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Abstract. In current Xray CT scanners, tomographic reconstruction
relies only on directly transmitted photons. The models used for re-
construction have regarded photons scattered by the body as noise or
disturbance to be disposed of, either by acquisition hardware (an anti-
scatter grid) or by the reconstruction software. This increases the ra-
diation dose delivered to the patient. Treating these scattered photons
as a source of information, we solve an inverse problem based on a 3D
radiative transfer model that includes both elastic (Rayleigh) and inelas-
tic (Compton) scattering. We further present ways to make the solution
numerically efficient. The resulting tomographic reconstruction is more
accurate than traditional CT, while enabling significant dose reduction
and chemical decomposition. Demonstrations include both simulations
based on a standard medical phantom and a real scattering tomography
experiment.
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1 Introduction

Xray computed tomography (CT) is a common diagnostic imaging modality
with millions of scans performed each year. Depending on the Xray energy and
the imaged anatomy, 30-60% of the incident Xray radiation is scattered by the
body [15, 51, 52]. Currently, this large fraction, being regarded as noise, is either
blocked from reaching the detectors or discarded algorithmically [10, 15, 20, 27,
33, 34, 38, 51, 52]. An anti-scatter grid (ASG) is typically used to block photons
scattered by the body (Fig. 1), letting only a filtered version pass to the detec-
tors. Scatter statistics are sometimes modeled and measured in order to counter
this “noise” algorithmically [20, 27, 32, 44]. Unfortunately, scatter rejection tech-
niques also discard a sizable portion of non-scattered photons.

Scatter rejection has been necessitated by reconstruction algorithms used in
conventional CT. These algorithms assume that radiation travels in a straight
line through the body, from the Xray source to any detector, according to a
linear, attenuation-based transfer model. This simplistic model, which assigns
a linear attenuation coefficient to each reconstructed voxel in the body, simpli-
fies the mathematics of Xray radiative transfer at the expense of accuracy and
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Fig. 1. In standard CT [left panel], an anti-scatter grid (ASG) near the detectors blocks
the majority of photons scattered by the body (red), and many non-scattered photons.
An ASG suits only one projection, necessitating rigid rotation of the ASG with the
source. Removing the ASG [right panel] enables simultaneous multi-source irradiation
and allows all photons passing through the body to reach the detector. Novel analysis
is required to enable Xray scattering CT.

radiation dose to the patient. For example, the Bucky factor [7], i.e. the dose
amplification necessitated by an ASG, ranges from 2× to 6×. Motivated by the
availability of fast, inexpensive computational power, we reconsider the tradeoff
between computational complexity and model accuracy.

In this work, we remove the ASG in order to tap scattered Xray photons for
the image reconstruction process. We are motivated by the following potential
advantages of this new source of information about tissue: (i) Scattering, being
sensitive to individual elements comprising the tissue [5, 11, 35, 38], may help
deduce the chemical composition of each reconstructed voxel; (ii) Analogous
to natural vision which relies on reflected/scattered light, back-scatted Xray
photons may enable tomography when 360 degree access to the patient is not
viable [22]; (iii) Removal of ASG will simplify CT scanners (Fig. 1) and enable
4th generation (a static detector ring) [9] and 5th generation (static detectors and
distributed sources) [15, 51] CT scanners; (iv) By using all the photons delivered
to the patient, the new design can minimize radiation dose while avoiding related
reconstruction artifacts [40, 46] related to ASGs.

High energy scatter was previously suggested [5, 10, 22, 31, 38] as a source
of information. Using a traditional γ-ray scan, Ref. [38] estimated the extinc-
tion field of the body. This field was used in a second γ-ray scan to extract a
field of Compton scattering. Refs. [5, 38] use nuclear γ-rays (O(100) keV) with an
energy-sensitive photon detector and assume dominance of Compton single scat-
tering events. Medical Xrays (O(10) keV) significantly undergo both Rayleigh
and Compton scattering. Multiple scattering events are common and there is
significant angular spread of scattering angles. Unlike visible light scatter [13,
14, 17–19, 29, 30, 36, 42, 45, 48, 49], Xray Compton scattering is inelastic because
the photon energy changes during interaction; this, in turn, changes the inter-
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action cross sections. To accommodate these effects, our model does not limit
the scattering model, angle and order and is more general than that in [13, 14,
19, 29]. To handle the richness of Xrays interactions, we use first-principles for
model-based image recovery.

2 Theoretical Background

2.1 Xray Interaction with an Atom

An Xray photon may undergo one of several interactions with an atom. Here are
the major interactions relevant1 to our work.
Rayleigh Scattering: An incident photon interacts with a strongly bounded

atomic electron. Here the photon energy Eb does not suffice to free an electron
from its bound state. No energy is transferred to or from the electron. Similarly
to Rayleigh scattering in visible light, the photon changes direction by an angle
θb while maintaining its energy. The photon is scattered effectively by the atom
as a whole, considering the wave function of all Zk electrons in the atom. Here
Zk is the atomic number of element k. This consideration is expressed by a form

factor, denoted F 2(Eb, θb, Zk), given by [21]. Denote solid angle by dΩ. Then,
the Rayleigh differential cross section for scattering to angle θb is

dσRayleigh
k (Eb, θb)

dΩ
=

r2e
2

[
1 + cos2(θb)

]
F 2(Eb, θb, Zk) , (1)

where re is the classical electron radius.
Compton Scattering: In this major Xray effect, which is inelastic and different
from typical visible light scattering, the photon changes its wavelength as it

changes direction. An incident Xray photon of energy Eb interacts with a loosely

bound valence electron. The electron is ionized. The scattered photon now has a
lower energy, Eb+1, given by a wavelength shift:

∆λ = hc

(
1

Eb+1
−

1

Eb

)
=

h

mec
(1− cos θb). (2)

Here h is Planck constant, c is the speed of light, and me is electron mass. Using
ǫ = Eb+1

Eb

, the scattering cross section [26] satisfies

dσcompton
k

dǫ
= πr2e

mec
2

Eb
Zk

[
1

ǫ
+ ǫ

] [
1−

ǫ sin2(θb)

1 + ǫ2

]
. (3)

Photo-Electric Absorption: In this case, an Xray photon transfers its entire
energy to an atomic electron, resulting in a free photoelectron and a termination
of the photon. The absorption cross-section of element k is σabsorb

k (Eb).

1 Some interactions require energies beyond medical Xrays. In pair production, a pho-
ton of at least 1.022MeV transforms into an electron-positron pair. Other Xray
processes with negligible cross sections in the medical context are detailed in [12].
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The scattering interaction is either process ∈ {Rayleigh,Compton}. Integrat-
ing over all scattering angles, the scattering cross sections are

σprocess
k (Eb) =

∫

4π

dσprocess
k (Eb, θb)

dΩ
dΩ , (4)

σscatter
k (Eb) = σRayleigh

k (Eb) + σCompton
k (Eb) . (5)

The extinction cross section is

σextinct
k (Eb) = σscatter

k (Eb) + σabsorb
k (Eb) . (6)

Several models of photon cross sections exist in the literature, trading complexity
and accuracy. Some parameterize the cross sections using experimental data [6,
21, 47]. Others interpolate data from publicly evaluated libraries [37]. Ref. [8]
suggests analytical expressions. Sec. 3 describes our chosen model.

2.2 Xray Macroscopic Interactions

In this section we move from atomic effects to macroscopic effects in voxels that
have chemical compounds and mixtures. Let Na denote Avogadro’s number and
Ak the molar mass of element k. Consider a voxel around 3D location x. Atoms
of element k reside there, in mass concentration ck(x) [grams/cm3]. The number
of atoms of element k per unit volume is then Nack(x)/Ak. The macroscopic

differential cross sections for scattering are then

dΣprocess(x, θb, Eb)

dΩ
=

∑

k∈elements

Na

Ak
ck(x)

dσprocess
k (Eb, θb)

dΩ
. (7)

The Xray attenuation coefficient is given by

µ(x, Eb) =
∑

k∈elements

Na

Ak
ck(x)σ

extinct
k (Eb). (8)

2.3 Linear Xray Computed Tomography

Let I0(ψ, Eb) be the Xray source radiance emitted towards direction ψ, at pho-
ton energy Eb. Let S(ψ) be a straight path from the source to a detector. In
traditional CT, the imaging model is a simplified version of the radiative transfer
equation (see [12]). The simplification is expressed by the Beer-Lambert law,

I(ψ, Eb) = I0(ψ, Eb) exp

[
−

∫

S(ψ)

µ(x, Eb)dx

]
. (9)

Here I(ψ, Eb) is the intensity arriving to the detector in direction ψ. This model
assumes that the photons scattered into S(ψ) have no contribution to the detec-
tor signals. To help meet this assumption, traditional CT machines use an ASG
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between the object and the detector array. This model and the presence of the
ASG necessarily mean that:
1. Scattered Xray photons, which constitute a large fraction of the total irradi-
ation, are eliminated by the ASG.
2. Scattered Xray photons that reach the detector despite the ASG are treated
as noise in the simplified model (9).
3. CT scanning is sequential because an ASG set for one projection angle cannot
accommodate a source at another angle. Projections are obtained by rotating a
large gantry with the detector, ASG, and the Xray source bolted on it.
4. The rotational process required by the ASG imposes a circular form to CT
machines, which is generally not optimized for human form.

Medical Xray sources are polychromatic while detectors are usually energy-
integrating. Thus, the attenuation coefficient µ is modeled for an effective energy
E∗, yielding the linear expression

ln
I(ψ)

I0(ψ)
≈ −

∫

S(ψ)

µ(x, E∗)dx. (10)

Measurements I are acquired for a large set of projections, while the source
location and direction vary by rotation around the object. This yields a set of
linear equations as Eq. (10). Tomographic reconstruction is obtained by solving
this set of equations. Some solutions use filtered back-projection [50], while others
use iterative optimization such as algebraic reconstruction techniques [16].

3 Xray Imaging Without an Anti-Scatter Grid

In this section we describe our forward model. It explicitly accounts for both
elastic and inelastic scattering.

A photon path, denoted L = x0 → x1 → ... → xB is a sequence of B inter-
action points (Fig. 2). The line segment between xb−1 and xb is denoted xb−1xb.
Following Eqs. (8,9), the transmittance of the medium on the line segment is

a(xb−1xb, Eb) = exp

[
−

∫
xb

xb−1

µ(x, Eb)dx

]
. (11)

At each scattering node b, a photon arrives with energy Eb and emerges with
energy Eb+1 toward xb+1. The unit vector between xb and xb+1 is denoted
x̂bxb+1. The angle between xb−1xb and x̂bxb+1 is θb. Following Eqs. (7,11), for
either process, associate a probability for a scattering event at xb, which results
in photon energy Eb+1

p(xb−1xb x̂bxb+1, Eb+1) = a(xb−1xb, Eb)
dΣprocess(xb, θb, Eb)

dΩ
. (12)

If the process is Compton, then the energy shift (Eb − Eb+1), and angle θb are
constrained by Eq. (2). Following [13], the probability P of a general path L is:

P (L ) =

B−1∏

b=1

p(xb−1xb x̂bxb+1, Eb+1) . (13)
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Fig. 2. [Left] Cone to screen setup. [Right] Energy distribution of emitted photons for
120kVP (simulations), and 35kVp (the voltage in the experiment), generated by [39].

The set of all paths which start at source s and terminate at detector d is
denoted {s → d}. The source generates Np photons. When a photon reaches
a detector, its energy is EB = EB−1. This energy is determined by Compton
scattering along L and the initial source energy. The signal measured by the de-
tector is modeled by the expectation of a photon to reach the detector, multiplied
by the number of photons generated by the source, Np.

is,d = Np

∫

L

✶s→dP (L )EB(L )dL where ✶s→d =

{
1 if L ∈ {s → d}
0 else

(14)

In Monte-Carlo, we sample this result empirically by generating virtual photons
and aggregating their contribution to the sensors:

is,d =
∑

L∈{s→d}

EB(L ) . (15)

Note that the signal integrates energy, rather than photons. This is in consistency
with common energy integrator Xray detectors (Cesium Iodine), which are used
both in our experiment and simulations.

For physical accuracy of Xray propagation, the Monte-Carlo model needs
to account for many subtleties. For the highest physical accuracy, we selected
the Geant4 Low Energy Livermore model [4], out of several publicly available
Monte-Carlo codes [1, 23, 41]. Geant4 uses cross section data from [37], modified
by atomic shell structures. We modified Geant4 to log every photon path. We
use a voxelized representation of the object. A voxel is indexed v, and it occupies
a domain Vv. Rendering assumes that each voxel is internally uniform, i.e., the
mass density of element k has a spatially uniform value ck(x) = ck,v, ∀x ∈ Vv.

We dispose of the traditional ASG. The radiation sources and detectors can
be anywhere around the object. To get insights, we describe two setups. Simu-
lations in these setups reveal the contributions of different interactions:
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Fig. 3. [Left] Fan to ring setup. [Middle] Log-polar plots of signals due to Rayleigh
and Compton single scattering. The source is irradiating from left to right. [Right]
Log-polar plots of signals due to single scattering, all scattering, and all photons (red).
The latter include direct transmission. The strong direct transmission side lobes are
due to rays that do not pass through the object.

Fan to ring; monochromatic rendering (Fig. 3): A ring is divided to 94 de-
tectors. 100 fan beam sources are spread uniformly around the ring. The Xray
sources in this example are monochromatic (60keV photons), and generate 108

photons. Consequently, pixels between −60 deg and +60 deg opposite the source
record direct transmission and scatter. Detectors in angles higher than 60 deg
record only scatter. Sources are turned on sequentially.

The phantom is a water cube, 25cm wide, in the middle of the rig. Fig. 3
plots detected components under single source projection. About 25% of the to-
tal signal is scatter, almost half of which is of high order. From Fig. 3, Rayleigh
dominates at forward angles, while Compton has significant backscatter.

Cone to screen; wide band rendering (Fig. 2): This simulation uses an Xray
tube source. In it, electrons are accelerated towards a Tungsten target at 35kVp.
As the electrons are stopped, Bremsstrahlung Xrays are emitted in a cone beam
shape. Fig. 2 shows the distribution of emitted photons, truncated to the limits
of the detector. Radiation is detected by a wide, flat 2D screen (pixel array).
This source-detector rig rotates relative to the object, capturing 180 projections.

The phantom is a discretized version of XCAT [43], a highly detailed phantom
of the human body, used for medical simulations. The 3D object is composed of
100 × 100 × 80 voxels. Fig. 4 shows a projection and its scattering component.
As seen in Fig. 4[Left] and [40], the scattering component varies spatially and
cannot be treated as a DC term.

4 Inverse Problem

We now deal with the inverse problem. When the object is in the rig, the set
of measurements is {imeasured

s,d }s,d for d = 1..Ndetectors and s = 1..Nsources. A

corresponding set of baseline images {jmeasured
s,d }s,d is taken when the object is

absent. The unit-less ratio imeasured
s,d /jmeasured

s,d is invariant to the intensity of
source s and the gain of detector d. Simulations of a rig empty of an object yield
baseline model images {js,d}s,d.

To model the object, per voxel v, we seek the concentration ck,v of each ele-
ment k, i.e., the voxel unknowns are ν(v) = [c1,v, c2,v, ..., cNelements,v]. Across all
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Raw Projection Re-ProjectionScatter Only

Fig. 4. [Left,Middle] Scatter only and total signal of one projection (1 out of 180) of
a hand XCAT phantom. [Right] Re-projection of the reconstructed volume after 45
iterations of our Xray Scattering CT (further explained in the next sections).

Nvoxels voxels, the vector of unknowns is Γ = [ν(1),ν(2), ...,ν(Nvoxels)]. Essen-
tially, we estimate the unknowns by optimization of a cost function E (Γ ),

Γ̂ = argmin
Γ>0

E (Γ ) . (16)

The cost function compares the measurements {imeasured
s,d }s,d to a corresponding

model image set {is,d(Γ )}s,d, using

E (Γ ) =
1

2

Ndetectors∑

d=1

Nsources∑

s=1

ms,d

[
is,d(Γ )− js,d

imeasured
s,d

jmeasured
s,d

]2

. (17)

Here ms,d is a mask which we describe in Sec. 4.2. The problem (16,17) is solved
iteratively using stochastic gradient descent. The gradient of E (Γ ) is

∂E (Γ )

∂ck,v
=

Ndetectors∑

d=1

Nsources∑

s=1

ms,d

[
is,d(Γ )− js,d

imeasured
s,d

jmeasured
s,d

]
∂is,d(Γ )

∂ck,v
. (18)

We now express ∂is,d(Γ )/∂ck,v. Inspired by [13], define a score of variable z

Vk,v{z} ≡
∂ log(z)

∂ck,v
=

1

z

∂z

∂ck,v
. (19)

From Eq. (14),

∂is,d
∂ck,v

=
∑

L∈paths

✶{s → d}
∂P (L )

∂ck,v
EB(L )dL =

Np

∫

L∈paths

✶{s → d}P (L )Vk,v{P (L )}EB(L )dL .

(20)

Similarly to Monte-Carlo process of Eq. (15), the derivative (20) is stochastically
estimated by generating virtual photons and aggregating their contribution:

∂is,d
∂ck,v

=
∑

L∈{s→d}

Vk,v{P (L )}EB(L ) . (21)
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Using Eq. (12,13),

Vk,v{P (L )} =

B−1∑

b=1

Vk,v{p(xb−1xb x̂bxb+1, Eb+1)} =

B−1∑

b=1

[
Vk,v{a(xb−1xb, Eb)}+ Vk,v

{
dΣprocess(xb, θb, Eb)

dΩ

}]
.

(22)

Generally, the line segment xb−1xb traverses several voxels, denoted v′ ∈ xb−1xb.
Attenuation on this line segment satisfies

a(xb−1xb, Eb) =
∏

v′∈xb−1xb

av′(Eb) , (23)

where av′ is the transmittance by voxel v′ of a ray along this line segment. Hence,

Vk,v{a(xb−1xb, Eb)} =
∑

v′∈xb−1xb

Vk,v{av′(Eb)} . (24)

Relying on Eqs. (6,8),

Vk,v{a(xb−1xb, Eb)} =

{
Na

Ak

σextinct
k,v (Eb)lv if v ∈ xb−1xb

0 else
, (25)

where lv is the length of the intersection of line xb−1xb with the voxel domain
Vv. A similar derivation yields

Vk,v

{
dΣprocess(xb, θb, Eb)

dΩ

}
=

{
N
Ak

[
dΣprocess(xb,θb,Eb)

dΩ

]−1
dσprocess

k
(Eb,θb)

dΩ if xb ∈ Vv

0 else
.

(26)

A Geant4 Monte-Carlo code renders photon paths, thus deriving is,d using
Eq. (15). Each photon path log then yields ∂is,d(Γ )/∂ck,v, using Eqs. (21, 22, 25,
26). The modeled values is,d and ∂is,d(Γ )/∂ck,v then derive the cost function
gradient by Eq. (18). Given the gradient (18), we solve the problem (16,17)
stochastically using adaptive moment estimation (ADAM) [25].

4.1 Approximations

Solving an inverse problem requires the gradient to be repeatedly estimated
during optimization iterations. Each gradient estimation relies on Monte-Carlo
runs, which are either very noisy or very slow, depending on the number of
simulated photons. To reduce runtime, we incorporated several approximations.
Fewer photons. During iterations, only 107 photons are generated per source
when rendering is,d(Γ ). For deriving ∂is,d(Γ )/∂ck,v, only 10

5 photons are tracked.
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Table 1. Elemental macroscopic scatter coefficient Σscatter
k in human tissue [m−1] for

photon energy 60keV. Note that for a typical human torso of ≈ 0.5m, the optical depth
of Oxygen in blood is ≈ 9, hence high order scattering is significant.

Element Muscle Lung Bone Adipose Blood

O 17.1 5.0 19.2 6.1 18.2
C 3.2 0.6 6.2 11.9 2.4
H 3.9 1.1 2.4 3.9 3.9
Ca 0.0 0.0 18.2 0.0 0.0
P 0.1 0.0 6.4 0.0 0.0
N 0.8 0.2 1.8 0.1 0.8
K 0.2 0.0 0.0 0.0 0.1

[cm^2]

 [
c
m

^
2
]

[cm^2]

 [c
m

^
2
]

Fig. 5. [Left] Absorption vs. scattering cross sections (σabsorb
k vs. σscatter

k ) of elements
which dominate scattering by human tissue. Oxygen (O), Carbon (C) and Nitrogen
(N) form a tight cluster, distinct from Hydrogen (H). They are all distinct from bone-
dominating elements Calcium (Ca) and Phosphor (P). [Right] Compton vs. Rayleigh
cross sections (σCompton

k
vs. σRayleigh

k
). Obtained for 60keV photon energy.

A reduced subset of chemical elements. Let us focus only on elements that
are most relevant to Xray interaction in tissue. Elements whose contribution to
the macroscopic scattering coefficient is highest, cause the largest deviation from
the linear CT model (Sec. 2.3). From (5), the macroscopic scattering coefficient
due to element k is Σscatter

k (x, Eb) = (Na/Ak)ck(x)σ
scatter
k (Eb). Using the typi-

cal concentrations ck of all elements k in different tissues [43], we derive Σscatter
k ,

∀k. The elements leading to most scatter are listed in Table 1. Optimization of
Γ focuses only on the top six.

Furthermore, we cluster these elements into three arch-materials. As seen in
Fig. 5, Carbon (C), Nitrogen (N) and Oxygen (O) form a cluster having similar
absorption and scattering characteristics. Hence, for Xray imaging purposes, we
treat them as a single arch-material, denoted Õ. We set the atomic cross section
of Õ as that of Oxygen, due to the latter’s dominance in Table 1. The second
arch-material is simply hydrogen (H), as it stands distinct in Fig. 5. Finally, note
that in bone, Calcium (Ca) and Phosphor (P) have scattering significance. We
thus set an arch-material mixing these elements by a fixed ratio cP,v/cCa,v = 0.5,
which is naturally occurring across most human tissues. We denote this arch-
material C̃a. Following these physical considerations, the optimization thus seeks
the vector ν(v) = [cÕ,v, cH,v, cC̃a,v

] for each voxel v.
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No tracking of electrons. We modified Geant4, so that object electrons af-
fected by Xray photons are not tracked. This way, we lose later interactions of
these electrons, which potentially contribute to real detector signals.
Ideal detectors. A photon deposits its entire energy at the detector and termi-
nates immediately upon hitting the detector, rather than undergoing a stochastic
set of interactions in the detector.

4.2 Conditioning and Initialization

Poissonian photon noise means that imeasured
s,d has uncertainty of (imeasured

d,s )1/2.
Mismatch between model and measured signals is thus more tolerable in high-
intensity signals. Thus, Eq. (18) includes a mask ms,d ∼ (imeasured

d,s )−1/2. More-
over,ms,d is null if {s → d} is a straight ray having no intervening object. Photon
noise there is too high, which completely overwhelms subtle off-axis scattering
from the object. These s, d pairs are detected by thresholding imeasured

s,d /jmeasured
s,d .

Due to extinction, a voxel v deeper in the object experiences less passing
photons Pv than peripheral object areas. Hence, ∂is,d(Γ )/∂ck,v is often much
lower for voxels near the object core. This effect may inhibit conditioning of
the inverse problem, jeopardizing its convergence rate. We found that weighting
∂is,d(Γ )/∂ck,v by (Pv + 1)−1 helps to condition the approach.

Optimization is initialized by the output of linear analysis (Sec. 2.3), which
is obtained by a simultaneous algebraic reconstruction technique (SART) [3].
That is, the significant scattering is ignored in this initial calculation. Though
it erroneously assumes we have an ASG, SART is by far faster than scattering-

based analysis. It yields an initial extinction coefficient µ
(0)
v , which provides a

crude indicator to the tissue type at v.
Beyond extinction coefficient, we need initialization on the relative propor-

tions of [cÕ,v, cH,v, cC̃a,v
]. This is achieved using a rough preliminary classification

of the tissue type per v, based on µ
(0)
v , through the DICOM toolbox [24]. For this

assignment, DICOM uses data from the International Commission on Radiation
Units and Measurements (ICRU). After this initial setting, the concentrations
[cÕ,v, cH,v, cC̃a,v

] are free to change. The initial extinction and concentration
fields are not used afterwards.

5 Recovery Simulations

Prior to a real experiment, we performed simulations of increasing complex-
ity. Simulations using a Fan to ring; box phantom setup are shown in [12].
We now present the Cone to screen; XCAT phantom example. We initialized
the reconstruction with linear reconstruction using an implementation of the
FDK [50] algorithm. We ran several tests:

(i) We used the XCAT hand materials and densities. We set the source tube
voltage to 120kVp, typical to many clinical CT scanners (Fig. 2). Our scatter-
ing CT algorithm ran for 45 iterations. In every iteration, the cost gradient was
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Table 2. Reconstruction errors. Linear tomography vs. Xray Scattering CT recovery

Z Slice #40 Y Slice #50 Total Volume

Linear Tomography ǫ, δmass 76%, 72% 24%, 15% 80%, 70%

Xray Scattering CT ǫ, δmass 28%, 3% 18%, -11% 30%, 1%

Fig. 6. [Top] Results of density recovery of slice # 40 (Z-axis, defined in Fig. 2) of the

XCAT hand phantom. [Bottom] concentration of our three arch-materials. Material Õ

appear in all tissues and in the surrounding air. Material C̃a is dominant in the bones.
Material H appears sparsely in the soft tissue surrounding the bones.

calculated based on random three (out or 180) projections. To create a real-
istic response during data rendering, 5 × 107 photons were generated in every
projection. A re-projection after recovery is shown in Fig. 4. Results of a re-
constructed slice are shown in Fig. 6[Top]. Table 2 compares linear tomography
to our Xray Scattering CT using the error terms ǫ, δmass [2, 12, 19, 29, 30]. Ex-
amples of other reconstructed slices are given in [12]. Fig. 6[Bottom] shows the
recovered concentrations ck(x) of the three arch-materials described in Sec. 4.
Xray scattering CT yields information that is difficult to obtain using traditional
linear panchromatic tomography.

(ii) Quality vs. dose analysis, XCAT human thigh. To assess the benefit of
our method in reducing dose to the patient, we compared linear tomography
with/without ASG to our scattering CT (with no ASG). Following [9, 28], the
ASG was simulated with fill factor 0.7, and cutoff incident scatter angle ±6◦.
We measured the reconstruction error for different numbers of incident photons
(proportional to dose). Fig. 7 shows the reconstructions ǫ error, and the contrast
to noise ratio (CNR) [40].

(iii) Single-Scatter Approximation [17] was tested as a means to advance
initialization. In our thigh test (using 9 × 109 photons), post linear model ini-
tialization, single-scatter analysis yields CNR = 0.76. Using single-scatter to
initialize multi-scatter analysis yields eventual CNR = 1.02. Histograms of scat-
tering events in the objects we tested are in [12].
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Fig. 7. Simulated imaging and different recovery methods of a human thigh.

Initialization Mass Density [g/cm^3] Resulted Mass Density [g/cm^3]

Fig. 8. Real data experiment. Slice (#36) of the reconstructed 3D volume of the swine
lung. [Left] Initialization by linear tomography. [Right]: Result after 35 iterations of
scattering tomography. All values represent mass density (grams per cubic centimeter).

6 Experimental Demonstration

The experimental setup was identical to the Cone to screen simulation of the
XCAT hand. We mounted a Varian flat panel detector having resolution of
1088× 896 pixels. The source was part of a custom built 7-element Xray source,
which is meant for future experiments with several sources turned on together.
In this experiment, only one source was operating at 35kVp, producing a cone
beam. This is contrary to the simulation (Sec. 5) where the Xray tube tube
voltage is 120kVp. We imaged a swine lung, and collected projections from 180
angles. The raw images were then down-sampled by 0.25. Reconstruction was
done for a 100× 100× 80 3D grid. Here too, linear tomography provided initial-
ization. Afterward the scattering CT algorithm ran for 35 iterations. Runtime
was ≈ 6 minutes/iteration using 35 cores of Intel(R) Xeon(R) E5-2670 v2 @
2.50GHz CPU’s. Results of the real experiment are shown in Figs. 8,9.

7 Discussion

This work generalized Xray CT to multi-scattering, all-angle imaging, without
an ASG. Our work, which exploits scattering as part of the signal rather than
rejecting it as noise, generalizes prior art on scattering tomography by incor-
porating inelastic radiative transfer. Physical considerations about chemicals in
the human body are exploited to simplify the solution.
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Raw Projection Re-Projection

Fig. 9. Real data experiment. [Left] One projection out of 180, acquired using the
experimental setup detailed in [12]. [Right] Re-projection of the estimated volume after
running our Xray Scattering CT method for 35 iterations.

We demonstrate feasibility using small body parts (e.g., thigh, hand, swine
lung) that can fit in our experimental setup. These small-sized objects yield little
scatter (scatter/ballistic ≈ 0.2 for small animal CT [33]). As a result, improve-
ment in the estimated extinction field (e.g., that in Fig. 6 [Top]) is modest. Large
objects have much more scattering (see caption of Table 1). For large body parts
(e.g., human pelvis), scatter/ballistic > 1 has been reported [46]. Being large, a
human body will require larger experimental scanners than ours.

Total variation can improve the solution. A multi-resolution procedure can
be used, where the spatial resolution of the materials progressively increases [13].
Runtime is measured in hours on our local computer server. This time is compa-
rable to some current routine clinical practices (e.g. vessel extraction). Runtime
will be reduced significantly using variance reduction techniques and Monte-
Carlo GPU implementation. Hence, we believe that scattering CT can be de-
veloped for clinical practice. An interesting question to follow is how multiple
sources in a 5th generation CT scanner can be multiplexed, while taking advan-
tage of the ability to process scattered photons.
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