Task-driven Webpage Saliency
Quanlong Zheng, Jianbo Jiao, Ying Cao, Rynson W.H. Lau; Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 287-302
Abstract
In this paper, we present an end-to-end learning framework for predicting task-driven visual saliency on webpages. Given a webpage, we propose a convolutional neural network to predict where people look at it under different task conditions. Inspired by the observation that given a specific task, human attention is strongly correlated with certain semantic components on a webpage (e.g., images, buttons and input boxes), our network explicitly disentangles saliency prediction into two independent sub-tasks: task-specific attention shift prediction and task-free saliency prediction. The task-specific branch estimates task-driven attention shift over a webpage from its semantic components, while the task-free branch infers visual saliency induced by visual features of the webpage. The outputs of the two branches are combined to produce the final prediction. Such a task decomposition framework allows us to efficiently learn our model from a small-scale task-driven saliency dataset with sparse labels (captured under a single task condition). Experimental results show that our method outperforms the baselines and prior works, achieving state-of-the-art performance on a newly collected benchmark dataset for task-driven webpage saliency detection.
Related Material
[pdf]
[
bibtex]
@InProceedings{Zheng_2018_ECCV,
author = {Zheng, Quanlong and Jiao, Jianbo and Cao, Ying and Lau, Rynson W.H.},
title = {Task-driven Webpage Saliency},
booktitle = {Proceedings of the European Conference on Computer Vision (ECCV)},
month = {September},
year = {2018}
}