1st and 99th percentiles of
the projected angles are computed. The master then sends these percentiles to
all slaves so that they can run Steps 7-9. The master computes the global 99th

percentiles of the stain concentrations based on the local concentration vectors
sent by the slaves. The global percentiles are sent to all slaves which are used
for normalization. Finally each node writes its image partition to a file.

3.3 Mode Selection Pipeline

Fig. 4 shows the pipeline architecture for implementing mode selection depending
on the image size and the system resources. Given the input image size, which
depends on the image format and the targeted magnification, e.g., 10X, 40X,
etc., and the system resources in terms of number of available nodes and main
memory capacity per node, the optimal execution mode is selected. For example,
if the image fits in the memory of a single node, then mode 1 in the table shown
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Fig. 4. High-level diagram of the mode selection pipeline depending on image size and
hardware resources. Data (in table) refers to either the full WSI or the image partition
assigned to the node.

in Fig. 4(c) is selected. Otherwise, mode 2 is selected and the stain normalization
engine will process the image in batches. If a cluster of nodes is available,mode

3 or 4 will be selected depending on whether the data partitioned among the
different nodes fits in RAM or not, respectively.

4 Whole-Slide Image Datasets

To analyze the performance and scalability of our pipeline, we used H&E-stained
WSIs from 4 datasets. The first one is part of TUPAC MICCAI 2016 [20] and
provides breast WSIs for prediction of tumor and proliferation scores. These
WSIs are in Aperio format, single-file pyramidal tiled TIFF (.svs), with JPEG
compression scheme. The CAMELYON16 dataset [6] is part of the ISBI challenge
on cancer metastasis detection in lymph node. These slides are in Philips format,
single-file pyramidal tiled TIFF or BigTIFF (.tif) with non-standard metadata
and JPEG compression scheme. The remaining 2 datasets are proprietary but
we used them to test the flexibility of our pipeline to different WSI formats. One
dataset provides slides in Ventana format, single-file pyramidal tiled BigTIFF
with non-standard metadata. The other dataset contains slides in Hamamatsu
format, single-file TIFF-like format (.ndpi) with proprietary metadata. All the
slides include 2.5X, 10X and 40X magnifications, except for the fourth dataset
that includes 2.5X and 10X magnifications only. A de facto community standard
for reading various WSI formats is OpenSlide C library that provides a simple
interface to WSIs [14]. However, we wrote the proprietary functions that rely on
the existing API from libTIFF and BigTIFF standard libraries for reading and
writing of supported WSI formats that allow significantly faster read times as
shown in Table 1 for various image formats and magnifications. In addition, our
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read functions have lower memory requirements compared to OpenSlide library
functions.

Table 1. Image read speed-up of our implementation compared to OpenSlide

5 Experimental Results

40X WSI Processing. Fig. 5 shows three images generated by different scan-
ners, which we will further refer to as Scanner A, B and C, respectively. The top
row shows the original images and the bottom row shows the normalized versions
after running the normalization pipeline of Section 3. Each panel in Fig. 5 cor-
responds to a 1024x1024-pixel region of the image at 40X magnification. While
the input images (top row) show significant color variation, the normalized ones
show more uniform color contrast as a result of the normalization process.

Single-Node Results. Figs. 6(a)-(d) present measurements of the process-
ing time of the single-node system. Figs. 6(a)-(b) show the total processing time,
including the time to read the images, as a function of the image size for the
single- and multi-batch implementations in double-logarithmic scale. The differ-
ent colors correspond to images in 2.5X, 10X, and 40X magnification, while the
different markers correspond to the different datasets. The multi-batch imple-
mentation exhibits a moderate time increase that is mainly attributed to the
multiple image reading overhead. A number of 4 batches has been used in all
single-node multi-batch measurements. Figs. 6(c)-(d) show the corresponding
processing time only as a function of the number of non-background pixels. For
each magnification, the measurements scale almost linearly with the number of
non-background pixels. The processing time shows an offset for higher magnifi-
cations due to the initial memory allocation and final image normalization steps
that are performed on the whole image.

Single-Node vs. Reference Results. Table 2 reports the average exe-
cution time over all images for all datasets in 10X magnification using the
single-node implementation described in Section 3.1, compared with the orig-
inal MATLAB code in [19] and reference C++ implementation based on it using
OpenSlide library for reading of the images. All measurements have been col-
lected on a single node with a 10-core Intel R© i7-6950X CPU at 3GHz and 64GB
of RAM. Our implementation achieves a speed-up factor larger than 8 for 10X
images.
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(a) (c)

(f)(d)

(b)

(e)

Scanner A Scanner B Scanner C

Fig. 5. Input images from different datasets and scanners (a)-(c) and normalized output
images (d)-(f) after applying the stain normalization pipeline

(c) (d)

single-node mult-batchsingle-node single-batch

Fig. 6. Experimental results showing the performance of the proposed stain normal-
ization pipeline on WSI from different datasets and magnification factors
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Table 2. MATLAB vs. single-node implementations (averaged for 10X images)

(b)

multi-node multi-batch

(a)

multi-node single-batch

Fig. 7. Performance of distributed implementation based on the number of nodes for
different image types and 40X magnification.

Multi-Node Results. Figs. 7(a)-(b) show the scalability results of the
multi-node single-batch and multi-batch implementations, respectively. Measure-
ments have been collected on a cluster of nodes with an 8-core Intel R© Xeon R©

E5-2630v3 CPU and 64GB of RAM. We show aggregated processing and read
time as a function of the number of nodes for 40X magnification images. Each
point and color represent an image and a dataset, respectively. For the single-
batch implementation the speed-ups when increasing the number of processing
nodes compared to the single-node measurements are as follows: 1.70X (2 nodes),
2.29X (3 nodes) and 2.80X (4 nodes). For the multi-batch implementation we
measure the following average speed-ups compared to the single-node multi-
batch measurements: 1.87X (2 nodes), 2.60X (3 nodes) and 3.30X (4 nodes).
The reasons for the sub-linear scaling are the communication overhead of Blocks
B and D in Fig 3, and aggregation of intermediate results (merging of the vectors)
in Blocks 6* and 10* in Fig 3.

Single-Node Pixel Sampling Results. Figs. 8(a)-(b) show the Euclidean
distance (Ed) of ODM and the relative error of the robust maximum of the
individual stain concentrations (maxCh and maxCe), respectively, between the
sampling and no-sampling results. The measured Ed values of the individual
stains are almost negligible compared to typical values such as the ones reported
in Table 1 of [1] with a sampling rate of non-background pixels as low as 0.01%.
Similarly, the relative error of the robust maximum estimation drops below 1%
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single-node single-batch sampling performance on 40X images

Fig. 8. Euclidean distance of ODM and the relative error of the robust maximum of
the individual stain concentrations for various sampling rates.

Table 3. Processing time for different sampling rates, single-node single-batch imple-
mentation (40X images)

for a sampling rate of 1%. The higher sampling rate value in case of robust
maximum estimation is required to offset the error aggregation from ODM esti-
mation. Nevertheless, the increase in total processing time with respect to the
sampling rate is negligible even for rates as large as 1%, as shown in Table 3.
The average processing time (without read time) for different sampling rates
and for the single-node single-batch implementation (no-sampling) is shown in
Table 3. Thanks to the sampling method, the overall processing time is reduced
by a factor of 1.3-9x depending on the image type, for 40X magnification. This
effectively reduces the processing time to normalization time yielding this imple-
mentation as fast as methods that apply a fixed reference normalization template
regardless of the input image [16].

Best Single-Batch Results. Table 4 shows the average speed-ups across
all 40X magnification datasets of the single-node single-batch (with 1% sam-
pling), four-node single-batch (with and without sampling) when compared to
the single-node single-batch implementation without sampling. By combining the
sampling technique with the distributed pipeline we attain an average speed-up
of 3.44 and 5.19 vs. the single-node with and without sampling, respectively.
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Table 4. Single-batch implementations (averaged for 40X images)

6 Conclusions

We built a fast and scalable pipeline to enable large-scale stain normalization of
high-resolution histopathological whole-slide images. Our pipeline uses a highly
optimized low-level engine that performs the required image processing func-
tions and is based on a distributed computing architecture that is scalable in
both image size and number of computing nodes. The presented pipeline tackles
the memory and runtime bottlenecks of high-magnification images and enables
the preprocessing of large datasets, which is a critical prerequisite for any ML
framework applied to biomedical images. Our next steps involve: (a) performance
evaluation of ML frameworks applied to stain normalized images, (b) automa-
tion of the pipeline mode selection, and (c) automated batch distribution based
on the number of non-background pixels for load balancing across nodes.
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