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Abstract. Chromosome karyotyping is a two-staged process consisting of seg-

mentation followed by pairing and ordering of 23 pairs of human chromosomes

obtained from cell spread images during metaphase stage of cell division. It is

carried out by cytogeneticists in clinical labs on the basis of length, centromere

position, and banding pattern of chromosomes for the diagnosis of various health

and genetic disorders. The entire process demands high domain expertise and

considerable amount of manual effort. This motivates us to automate or partially

automate karyotyping process which would benefit and aid doctors in the analysis

of chromosome images. However, the non-availability of high resolution chromo-

some images required for classification purpose creates a hindrance in achieving

high classification accuracy. To address this issue, we propose a Super-Xception

network which takes the low-resolution chromosome images as input and classi-

fies them to one of the 24 chromosome class labels after conversion into high res-

olution images. In this network, we integrate super-resolution deep models with

standard classification networks e.g., Xception network in our case. The network

is trained in an end-to-end manner in which the super-resolution layers help in

conversion of low-resolution images to high-resolution images which are subse-

quently passed through deep classification layers for label assigning. We evaluate

our proposed network’s efficacy on a publicly available online Bioimage chro-

mosome classification dataset of healthy chromosomes and benchmark it against

the baseline models created using traditional deep convolutional neural network,

ResNet-50 and Xception network.
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1 Introduction

Chromosome karyotyping is one of the important tasks considered in the field of cytoge-

netics. It is performed by cytogeneticists in which they segment and classify individual

human chromosome images obtained during metaphase stage of cell division. A healthy

human cell consists of 22 pairs of autosomes and a single pair of sex chromosomes (X

and Y), thus giving a total of 23 pairs of chromosomes. Doctors examine the individual

chromosomes and assign them to one of the 24 chromosome classes on the basis of var-

ious differentiating characteristics like banding pattern, centromere position, and length

of chromosomes. An example of a karyotyped image obtained is shown in Figure 1.
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Fig. 1. An example chromosome karyotyped image.

In clinical labs, karyotypes provide doctors with the diagnostic information for spe-

cific birth defects, genetic disorders, and cancers mainly occuring due to structural

changes, such as chromosomal deletions, duplications, translocations, or inversions.

This process of manual segmentation and analysis of each and every chromosome for

diagnosis purpose consumes a considerable amount of time and is highly dependent on

expert knowledge. Thus, it motivates us to automate or semi-automate the karyotyping

process in order to assist doctors and reduce their cognitive load by expediating the task

of karyotyping. In this paper, we attempt to automate the classification stage of kary-

otyping with the assumption of availability of segmented and straightened individual

chromosomes.

In recent past years, researchers have shown interest in automating the karyotyping

process and proposed various machine learning and deep learning techniques [27], [22], [31],

[23] with encouraging results. The main problem with these existing methods is that

the performance of classifier deteriorates when the resolution of chromosome images

is very low. The non-availability of high resolution images and requirement to obtain

very high classification accuracy persuaded us to explore existing super-resolution tech-

niques [37], [16], [11], [30] for low-resolution image classification tasks.

Although image analysis would be ideal with high quality images, but this is not

always possible in practice because of non-availability of high resolution images. Con-

sidering the fact that higher the image resolution, the easier is the classification, we take

cues from established literature on low resolution image classification and propose an

end-to-end deep learning framework for automating chromosome classification of low-

resolution images. The proposed network is an integration of deep super-resolution lay-

ers with a standard classification network (e.g. Xception network [8]) which is trained

in an end-to-end manner and we named it as Super-Xception network. Before feed-

ing the individual chromosome image as input to Super-Xception model, we perform

a pre-processing step of length normalization to preserve the important distinguishing

characteristic of chromosomes. During these explorations, we make the following main

contributions in the paper :

1. To the best of our knowledge, the proposed work is the first attempt to automate

classification of low-resolution chromosomal images.
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Fig. 2. Proposed architecture of Super-Xception network for chromosome classification. A low-

resolution image of size 50×50 is given as an input to the network which is resized to image ILR

of size 227 × 227 via bicubic interpolation. Subsequently, ILR is passed through convolutional

super-resolution layers and a high-resolution image I
HR is produced. Further, IHR is fed to

convolutional classification network (Xception [8]) which outputs chromosome class labels in

the range (0− 23).

2. We propose an end-to-end trainable Super-Xception network for automatic chro-

mosome classification of low-resolution images. The architecture of the network is

shown in Figure 2.

3. We experimentally verify that the proposed Super-Xception network achieves supe-

rior performance for automatic chromosome classification of low-resolution images

than the state-of-the-art networks like Deep Convolutional Network (DCNN) [31],

ResNet-50 [17] and Xception [8] on a publicly available Bioimage Chromosome

Classification dataset [29], [1].

The remainder of the paper is organized as follows: Section 2 gives an overview of

related work in the field of chromosome karyotyping and super-resolution of images.

Section 3 describes the proposed methodology for automatic chromosome classification

which is followed by a brief description of deep super-resolution layers and Xception

network in Sections 3.1 and 3.2, respectively. In Section 4, we explain the proposed

architecture of Super-Xception network. Subsequently, Section 5 gives details about

the dataset, the training setup utilized and a discussion on the obtained results. Finally,

we conclude the paper and discuss future directions in Section 6.

2 Related Work

Cytogeneticists spend considerable amount of manual effort and time in the karyotyping

process which involves segmenting individual chromosomes from cell spread metaphase

image and classifying the obtained individual chromosome segments to 24 classes. To

reduce the cognitive load and aid doctors in the analysis of chromosomes and accelerate

the process of karyotyping, research community have developed many computational

algorithms [27], [5], [6]. A lot of work has been carried out on automatic segmentation

of overlapping chromosomes [3], [28] and chromosome classification [13], [26], [31], [23]

with encouraging results. Earlier, several techniques were developed for straightening



4 Swati et al.

of bent chromosomes [22], [21] to improve classifier performance. However, we found

that there exists no work on chromosome classification when the images are of low

resolution. Generally, it is difficult to obtain high resolution chromosome images from

hospitals / labs which results in poor performance of the classifier. This motivated us to

take up the task of automating chromosome classification in scenarios where the chrom-

some images are of inferior quality. Here, we make an assumption that we have been

provided with segmented and straightened individual chromosomes.

There exists numerous super-resolution techniques for conversion of low-resolution

(LR) to high-resolution (HR) images in vision field for better performace. Existing

super-resolution (SR) algorithms are grouped into four groups: image statistical meth-

ods [19], example-based methods [37], [16], [11], [30], [10], [15], [35], [18], predic-

tion models [20] and edge-based methods [14], [34]. However, with the advancement

in deep learning techniques, researchers have started employing Convolutional Neu-

ral Networks for SR tasks as well, which perform better than state-of-the-art traditional

methods. Dong et al. [11] proposed first convolutional neural networks for image super-

resolution which learns a deep mapping between low and high resolution patches. Sub-

sequently, variants of deep super-resolution networks were proposed. To avoid general

up-scaling of input patches, a deconvolutional layer is added based on super resolution

CNN (SRCNN) [11] in [12] which results in acceleration of CNN training and test-

ing. A convolutional deep network is proposed in [24] to learn the mapping between

LR image and residue between LR and HR image to expediate CNN training for very

deep network. Kim et al. [25] uses a deep recursive layer in order to circumvent adding

weight layers which will prevent increasing network parameters. In this paper, we bor-

rowed the idea from [7] for incorporating super-resolution layers into a convolutional

network (i.e. Xception network [8]) for classification. The experiments have shown that

the SR-specific convolutional layers help in improving classification performance by

recovering texture details from the low resolution images.

While there is huge corpus of deep networks for image classification [17], [36], [32],

[33], we chose to use state-of-the-art Xception network [8] for chromosome classifica-

tion. Because in general, traditional convolutional layers of CNNs classify images by

learning feature maps in 3D space. Each convolutional layer performs mapping of cor-

relations spatially and across channels simultaneously. But, the depthwise separable

convolutional layers used in Xception network explicitly divide this task of learning

feature maps into series of sub-tasks that independently look at cross-channel and spa-

tial cross-relations. This makes the network learn robust feature representations with

lesser parameters.

3 Proposed Methodology

This section gives an overview of the proposed method for automatic classification of

low resolution chromosome images. As we are aware of the fact that low resolution im-

ages hinder the performance of any image classifier, hence our proposed method works

upon improving the resolution of the image before classification. Higher the resolu-

tion of images, easier is the classification and hence, better is the performance of the

classifier. However, in case of chromosomes, it is not always possible to obtain high
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resolution chromosome images due to which it becomes difficult to automate the chro-

mosome classification process. To alleviate this issue, we proposed a network which

first converts a low-resolution image to its higher resolution version by employing con-

volutional super-resolution layers [7] and further, passes the obtained high-resolution

image to convolutional classification network like Xception network [8] to produce

chromosome class label. We named the proposed network as Super-Xception whose ar-

chitecture is shown in the Figure 2. In the following subsections, we discuss few details

of the convolutional super-resolution layers and Xception network.

3.1 Convolutional Super-Resolution Network

The major difference between the proposed Super-Xception network and the conven-

tional Xception network [8] lies in the addition of three convolutional super-resolution

layers following [7]. As a result, Super-Xception network becomes more deeper and

consequently, it will store more knowledge about the images in form of increased net-

work parameters. The main purpose of introducing these super-resolution layers is to

improve the resolution and recover the texture details of the low-resolution images. The

last layer of these super-resolution block produces a residual image which is the differ-

ence of the high-resolution (HR) and low-resolution (LR) image. The better learning of

these layers depends on the fact that the HR and LR images are largely similar, i.e. more

similarities must be removed from the residual image [7]. The CNNs can learn the de-

tailed information from the residual images more easily than LR-HR CNNs [11], [12].

3.2 Xception Network

The Xception network [8] is made up of depthwise separable convolutional layers,

which consists of a depthwise convolution (a spatial convolution performed indepen-

dently for each channel) followed by a pointwise convolution (a 1x1 convolution across

channels). It is based on the hypothesis that the mapping of cross-channel correlations

and spatial correlations in the feature maps of convolutional neural networks can be en-

tirely decoupled. We can think of this as looking for correlations across a 2D space first,

followed by looking for correlations across a 1D space. Intuitively, this 2D + 1D map-

ping is easier to learn than a full 3D mapping. The architecture of Xception network [8]

consists of 36 convolutional layers which acts as the feature-extractor. This is followed

by a softmax layer for the image classification purpose. These 36 convolutional layers

are structured into 14 modules having linear residual connections around them, except

for the first and last modules. Precisely, the Xception architecture is a linear stack of

depthwise separable convolution layers with residual connections.

4 Architecture of Super-Xception Network

The proposed architecture of Super-Xception network, as shown in Figure 2, consists

of two sub-networks: super-resolution and classification network. The convolutional

super-resolution layers, shown on the left side of Figure 2, recover the texture details

of low-resolution images to feed into the following convolutional categorisation layers.
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Next, the classification model solves the task of label assigning to the image. Since our

network is the augmentation of Xception network with the deep super-resolution layers,

hence we named it as Super-Xception network.

The convolutional super-resolution layers take a bicubic-interpolated low-resolution

image (of the desired size) I
LR and learn the mapping g(ILR) from LR image I

LR to

residual image I
HR

− I
LR, where I

HR is the high-resolution version of the image.

We used three typical stacked convolutional-ReLU layers as the super-resolution layers

in Super-Xception network. The empirical basic setting of the layers is f1 = 9 × 9,

f2 = 5 × 5, f3 = 5 × 5, n1 = 64, n2 = 32 and n3 = 1 following from [7], where

fm and nm represent the size and number of the filters of the mth layer, respectively.

The output obtained from the last convolutional layer of super-resolution network is

summed with the interpolated version of low-resolution image I
LR to construct the full

super-resolution image I
HR which is further fed into the remaining classification layers

of Super-Xception network.

We used layers of Xception network [8] as the underlying classification layers for

our Super-Xception network. The high-resolution image I
HR is passed through the

Xception network which learns the feature representation of the image. A softmax

layer at the end is used for assigning labels in the range (0 − 23) to the learnt feature-

representation.

5 Experiments

This section is divided into the following subsections: 5.1 provides details of the pub-

licly available online Bioimage Chromosome Classification dataset [1], [29]. In 5.2, we

elaborate on the training details utilized to perform our experiments. Subsequently, 5.3

discusses the results obtained from the experiments we conducted and provides com-

parison with the baseline models.

5.1 Dataset

We have utilized publicly available online Bioimage Chromosome Classification dataset

[29], [1] to conduct our experiments. This dataset contains a total of 5256 chromosomes

images of healthy patients, manually segmented and labeled by an expert cytogenecist.

We have divided these 5256 images into three sets of 4176, 360 and 720 each for train-

ing, validation and testing purpose, respectively. While conducting our experiments,

we have set the resolution of chromosome images to be 50 × 50 in grayscale which is

interpolated to the desired size of 227 × 227. Furthermore, we have employed a pre-

processing step of length normalization [31] to every chromosome image in the dataset.

5.2 Training details

The performance of our model was compared with the baseline networks created using

traditional deep CNN [31], AlexNet [7], ResNet-50 [17], and Xception [8] networks.
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S.No. Network Architecture Accuracy (%)

1. Traditional Deep CNN [31] 87.50

2. ResNet-50 [17] 87.64

3. Super-AlexNet [7] 89.30

4. Super-ResNet 90.55

5. Xception network [8] 91.80

6. Super-Xception (proposed) 92.36

Table 1. Table showing comparison of classification accuracy of our proposed Super-Xception

network with that of baseline deep networks for chromosome classification.

The deep CNN network was trained using Adam optimizer with learning rate of 10−4

and rest of the parameters were set to default values. For ResNet-50 network, we used

stochastic gradient descent with learning rate of 10−3, momentum of 10−6, decay pa-

rameter set as 0.9 and nestrov set to be true. The Xception and proposed Super-Xception

networks were trained with Adam optimizer with learning rate of 10−4 and rest of the

parameters were assigned default values. The number of epochs used to train deep CNN,

ResNet-50, Super-AlexNet, Xception and Super-Xception models were set to 150, 30,

100, 50 and 80 respectively. For best trained model, we observed validation results at

each epoch and tracked model parameters corresponding to the lowest validation loss.

Deep CNN, AlexNet and ResNet-50 networks were implemented using Theano [4] and

Keras [9] while Xception and Super-Xception models were implemented in Tensor-

flow [2] and Keras [9].

5.3 Results and discussion

Table 1 shows the results of the experiments performed during evaluation of our pro-

posed network and baseline networks. Row 1 of Table 1 shows the accuracy of a tradi-

tional deep CNN network comprised of 6 convolution layers having number of filters as

16, 16, 32, 64, 128 and 256 respectively. Each convolutional layer uses Rectified Linear

Units (ReLU) and is followed by a Max-pool layer of size 2× 2. The last convolutional

layer is proceeded by two fully connected layers with 1024 and 512 hidden units and

having sigmoid as their activation function. The last layer is the softmax activated fully

connected layer having 24 units each representing one of the 24 chromosome classes.

Subsequently, row 2 of Table 1 represents the performance of ResNet-50 which is

a minor improvement over traditional deep CNN network. Next, we perform the clas-

sification using Super-ResNet model which is the augmentation of ResNet-50 to the

convolutional super-resolution layers. This network gives a boost of 2.91% in accuracy

over ResNet-50 (row 4 of Table 1). This improvement is the result of incorporation of

convolutional super-resolution layers before feeding to the traditional classification net-

work. This further explains that the poor performance of other baseline models is due to

the low-resolution of chromosomal images. Thus, this motivates us to use convolutional

super-resolution layers before any classification network for chromosome classification.
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Similarly, we also implemented Super-AlexNet [7] using concatenation of convolu-

tional super-resolution layers to the AlexNet model proposed by Cai et. al. The perfor-

mance of this model is shown in row 3 of Table 1.

Next, row 5 of Table 1 gives the classification accuracy of Xception network [8]

which is a considerable improvement over traditional deep CNN network and ResNet-

50 model. This encourages us to employ the Xception network in concatenation to

convolutional super-resolution layers in our proposed Super-Xception network.

Finally, the row 6 of Table 1 represents the performance of our proposed method, i.e.

Super-Xception network which achieves the highest classification accuracy of 92.36%,

outperforming various existing state-of-the-art algorithms for automatic chromosome

classification.

6 Conclusion

The paper started by explaining the need to automate chromosome classification for as-

sisting cytogeneticists in the analysis of chromosome images and saving their valuable

time. Further, we consider the situations where there is non-availability of high reso-

lution chromosome images which affect the accuracy of the classifier. Therefore, we

explored the use of convolutional super-resolution layers before feeding low resolution

chromosome images to a convolutional classifier. We demonstrated via experimentation

that super-resolution helps in enhancing the resolution of images and thereby improving

the performance of classifier. Next, we propose the use of Xception network for classifi-

cation of chromosome images after the convolutional super-resolution layers. We eval-

uated our proposed architecture on a publicly available online Bioimage Chromosome

Classification dataset of healthy humans and compared its performance against several

baseline classification networks. We observed that our network beats various state-of-

the-art networks available for automatic chromosome classification. Going ahead, we

would explore techniques to detect various structural abnormalities like deletions, inver-

sions and translocations etc. present in chromosomes of unhealthy humans to diagnose

various birth defects and genetic disorders.
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