RCAA: Relational Context-Aware Agents for Person Search

Xiaojun Chang, Po-Yao Huang, Yi-Dong Shen, Xiaodan Liang, Yi Yang, Alexander G. Hauptmann; The European Conference on Computer Vision (ECCV), 2018, pp. 84-100


We aim to search for a target person from a gallery of whole scene images for which the annotations of pedestrian bounding boxes are unavailable. Previous approaches to this problem have relied on a pedestrian proposal net, which may generate redundant proposals and increase the computational burden. In this paper, we address this problem by training relational context-aware agents which learn the actions to localize the target person from the gallery of whole scene images. We incorporate the relational spatial and temporal contexts into the framework. Specifically, we propose to use the target person as the query in the query-dependent relational network. The agent determines the best action to take at each time step by simultaneously considering the local visual information, the relational and temporal contexts, together with the target person. To validate the performance of our approach, we conduct extensive experiments on the large-scale Person Search benchmark dataset and achieve significant improvements over the compared approaches. It is also worth noting that the proposed model even performs better than traditional methods with perfect pedestrian detectors.

Related Material

author = {Chang, Xiaojun and Huang, Po-Yao and Shen, Yi-Dong and Liang, Xiaodan and Yang, Yi and Hauptmann, Alexander G.},
title = {RCAA: Relational Context-Aware Agents for Person Search},
booktitle = {The European Conference on Computer Vision (ECCV)},
month = {September},
year = {2018}