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Abstract. Food has become a very important aspect of our social activ-
ities. Since social networks and websites like Yelp appeared, their users
have started uploading photos of their meals to the Internet. This phe-
nomenon opens a whole world of possibilities for developing models for
applying food analysis and recognition on huge amounts of real-world
data. A clear application could consist in applying image food recogni-
tion by using the menu of the restaurants. Our model, based on Convolu-
tional Neural Networks and Recurrent Neural Networks, is able to learn
a language model that generalizes on never seen dish names without the
need of re-training it. According to the Ranking Loss metric, the results
obtained by the model improve the baseline by a 15%.
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1 Introduction

Food and nutrition is one of the main activities in people’s lives. Nowadays, food
does not only cover a basic need, but it has become a really important aspect
of our social life. Since social networks appeared and, with them, food-focused
applications (like TripAdvisor, Yelp, etc.), their users have started uploading
photos of their meals to the Internet. It seems to be a strong and visible ten-
dency in today’s society to share pictures of absolutely every piece of food that
we taste; exotic or local, fancy-looking or ordinary. Moreover, people post, on
many different social media channels, plenty of videos of special restaurants
where they eat. Every single day, thousands of people use social media to make
recommendations, promote a particular place or give their friends a warning
about a nearby restaurant. That is why, tags and location opportunities were
introduced for all social media users to make their posts easier and faster to
create. The creation of automatic tools for food recognition based on images
could enable an easier generation of content, create food diaries for improving
nutrition habits or even create personal food profiles for offering personalized
recommendations.

The purpose of this work is to explore a problem that we call image-based
food menu recognition, which consists in, given an image, determine its correct
menu item corresponding to the restaurant where it was taken (see Fig. 1). By
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Restaurant Menu

tacos

chicken karaage
rice

red cury

falafel

salad

falafel

red snapper
spicy tuna
seafod ramen

fries

maochi

Fig. 1. Example of the Food Menu Recognition problem, where we have to retrieve the
correct food name from a list of menu items.

being able to match the picture to an item of the menu it would be easier to
retrieve the exact nutritional information of the food or any other data stored
by the restaurant owners. Some of the main applications for this model would
be creating a personalised profile with food preferences or a personal food diary
for improving the eating habits.

The proposed methodology does not need to train a new model for each
restaurant [32], instead it will learn to understand meal names in relation to a
set of examples by learning a language model. We should point out the difficulty
of the problem because of the context where we are working in. Restaurants
usually use fancy names to refer to the dishes just to get the attention of their
customers. Additionally, food presentation is different in every restaurant, having
a high intra-class variability. Chefs try to surprise the customers by using unusual
combinations of ingredients, colorful plates and/or sauces.

1.1 Health and Leisure

The work in [22] introduces the relationship that exists between food consump-
tion and people’s health. In FEurope, despite being a first-world region, more
than 4 million people die each year due to chronic diseases linked to unhealthy
lifestyles. In many of these cases, the lack of basic knowledge or awareness is a
crucial factor in all problems, most people simply do not pay much attention to
their eating habits. Furthermore, as it is mentioned in [24], a great number of
deaths related to coronary heart diseases are caused by a group of major risk
factors among which bad eating habits are at the top.

On the other hand, for a lot of people being and feeling healthy is considered
a must. Thanks to social networks, people share their healthy lifestyle on social
media on a daily basis. Nowadays, going out for dinner and enjoying a cosy
atmosphere in a restaurant is not enough. The healthier (and better looking)
your food is, the better. Because of this important fact, today’s restaurants are



Where and What Am I Eating? 3

really visible online and they tend to use many different Internet channels to
remain in the center of their customers’ attention. Food-based applications like
Yelp, help their users find opinions on the quality of the service in the place they
plan to visit, and all the data introduced is generated by the users with their
smartphones.

1.2 Food Analysis and Deep Learning

Considering the huge number of pictures of meals that people upload on the
Internet, food analysis has become popular in the Deep Learning field. That is
the reason why several public datasets have appeared. Some examples of public
well-known datasets are Food-101 [8], UEC Food256 [16], or Vireo-Food 172
[9]. The most basic problem related to food explored in the literature is food
detection [1], which consists in determining if any kind of food appears in an
image. Food recognition is one of the most popular problems nowadays [2]. Tt
consists in recognizing the food present on a picture given a pre-defined set of
classes (dishes). Other applications of food analysis are food localization, which
consists in detecting multiple dishes in a picture [7], calories estimation [13],
ingredients detection [5], or multi-dishes recognition for self-service restaurants
[3], which combines several of the aforementioned problems.

1.3 Restaurant Food Recognition

Several applications are focused on understanding customers’ experiences in
restaurants. Some sites like Yelp have plenty of information, but they are not
able to classify a picture in the restaurant’s menu automatically. It is the user
who must do this manually. For this reason, we propose a model to solve this
specific problem: locate the restaurant where customers are eating and recog-
nize the meal that they chose from the menu [32]. Solving this problem would
allow to create automatic personalized food diaries or personal food preferences,
among other applications. The novelties of our work are the following:

— We propose a model that determines the similarity between a picture of
food and the dish name provided in the restaurant’s menu. Thanks to the
language model learned, the system is able to detect the most probable food
item in the menu using semantic information from LogMeal’s API.

— We propose the first model for food menu recognition applicable to any
restaurant. The system does not need previous information of a specific
restaurant or a set of examples for a specific class to perform the prediction.

— We make public a dataset collected from Yelp 2. Our dataset contains 53,877
images, from 313 restaurants and 3,498 different dishes.

— The results obtained over the collected data improve the baseline by a 15%.

In the context of the dataset, although ours is equivalent to the one proposed
in [32], which is in Chinese, we were not able to perform tests on their dataset

3 http://www.yelp.com
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due to language issues. A critical component of our methodology is the language
model, which allows to generalize for any restaurant, but considering the lack of
embedding models pre-trained on Chinese, it is not possible to directly apply it.

This paper is organized as follows. In the related work (see Sec. 2), we explain
previous papers published in relation with the problem that we want to solve.
Our proposed model is introduced in the methodology (see Sec. 3). The dataset
section (see Sec. 4) introduces the data used to train our model and how it was
collected. In results (see Sec. 5), we explain and discuss the set of experiments
done to choose the best parameters of the proposed model and their performance.
Finally, we draw some conclusions and future work (see Sec. 6).

2 Related Work

Deep learning and Convolutional Neural Networks (CNNs) [17] have played a
major role in the development of food-related methods in the last years. The
huge amount of images related to food available on the internet in websites
like Google Images, Instagram or Pinterest have allowed to collect large-scale
datasets useful for training deep learning architectures. Even though, challenges
inherent to the culinary world like intra-class variability (e.g. apple pie) and
inter-class similarity (e.g. different types of pasta), demand the use of complex
and smart algorithms. In this section we review the literature on works related
to food analysis problems, some important works on multi-modal learning and
food, and the application of these techniques in the restaurants context.

2.1 Food Analysis

In the literature there exist several problems and topics related to the analysis
of food images. One of the most notable topics is food detection [1,23], where
the goal is to detect whether a given image contains any food-related informa-
tion/element. In a similar way, food recognition [2,20,25] is a widely explored
topic, being the goal in this case to classify the image into a set of pre-defined
list of classes related to food (usually prepared meals).

Other problems explored in the literature that are related to food analysis
are calorie counting and monitoring or volume estimation, like in [31, 19], where
the authors present a mobile phone-based calories monitoring system to track
the calories consumption for the users. Or focused on diabetes, Li et al. [18]
estimate the amount of carbohydrate present in a meal from an image.

Other works have treated problems like food localization. In [7]the authors
introduce the use of egocentric images to perform food detection and recognition.
Food ingredients recognition [9, 5] uses a state of the art CNN to predict a list
of ingredients appearing in the meal. Food localization and recognition on self-
service restaurants is presented in [3].
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2.2 Multi-modal Food Analysis

Some times, food analysis uses context or additional information to improve
the accuracy of the predictions. This complementary data can be of several
types (e.g. images or text). Multi-modal Deep Learning [21] solves this particular
problem, learning features over multiple modalities. The paper in [26] introduces
a new large-scale dataset with more than 800.000 images and 1.000 recipes.
The predictive model presented in the paper tries to join images and recipes
through a retrieval task. The proposed solution generates two vectors. One of
the vectors represents the image and the other one represents the recipe (text).
For optimizing the model, they use the cosine similarity loss, which detfermines
if a given recipe-image pair represents the same food.

The problem that we face also has two different inputs: we need to compare
an image and a text sequence, so it could also be formulated as an image retrieval
problem. The main differences of our proposal is that, instead of using a general
purpose CNN to generate the features vector of the image, we use a semantic-
based system for generating food categories that will be structured as a feature
vector. Additionally, we use the dish name (text) instead of the recipe and intend
to classify the input image into a set of menu items, being a problem more related
to restaurant food recognition.

2.3 Restaurant Food Recognition

Seeing food analysis from a different perspective, in [4] the authors propose an
automatic food logging system using smartphones. They use state of the art
computer vision techniques and add context information of the restaurant to
predict the food being consumed by the costumer. The system in [31] creates
a calorie estimation from web video cameras in fast food restaurants across the
United States. They focused on a reduced group of restaurants to understand
the obesity problem. Similarly to our proposal, Xu et al. [32] introduces the con-
text of the pictures to recognize the dish appearing in the image. Using the GPS
information provided by the smart-phones they can determine a set of possible
restaurants where the picture has been taken. This reduces the search space,
which is really important when you try to determine the restaurant and menu
item that appear in the picture taken by the user.

The system in [32] needs to train a discriminative model for each pair of restau-
rants in the dataset comparing their menus and images. Another common prob-
lem present in food recognition (or object recognition in general) is that it is
limited to a predefined set of classes. This means that if the model was not
trained to recognize a specific type of food, it will never provide it as a possible
output. Furthermore, the complexity in the restaurants’ food recognition resides
in the need of training a different model for each restaurant. These models could
be very accurate, but the number of outputs is also limited to the restaurant’s
menu. In this paper, we propose a model that solves these problems. It learns
a language model considering a great amount of possible names and associates
them to their corresponding pictures. Thus, our algorithm should be able to
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take a completely new restaurant’s menu (never seen before) and a totally new
picture associated to one of the menu’s items and find out the correct menu
item given the list. Thus, implying that the proposed model does not need to
specifically learn every meal.

3 Image-based Food Menu Recognition: Our Model

Fig. 2 shows a scheme of our proposed model, which is based on image retrieval.
Given two inputs: an image, and a dish name, it gives an output value based
on their similarity. By using this, the prediction process consists in running the
predictive model for each menu item and a single meal picture. The generated
results produce a ranked list based on the most-similar-first criterion.
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Fig. 2. Image-based food menu recognition model. On the one hand, the system gets
an image and applies two different CNNs to generate the feature vectors. Each one is
connected to a different fully connected layer to generate comparable structures and are
combined performing an addition operation. On the other hand, the text sequence is
processed by a word embedding and a Long Short Term Memory. Finally, we compute
the similarity between the two inputs using the Euclidean similarity.

3.1 Image and dish name embedding

Our method takes two different inputs, one in the form of an image, that will
be transformed in two vectors of different modalities: a low-level vector and a
high-level semantic vector, and the other in the form of text. Which means that
they must be treated differently before embedding them into the system.

First, the image is converted in two vectors in parallel. One of them provides
a low-level description of the food image by using the penultimate layer of the
InceptionResNetV2 [29] CNN, composed by a vector of 1,536 values. This CNN
is pre-built in the Keras [10] framework and trained using the ImageNet [12]
dataset. The other vector provides a high-level semantic description of the food
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appearing in the image by using LogMeal’s API#. This API provides three differ-
ent CNNs that predict the dish [2], food group (or family) [2] and the ingredients
detected in the image [5]. More precisely, LogMeal’s API provides (during the
development of this paper) as output the probabilities of the image of belonging
to 11 food groups (e.g. meat, vegetables, fish, soup, etc.), 200 dishes (e.g. pizza,
spaghetti alla carbonara, etc.) and 1.092 ingredients (e.g. tomato, cheese, salt,
garlic, etc.). In the implementation of our model, we are not using the ingredi-
ents output because, as we observed, the large dimensionality of the output and
the noise that this group introduces to the system does not help obtaining better
results. This, in order to build the semantic high-level vector, we concatenate
the probabilities vector of the food groups together with the probabilities vector
of the dishes.

Second, the text sequence input representing the meal’s name is encoded
using a word embedding. The inputs of our dataset are, in most of the cases,
in English or Spanish. For this reason, and in order to make our model con-
verge quicker, we need a word2vector pre-trained system supporting multiple
languages. This is why we chose ConceptNet [28], which generates vectors of
300 features. The words that do not appear in ConceptNet’s vocabulary are
initialized using a vector of random values.

Unlike the two vectors extracted from the images, which are pre-computed
and used as inputs to our system, the word embedding matrix is considered in
the optimization procedure and trained together with the rest of the model.

3.2 Model structure

More details about the image feature vectors generation and embedding can be
seen in Fig. 3. One of them comes from LogMeal’s API response and the other
from the InceptionResNetV2. Later, each of them is inputted to the system and
linked to a fully connected (FC) layer of 300 neurons. This layer transforms the
feature vectors to the same size, so we can combine them applying an addition
operation, which has been proven to be a simple yet effective way of multi-modal
information merging [6].

Considering the text sequence that encodes the meal’s name, it is generated
using a Long Short Term Memory (LSTM) [15] network (Fig. 4) that encodes
and joins the sequence of word embedding vectors generated in the first step. In
order to match the dimensions of the image vector, the output size of the LSTM
is also set to 300 neurons.

3.3 Similarity and Ranking

The last part of the model consists in processing the vectors provided from the
image side and the text side in order to calculate their similarity, which will be
a value between 0 and 1. Nevertheless, given a certain image and all the list of
items in a restaurant’s menu, we use the generated similarity values in order

* http://www.logmeal.ml
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LogMeal’s API
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Fig. 3. Image processing part of our model. The system uses the food group and dish
recognition outputs of LogMeal’s API to create a semantic vector and connect it to
a FC layer. The penultimate layer of the InceptionResNetV2 CNN is also used in
parallel as a low-level feature vector which is connected to another FC layer. Finally,
both partial results are combined performing an addition.
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Fig. 4. The text sequence is encoded using a Word Embedding matrix, which is ini-
tialized using ConceptNet [28]. The generated vectors are connected to an LSTM.
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to build a sorted ranked list. It means that we need to run the model for each
item in the menu on the same picture. The similarity function used to build the

algorithm is an adaptation of the Euclidean distance m.

4 Dataset

The dataset presented in this work was built using Yelp as the source of the
information. We scraped the available public information of each restaurant,
which consists in a list of menus for each restaurant, a list of dishes for each
menu, and a list of images for each dish.

4.1 Dataset characteristics

The dataset was built from restaurants located in California. We chose this
location because of the amount of active Yelp users in this area. We make the
dataset publicly available®.

Analyzing the response of LogMeal’s API, we decided to remove the ingredi-
ents information. Analyzing the outputs for images of the same dish name, we
observe that they have similar activation points, and at the same time they are
different for images that represent different meals. Nevertheless, the ingredients
recognition is noisy and does not give enough relevant information. Leading to
an increase in the dimensionality of the input and a decrease of performance.

Table 1 (right) shows the number of images, dishes and restaurants in the
dataset. The dataset dishes’ vocabulary is composed of 1,584 different words.
Fig. 5 shows an histogram of the number of dishes per restaurant (left), and
the number of images per dish (right). Observing the figures, the number of
restaurants with just only one dish in their menu is considerably hight, that is
because we only retrieve the dishes containing some image. Additional problems
that we found during dataset collection include the language of the dishes. Due
to the location of the restaurants, there is a high probability of finding dishes in
both English and Spanish, which introduces a problem: special characters. We
encoded the text using the UTF-8 format, but there are some cases where the
characters were represented by an empty symbol (-). We decided to remove these
samples from the dataset in order to avoid errors during the word embedding.

4.2 Dataset Split

The dataset is split in three groups: training, validation and testing. Previously to
the split process, we cleaned the data. This means removing the dishes encoded
in a not valid format or the ones that do not have more than 5 images. The
dishes are randomly split into three groups: the training group contains 80% of
the dishes, 8% is included in validation and 12% of the meals are in the testing
split. The number of images of the groups are shown in Table 1 (left).

5 Available after paper publication due to blind review process.
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Fig. 5. Histogram of the number of dishes (with images) per restaurant in the dataset
(left). Histogram of the number of images per dish in the dataset (right).

Table 1. Number of images in each split of the dataset (left). Number of images, dishes
and restaurants of the dataset (right).

Split # of images Split # of samples
Training 37,956 # of images 53,877
Validation 7,721 # of dishes 3,498
Test 10,794 # of restaurants 313

Considering that our model encodes the similarity of the image and text
inputs, we need to provide both positive and negative samples in order to train
it. The information downloaded from Yelp only contains positive examples, for
this reason a set of negative samples has been generated for training (becoming a
50% of the total training samples). The negative examples have been generated
assigning a wrong dish name to every image of the dataset. The validation and
test splits are built randomizing the set of selected dishes in the menu together
with the correct one. The groups of dishes where formed by randomly selecting
between 10 and 20 dishes per menu. We generate a random list instead of using
the menus of the restaurants to avoid restaurants that have few dishes in their
menus.

5 Results

In this chapter we present the results obtained in our work, introduce the metrics
used to evaluate the system and show the set of experiments created to find the
best combination configuration of our model.

5.1 Ranking Loss & Accuracy Top-1 Distance

In order to compare the performance of the different methods, we use the Rank-
ing Loss [30]. The lower the ranking loss is, the closer is the right value to the
top of the list.

To complement the ranking loss error metric, we introduce our own accuracy
metric in Eq. 1, which we call accuracy top-1 distance. This measure evaluates
how close the ranked result is to the top. The difference with the ranking loss
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is that our metric only takes in consideration the distance from the position of
the predicted class to the top of the ranking. We normalize the output between
0 and 1 using the number of labels in our ranking.

. Nyabels — 1 — rankin it
accuracy top-1 distance = et Iposition

(1)

Nyabels — 1

5.2 Experimental setup

There are several components of our methodology that need to be tuned for find-
ing the best configuration. The selection of the best combination of components
was done using a forward propagation-grid search, and the policy we follow to
choose the best parameter uses the ranking loss error over the test. The con-
figurations to test where grouped in similarity measures, losses, CNN features
and sample weight. For each step in the grid search, we select the configuration
that obtains the best performance for each of the groups. Each configuration
was calculated training the model 5 times. The representative model for each
configuration was chosen considering the median value of the 5 runs. The results
of the best configuration were obtained at the first epoch with a batch size of
64 samples and without applying any data augmentation or normalization pro-
cess. Following, we detail the different model variants that we compare in the
experimental section.

Similarity measures: We tested two similarity function candidates. a) the
FEuclidean similarity, which consists on a normalized version of the euclidean
distance; and b) the Pearson similarity (see Eq. 2), which is the absolute value
of the Pearson correlation. Using the absolute value we get values between 0 and
1.

(2)

cov(X,Y) ‘

00y

Losses: We tested: a) the binary cross-entropy (BCE) [27], which is a com-
monly used loss function for binary classification problems; and b) the contrastive
loss (CL) [14], which is usually used for Siamese networks [11]. The contrastive
loss is a distance-based system and tries to minimize the separation between
examples of the same semantic topic.

CNN features: We also tested different CNN feature extraction configu-
rations in our model: a) using only the features from LogMeal’s API (LM);
b) combination of the vectors from LogMeal and the InceptionResNetV2 CNN
(LM+Inc); and c) InceptionResNetV2 only (Inc).

Sample Weight: The last configuration to test is the sample weight. It
indicates whether we want to assign a weight value to each dish in relation
with the amount of images that it contains with respect to the total number of
images in the dataset. This kind of weighing is usually useful when the dataset
is unbalanced, giving more importance to the samples that are less frequent.
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5.3 Experimental Results

Table 2 shows the results of the grid search. The last row of the table displays
the baseline error (based on a random selection of an item in the menu) and
accuracy value over validation and test. We have to consider that the values of
the ranking loss follow the rule, the lower the better. Meanwhile, the accuracy
has the opposite behavior, we want to achieve the higher possible value. The
first two rows of the table compare the two similarity measures. Both similarity
measures are tested with the same loss optimizer, CNN and sample weight values
to be comparable. The error of the Euclidean similarity is 0.033 points better
than the one using the Pearson function. Comparing the loss functions, we can
see that even though the contrastive loss is usually used for similarity-based CNN
models, in this case the binary one works better. If we compare the different CNN
feature extraction methods, LM and Inc, the fist one works better. It is because
LogMeal’s models are trained using food images. Despite this considerations,
the best results are obtained by the model using the combination of the two
CNNs, meaning that both networks complement each other. Finally, we see that
we obtain better results if we deactivate the sample weights. The cause for this
might be that we do not have a set of pre-stablished classes, but instead we have a
language model that links them semantically. This component of our architecture
is able to better learn the importance of each sample without the need of forcing
a specific weight during optimization. Concluding the table analysis, the best
combination of parameters for our model improves the baseline by a 15%. The
best ranking loss for the test group is 0.351 and the accuracy top-1 distance is
0.678. It means an improvement of 0.149 and 0.178 points respectively over the
baseline.

5.4 Visual Results Analysis

In Fig. 6 and 7 we show some visualizations of the results obtained by our
model. The visualization contains a picture of the meal, the ranked results of
our system and the true prediction for the image. Fig. 6 shows that the cases
where the system works better is when the picture presents a single piece of
food and the image is clear and centered as well as contains a common dish
(with enough samples in the training set). Fig. 7 shows examples of failure cases,
where the images contain multiple meals on them, making the recognition harder.
Additionally, it is appreciable that the dishes with long names are usually at the
bottom of the ranking. It is because these meals do not contain a lot of images
and are not very popular in the restaurants. So, the model is not able to learn
them and retrieve good predictions.

Another problem that we encountered was that, even being uncommon, the
data tagged by Yelp’s users is misclassified because the pictures uploaded to the
site are not verified. Sometimes, the users take photos of their dishes including
context information, and it is a possibility that this information includes other
people’s meals, which makes more difficult to classify the sample. The main dif-
ficulty for the algorithm is dealing with a high variety of names. The restaurants
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Table 2. Comparison of results for the different model configurations. CNN feat. indi-
cates the combination of CNNs used in the model (LogMeal’s API and InceptionRes-
NetV2). The weight column indicates if the systems is using sample weight or not. The
ranking loss is indicated with r.loss (the lower the better), and the accuracy top-1 dis-
tance is acc. (the higher the better). For each vertical section, a different configuration
is tested. When a certain configuration is fixed it is shown in boldface.

val test

lsimilarities losses CNN feat. weight|r. loss acc. |r. loss acc.
euclidean binary LM NO |0.384 0.623]0.362 0.671
pearson binary LM NO | 0.416 0.602| 0.395 0.639
euclidean  binary LM NO |0.384 0.623]0.362 0.671
euclidean contrastive LM NO | 0.405 0.398]| 0.375 0.664
euclidean Dbinary LM NO |0.384 0.623] 0.362 0.671
euclidean binary LM+Inc NO |0.372 0.641|0.351 0.678
euclidean binary Inc NO | 0.443 0.572| 0.413 0.598
euclidean binary LM+4Inc NO | 0.372 0.641|0.351 0.678
euclidean Dbinary LM+Inc YES | 0.396 0.612]| 0.378 0.668
euclidean binary LM+4Inc NO |0.372 0.641|0.351 0.678
random selection (baseline) 05 05 | 05 0.5

have some speciality dishes that they name at their own. These meals are really
difficult to classify, even for a human. Visualizing the results and analyzing the
responses of a random selection of the predictions, we have found some prop-
erties that usually work better in our system. The meals that contain common
food names tend to get better results than the ones with exotic names. This fact
is due to two main reasons: the first one is that the dataset has a lot of exam-
ples with common names and can learn them better, and the second one is that
the exotic names do not tend to appear at the word embedding matrix, so the
system has no initial information of them. Moreover, these names are present in
just a few restaurants, so the system does not have enough examples to learn
from.

6 Conclusions and Future Work

We can conclude that it is possible to build a model for food restaurant menu
recognition that generalizes for any restaurant available, without the need of
learning a different model per restaurant or restaurant pairs. This result is
achieved thanks to learning a language model that jointly embeds the infor-
mation from all the dishes available together with low and high-level (semantic)
information coming from the images. The contributions that we have done to
the scientific community are the following:

— We introduce the use of a language model for dishes and semantic image
information by means of LogMeal’s API to perform menu items recognition
from restaurants.
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. calamari
. anago
. guacamole

. french fries

1

2

3

4

5. crazy fries
6. lobster salad

7. monsoon burger

8. en mole

9. chicken kabob

10. ricotta gnocchi

11. filet mignon spring rolls

12. salt and pepper wings 5 pcs

13. par dip fresh tuna lunch

14. guacamole & new world chips

1. dumplings

2. steak tartare

3. masitas

4. grilled octopus

5. ravioli

6. shrimp & grils

7. salad

8. bloody mary

9. japanese breakfast

10. penne bulgogi dinner

11. vanilla brioche french toast
12, cebiche mixto

13. crab and spinach crepe
14, burrata tartine

15. cebiche la mar

16. prather ranch hamburger

17. roasted chicken for two

Fig. 6. Examples of ranked lists produced by our algorithm for images of the dishes
‘calamari’ (left) and ’steak tartare’ (right). We observe the good results obtained when

the names of the dishes are common enough.

steak tartare

avgolemono

1
2
3.
4.
5. japanese breakfast
6.
T
8
9.

bbg chicken sandwich

giant prawns

deviled eggs
belly mac n cheese
the camino breakfast

heirloom bean & vegetable soup

10. chef s ayster brunch

11. american pride slider party

1
2
3
4
5
B.
g
:}
9.

1
1
1
1

. gigantes

- egg

. shrimp & grits

. french fries

. queso fundido

. bacon

. chicken kabob

. thai tea

. papaya salad

0. kapoon noodle soup
1. chicken tikka masala
2. caesar salad

3. double squeezeburger with cheese

14, prime beef meatballs

Fig. 7. Examples of ranked lists produced by our algorithm for images of the dishes 'the
camino breakfast’ (left) and ’chicken tikka masala’ (right). Worse results are obtained
when the names of the dishes are rare.
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— We propose a new model that determines the similarity between a food
image and a menu item of a restaurant without the need of re-training for
each restaurant, which improves the baseline by a 15%.

— We present a new dataset composed by the dishes and images of the restau-
rant’s menu collected from Yelp. The dataset contains 53,877 images, 3,498
dishes and 313 restaurants.

One of the main issues to take into consideration in the future is the treatment
of dishes with exotic names, which can not be easily learned by our language
model. Furthermore, in the future we plan to introduce the GPS information of
the images. The location of the user gives us a list of two or three candidate
restaurants where they are eating. Combining the menus of these restaurants
and applying the proposed system we would be able to determine where and
what a person is eating.
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