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Abstract. In this work, we propose a novel event based stereo method
which addresses the problem of motion blur for a moving event camera.
Our method uses the velocity of the camera and a range of disparities
to synchronize the positions of the events, as if they were captured at
a single point in time. We represent these events using a pair of novel
time synchronized event disparity volumes, which we show remove mo-
tion blur for pixels at the correct disparity in the volume, while further
blurring pixels at the wrong disparity. We then apply a novel matching
cost over these time synchronized event disparity volumes, which both
rewards similarity between the volumes while penalizing blurriness. We
show that our method outperforms more expensive, smoothing based
event stereo methods, by evaluating on the Multi Vehicle Stereo Event
Camera dataset.
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1 Introduction

Event cameras are neuromorphically inspired asynchronous visual sensors that
register changes in the log intensity of the image. When such a change is detected,
the camera immediately returns an event, (x, y, t, p), to the host, consisting of the
pixel position of the change, x, y, timestamp, t, accurate to microseconds, and
polarity, p ∈ {−1, 1}, indicating whether the intensity decreased or increased.
Over time, the output of the camera can be represented as a constant stream of
events. The asynchronous nature of the cameras, combined with with extremely
high temporal resolution, allow for high speed, low latency measurements, in
situations where traditional cameras may fail. In addition, the cameras exhibit
very high dynamic range (120dB vs 60dB for traditional cameras), allowing them
to operate in a number of challenging lighting environments. Finally, the cameras
also have much lower bandwidth and power consumption. One interesting use
case for these cameras is stereo depth estimation, where they can provide high
speed depth information for tasks such as obstacle avoidance and high speed 3D
tracking.

Supplementary video: https://youtu.be/4oa7e4hsrYo.
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However, a major problem facing general event-based methods is that of time
synchronization. That is, events generated at different times may correspond to
the same point in the image space, but will appear at different pixel positions
due to the motion of the point. This problem manifests itself in two ways. Be-
tween cameras, this problem is analogous to having unsynchronized cameras for
frame based stereo methods, where the epipolar constraint breaks down due to
the motion between the images, and occurs when events are not generated at the
same time between the two cameras. Within a single camera, this causes effects
similar to the motion blur seen in frame based images. For the stereo match-
ing problem, which is often solved using appearance based similarity metrics,
this blurring is highly detrimental, as it often alters the appearance of each im-
age differently. A number of event based stereo methods have approached these
problem with asynchronous methods (e.g. [11,15,17]), which process each event
independently. However, these methods must either forego the information pro-
vided by the spatial neighborhood around each event, or use fine tuned temporal
windows to once again ensure time synchronization, as there are no guarantees
that neighboring events were generated at a similar time.

In this work, we show that this problem can be resolved for stereo disparity
matching if the velocity of the camera is known. In particular, we propose a novel
event disparity volume for events from a stereo event camera pair, that uses
the motion of the camera to temporally synchronize the events with temporal
interpolation at each disparity. Our method takes inspiration from past works
from Zhu et al. [19], Gallego et al. [5] and Rebecq et al. [14,13], which took
advantage of the high temporal resolution of the events to remove motion blur
from an event image using an estimate of the motion in the scene, such as
optical flow or camera pose. To estimate optical flow, we use the motion field
equation, given camera velocity and a set of disparities, and similarly interpolate
the position of the events at each disparity to a single point in time, which we
represent as a novel temporally synchronized event disparity volume. We show
that, in addition to removing motion blur at the correct disparities (where the
motion field equation is valid), this volume allows us to disambiguate otherwise
challenging regions in the image by inducing additional motion blur.

We then define a novel matching cost over this event disparity volume, which
rewards similarity between patches, while penalizing blurriness inside the patch.
We show that this cost function is able to robustly distinguish the true dis-
parity, while being extremely cheap to compute, using only bitwise comparison
operations over a sliding window.

Our method, implemented in Tensorflow, runs in realtime at 40ms on a lap-
top grade GPU, with significant further optimizations available. We evaluate our
results on the Multi Vehicle Stereo Event Camera dataset1 [20], and show sig-
nificant improvements in disparity error over state of the art event based stereo
methods, which rely on additional, more computationally expensive, smoothness
regularizations.

The main contributions of this paper are summarized as:

1 Dataset website: https://daniilidis-group.github.io/mvsec/

https://daniilidis-group.github.io/mvsec/
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– A novel method for using camera velocity to generate a time synchronized
event disparity volume where regions at the correct disparity are in focus,
while regions at the incorrect disparity are blurred.

– A novel block matching based cost function over an event disparity volume
that jointly rewards similarity between left and right patches while penalizing
blurriness in both patches.

– Evaluations on the Multi Vehicle Stereo Event Camera dataset, with com-
parisons against other state of the art methods, and evaluations of each
component of the method.

2 Related Work

Early works in stereo depth estimation for event cameras, such as the works by
Kogler et al. [7] and Rogister et al. [15], attempted to perform matching between
individual events in a fully asynchronous fashion, using a combination of tem-
poral and spatial constraints, which Kogler et al. showed to perform better than
basic block matching between pairs of event images. However, these methods
suffer from ambiguities in matching when single events are considered.

To address these ambiguities, Camuas-Mesa et al. [2] use local spatial in-
formation in the form of local Gabor filters as features, while in [3], they track
clusters of events to aid in tracking with occlusion. Zou et al. [22] use a novel
local event context descriptor based on the distances between events in a win-
dow, which they extend in [23] to produce a dense disparity estimate. Similarly,
Schraml et al. [16] use a cost based on the distance between events to generate
panoramic depth maps.

In addition, several works have applied smoothing based regularizations to
constrain ambiguous regions, which have seen great success in frame based stereo.
Piatkowska et al. [11,12], have applied cooperative stereo methods [8] in an
asynchronous fashion, while Xie et al. [17,18] have adapted belief propagation [1]
and semiglobal matching [4], respectively, to similar effect. These regularizations
have shown significant improvements over the prior state of the art.

These prior works have all shown promising results for event-based stereo
matching, but do not explicitly handle the time synchronization problem without
abandoning the rich spatial information around each pixel.

The problem of time synchronization has been approached in other problems,
where it has been used to remove motion blur from event images. Zhu et al. [19]
and Gallego et al. [5] use this synchronization as a cost function to estimate
optical flow and angular velocity, respectively. Rebecq et al. [13] use the pose
of a single camera from multiple views to generate a disparity space volume,
in which the correct depth is similarly deblurred. Rebecq et al. [14] use a state
estimator with pose and sparse depths to generate ‘motion compensated’ event
images, on which they perform feature tracking. More recently, Mitrokhin et
al. [9] use the synchronized images to perform object detection and tracking.
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3 Method

The underlying problem of stereo disparity matching can be thought of as a data
association problem. That is, to find correspondences between the points in the
left and right images, at a given point in time. In this work, we assume that the
cameras are calibrated and rectified, so that every epipolar line in both images
is parallel to the x axis, and the correspondence problem is reduced to a 1D
search along the x dimension. While some prior works such as [15] in the event
based literature have tried to perform matching on an event by event basis, we
use the spatial neighborhood around each pixel for a more detailed and robust
matching, by making a locally constant depth assumption.

It is possible to perform matching on event images generated directly from
the event positions. However, such an image generated from the raw events is
very prone to motion blur, unless the time window is carefully selected, with a
method such as the lifetime estimation in [10].

Motion blur is generated when events are captured at different points in
time, such that events corresponding to the same point in the image may occur
at different pixels due to the motion of that point. However, the works in [19],
[5] and [14] show that motion blur can be removed from an event image if the
optical flow for each pixel is known. In Sec. 3.1, we leverage this technique to
both remove motion blur at the correct disparities, while further blurring the
events at incorrect disparities. We then describe a novel event disparity volume
representation of these time shifted events in Sec. 3.2, on which we apply a novel
cost function that leverages this focus-defocus effect to allow us to discriminate
the true disparity at each pixel, as described in Sec. 3.3. Finally, Sec. 3.4 discusses
methods to then use the cost function to estimate the true disparity at each pixel.

An overview of the method can be found in Fig. 1

3.1 Time Synchronization through Interpolation

For a given disparity, d, we can approximate optical flow using the motion field
equation, with an assumption of known camera velocity. The motion field equa-
tion describes the relationship between the linear (v) and angular (ω) velocity
of a camera, depth Z of a point (x, y), which we treat here as a function of
disparity, d, and the motion of the point in the image, which we approximate to
be the optical flow (ẋi, ẏi):

(

ẋi(d)
ẏi(d)

)

=
1

Z(d)

[

−1 0 xi

0 −1 yi

]

v +

[

xiyi −(1 + x2
i ) yi

1 + y2i −xiyi −xi

]

ω (1)

Z(d) =
fb

d
(2)

where f is the focal length of the camera and b is the baseline between the two
cameras.

Assuming that the optical flow for each pixel is constant within each time
window, we can then estimate the position of a point generating an event
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Fig. 1: Overview of our method. Given an input of left and right events and
camera velocity, left and right time synchronized event disparity volumes are
generated (Sec. 3.1 and 3.2). The intersection and union costs are calculated by
combining the two disparity volumes, and the final IoU cost volume is computed
(Sec. 3.3). Finally, the disparity is computed in a winner takes all scheme over
the IoU cost volume (Sec. 3.4). Best viewed in color.

(xi, yi, ti, pi) at a constant time t′ with linear interpolation:
(

x′

i(d)
y′i(d)

)

=

(

xi

yi

)

+

(

ẋi(d)
ẏi(d)

)

(t′ − ti) (3)

Assuming a static scene and accurate velocities and disparities, the set of time
synchronized events,

{(

x′

i(d) y
′

i(d) t
′ pi
)}

, is assumed to have no motion blur for
all xi and yi with disparity d.

3.2 Time Synchronized Event Disparity Volume Generation

However, the true depth for each pixel is unknown for this problem. Instead, we
select a range of disparities over which to search, and apply (3) to the set of
events from the left camera for every disparity within the range.

At each disparity level, d, we generate an image based on the time shifted
events, where a pixel with more positive events is set to 1, more negative events
is set to -1, and no events is set to 0. Note that the time shifted event positions
are rounded to the nearest integer to index into the image.

IL(x, y, d) = sign

(

∑

i

pi

)

(4)

i ∈{i|(x′

i(d), y
′

i(d)) = (x, y)}

pi ∈{−1, 1}

This is similar to standard methods that generate images by summing events at
each pixel, but the additional sign operator allows the image to be robust to the
left or right camera generating more events at each pixel than the other.
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Disparity = 6 Disparity = 16 Disparity = 31

Fig. 2: Sample slices of the left (top) and right (bottom) time synchronized event
disparity volumes at disparities 6 (left), 16 (middle) and 31 (right). Only positive
pixels are shown for clarity. At disparity 6, the boards at the back are in focus,
while at disparity 16, the chair in the front is in focus (both circled in yellow).
The other features at the wrong depth are blurred. The right slices have been
shifted horizontally by the disparity, as in (5), so that corresponding points
should be at the same x position in both images. Best viewed in color.

The result is a 3D volume for the left camera, where each slice in the disparity
dimension represents the images generated according to (4), using the disparity
corresponding to that slice. That is, when the camera moves with some linear
velocity, this flow would have a deblurring effect on points where the pixel po-
sition matches the disparity, and potentially apply further blurring on points
where the disparity is incorrect. In the case when the camera’s motion is pure
rotation, the flow will produce unblurred images at each disparity slice.

We apply a similar operation to the events from the right camera, except
that the x position of each shifted event is further shifted by the disparity at
each level:

IR(x, y, d) = sign

(

∑

i

pi

)

(5)

i ∈{i|(x′

i(d) + d, y′i(d)) = (x, y)}

pi ∈{−1, 1}

This generates a set of disparity volumes similar to traditional plane sweep
volumes, where the potential matching right pixel corresponding to IL(x, y, d)
is IR(x, y, d). We show some example slices of this volume in Fig. 3, where the
blurring and deblurring effects can be clearly seen.
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3.3 Matching Cost

Finally, we apply a novel sliding window matching cost that leverages both the
deblurring and blurring effects of Sec. 3.1. First, it penalizes windows with many
events, as this would indicate areas with an incorrect disparity due to the blurring
incurred by the temporal interpolation. Given a local spatial window W (x, y, d)
around a pixel (x, y) at a given disparity d, we encode this using a union term,
defined as:

CU (x, y, d) =
∑

x∗,y∗∈W (x,y,d)

IL(x
∗, y∗, d) ∪ IR(x

∗, y∗, d) (6)

a ∪ b =

{

1 a 6= 0 or b 6= 0
0 otherwise

We carefully choose the union operator instead of addition, in order to not double
penalize pixels with events in both volumes.

Second, the cost rewards windows that are similar. That is, we would like
pixels between the two images to have events with the same polarity. We encode
this using an intersection term, defined as:

CI(x, y, d) =
∑

x∗,y∗∈W (x,y,d)

IL(x
∗, y∗, d) ∩ IR(x

∗, y∗, d) (7)

a ∩ b =

{

1 a = b 6= 0
0 otherwise

This is similar to the tri-state logic error function presented in [7], except we
explicitly do not reward pixels that are both 0 in the intersection term, as we
only want to capture associations between events, and not between pixels without
events.

The final cost, then, can be thought of as an analogy to the intersection over
union cost:

CIoU (x, y, d) =−
CI(x, y, d)

CU (x, y, d)
(8)

Minimizing this final cost will implicitly maximize the similarity between the
two windows, while minimizing the blurring in each. By computing this cost
function at every pixel and disparity, we generate a cost volume, where each
element (x, y, d) in the volume contains the cost of pixel (x, y) being at disparity
d.

3.4 Disparity Estimation

Given the cost volume, the fastest way to obtain the estimate for the true dis-
parity at each pixel is to compute the argmax across the disparity dimension of
the cost volume, in a winner takes all fashion:

d̂(x, y) = argmin
d

CIoU (x, y, d) (9)
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However, we can also apply any traditional optimization method for stereo dis-
parity estimation over the cost volume, such as semi-global matching [4] or belief
propagation [1].

3.5 Outlier Rejection

While the cost function in (8) was relatively robust in our experiments, there
were still some regions of the image where it was unable to resolve the correct
disparity, which we need to remove from the final output. In particular, we
found that pixels with a low final IoU cost typically corresponded to pure noise
in the image, where the number of intersection matches was low compared to
the number of events in the window. Therefore, any disparities with CIoU less
than a parameter ǫc are considered outliers. In addition, windows with a low
number of events do not provide enough support to find a meaningful match,
and so we consider outliers any disparities with CU less than ǫn × ‖W‖, where
ǫn is a parameter and ‖W‖ is the number of pixels in the spatial neighborhood.

4 Implementation Details

In our experiments, unless otherwise stated, we use a disparity range ranging
from 0 to 31 pixels, and a square window with side length of 24 pixels. For outlier
rejection, ǫc and ǫn were both set to 0.1. At each time step, a constant number
of events is passed to the algorithm. For our experiments, we used 15,000 events.

As every step of the algorithm is vectorizable with matrix notation, the al-
gorithm was efficiently implemented on GPU in Tensorflow. In particular, (2)
and (3) are implemented as a matrix operations, (4) and (5) are performed using
scatter nd, and the costs in (6) and (7) are computed by computing the costs for
each pixel at each disparity, and applying two 1D depthwise convolutions with
a kernel of ones of the same length as the window size (one along the rows, one
along the columns).

With all operations fully vectorized, the algorithm takes 40ms to run on a
laptop NVIDIA 960M GPU, including transfer time to the GPU. With further
optimizations and an implementation in raw CUDA or OpenCL, we expect this
time to reduce further. This corresponds to a runtime of around 2.7µs per event,
compared to the 0.65-2ms reported in [17]. However, it should be noted that
the competing methods were implemented in MATLAB on CPU, and would
almost certainly see speed improvements if ported to other languages/devices.
In addition, our method is relatively insensitive to the number of events, as a
large proportion of the run time (∼40%) is consumed in the sliding window
cost. For example, processing a window of 30,000 events takes 46ms to run,
corresponding to a runtime of 1.53µs per event.
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Ground Truth CopNet Block Matching TSES Sparse TSES Dense

Fig. 3: Sample outputs from TSES (our method), compared against CopNet and
block matching, with ground truth from MVSEC. Pixels without disparities are
dark blue. Note that the border of the CopNet and block matching results are
empty due to the window size. Quantitative results were only computed over
points with disparities. Best viewed in color.

5 Experiments

5.1 Data

We evaluated our algorithm on the Multi Vehicle Stereo Event Camera (MVSEC)
dataset [20]. MVSEC provides data captured from a stereo event camera pair,
along with grayscale images and ground truth depth and pose of the cameras.
We tested our method on the indoor flying sequences, and evaluated against the
provided ground truth depth maps. These sequences were generated from a stereo
event camera pair mounted on a hexacopter, and flown in an indoor environment,
with ground truth generated from lidar measurements. In particular, we used
the following depth map frames (zero index) from these indoor flying sequences
for evaluation: indoor flying1: 140-1200, indoor flying2: 120-1420, indoor flying3:
73-1616. These frames were selected to exclude the takeoff and landing frames
where the ground is closer than our selected maximum disparity.
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Mean Disp. Error (pix) Mean Depth Error (m) % Disp. Err < 1

IF1 IF2 IF3 IF1 IF2 IF3 IF1 IF2 IF3

TSES 0.89 1.98 0.88 0.36 0.44 0.36 82.3 70.1 82.3

CopNet 1.03 1.54 1.01 0.61 1.00 0.64 70.4 52.8 70.6
BM 0.73 1.02 0.82 0.23 0.21 0.27 79.5 65.2 74.3

SGBM 1.96 3.06 1.86 0.38 0.38 0.41 69.9 56.8 66.7

Algorithm Ablation

T-S 1.30 2.54 1.39 0.50 0.58 0.57 77.3 64.9 76.7
I-S 1.71 3.59 1.99 0.67 0.99 0.77 74.2 60.7 72.5

IoU-NS 1.43 2.29 1.42 0.52 0.47 0.53 67.8 59.0 68.3
T-NS 1.85 2.78 1.84 0.76 0.66 0.78 64.2 55.6 64.0
I-NS 2.21 3.20 2.12 0.80 0.80 0.78 61.6 53.5 62.7

TSES w/ outliers 1.87 2.83 1.73 1.28 1.18 1.15 74.3 64.3 75.2

Velocity Noise Ablation

0% 0.89 1.98 0.88 0.36 0.44 0.36 82.3 70.1 82.3
5% 0.90 1.97 0.88 0.36 0.45 0.36 82.0 70.5 82.4

10% 0.91 1.98 0.88 0.37 0.45 0.36 81.6 70.1 82.3
20% 0.96 2.04 0.92 0.38 0.46 0.38 80.4 68.6 81.3
50% 1.21 2.44 1.23 0.47 0.58 0.51 74.5 61.5 74.5
100% 1.97 3.47 2.17 0.83 0.92 1.03 61.8 48.5 59.1

Window Size Ablation

8 pix. 2.40 3.83 2.52 0.78 0.87 0.86 65.4 55.3 63.8
16 pix. 1.10 2.29 1.13 0.43 0.51 0.45 80.3 69.2 79.8
24 pix. 0.89 1.98 0.88 0.36 0.44 0.36 82.3 70.1 82.3

32 pix. 0.86 1.97 0.84 0.34 0.43 0.34 81.2 66.7 81.4
40 pix. 0.89 2.05 0.91 0.34 0.44 0.33 78.6 61.9 77.9

Table 1: Quantitative results from testing on the indoor flying (IF) sequences of
TSES (our method) and CopNet, along with ablation studies. Prefixes for the
algorithm ablation are: IoU - Intersection over Union cost (8), I - Intersection
cost (7), T - Time cost (10). Suffixes are with (S) and without (NS) time syn-
chronization (3). Velocity noise was added to the linear and angular velocities
separately, as zero mean Gaussian noise with variance equal to a percentage of
the norm of each velocity.

The driving sequences were not included as the majority of the points in those
sequences were beyond the depth resolved by a disparity of 1, and so a sub-pixel
disparity estimator would be needed to achieve accurate results. In addition, we
do not include results from indoor flying4, as the majority of events are closer
than the maximum disparity of 31, and are also generated by the low-texture
floor, on which we could not generate reasonable results with any of the methods.

While our method generates disparity values whenever there are any events
inside the spatial window, we report our results based on disparities on pixels
where events appeared, in order to provide a fair comparison with other works.
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We used the camera velocities provided in the dataset from [21], which were
generated by linear interpolation of the lidar odometry poses provided from
MVSEC, and are provided in addition to ground truth optical flow for the se-
quences in the dataset.

5.2 Comparisons

For comparison, we have implemented the CopNet method by Piatkowska et
al. [12], and we include their results on the same dataset, using their provided
parameters. For these experiments, we have used an α value of 1 (the scaling
term in the matching cost, equation (3) in their paper), as the original paper
stated a value of 0, which would result in a constant cost. In addition, we compare
against block matching and semi-global block matching methods from OpenCV2,
applied to the grayscale frames from the DAVIS camera. Note that the grayscale
frames are not time synchronized, and the time offset between the left and right
frames is 4ms, 14ms and 14ms for indoor flying 1, 2 and 3, respectively. However,
we were still able to achieve reasonable performance. The quantitative results of
these comparisons can be found in Tab. 1.

In addition, we attempted an implementation of the belief propagation based
work by Xie et al. [17], but were unable to obtain reasonable results over this
dataset, which is significantly more complex than those evaluated in the original
work, consisting of a few objects moving in the scene. We believe that this
is because their matching cost (D(dp)) attempts to match individual events,
without using the spatial neighborhood around the event. In our experiments,
this matching cost failed to identify the correct disparity over the majority of the
image, which we believe led the belief propagation to output incorrect results.

5.3 Ablation Studies

In addition to the comparisons, we performed a number of ablation studies over
the parameters of the algorithm. All results can be found in Tab. 1.

Algorithm Ablation To test the effect of the time synchronized event disparity
volumes, we performed additional experiments where the raw event positions
were passed directly into (4) and (5) (i.e. by setting (x′(d)i, y

′(d)i) = (xi, yi)).
Experiments with and without time synchronization are denoted with the suffix
-S and -NS, respectively.

To test the IoU cost, we tested with only the intersection cost (prefix I), as
well as using the cost function from [12] (prefix T), which is defined as:

CT (x, y, d) =
∑

x∗,y∗∈W (x,y,d)

1

(α · |ItL(x
∗, y∗, d)− ItR(x

∗, y∗, d)|+ 1) · CU (x∗, y∗, d)

(10)

2 https://docs.opencv.org/3.4/d2/d6e/classcv_1_1StereoMatcher.html

https://docs.opencv.org/3.4/d2/d6e/classcv_1_1StereoMatcher.html
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where α is set to 1, the event images It now represent the timestamp of the last
event to arrive at each pixel and disparity:

ItL(x, y, d) =max
ti

{ti|(x
′

i(d), y
′

i(d)) = (x, y)} (11)

ItR(x, y, d) =max
ti

{ti|(x
′

i(d) + d, y′i(d)) = (x, y)} (12)

and we use our union cost in place of the number of events in the left window.
We also tested with the inverse of the union cost, but this did not produce any
reasonable results.

We also provide results of our full method, without the outlier rejection step.

Velocity Noise Ablation In practice, it is difficult to estimate the cameras’
velocity with the same accuracy as the ground truth. To test the effect of noise
on the velocity estimate, we perform additional experiments where we add zero
mean Gaussian noise to the linear and angular velocities. The variance of the
noise is set to a given percentage of the norm of the linear and angular velocities,
separately.

Window Size Ablation We also tested the effects of the window size on the
performance of our method over a range of window sizes.

5.4 Results and Discussion

Comparisons We present some qualitative results in Fig. 3, comparing our
method to CopNet, block matching and ground truth. While both sets of results
look visually reasonable, we can see that our method suffers less from foreground
fattening [6] (e.g. the chair in the fourth row). Our method does, however, tend
to produce erroneous results on the edges of images in the dense disparity image,
but these correspond to pixels without any events, and are thresholded away in
the sparse disparity image.

In addition, we provide quantitative results in Tab. 1, where we can see that
our full method outperforms CopNet across almost every measure, as well as the
other methods in the ablation study. In particular, while the disparity errors are
similar, CopNet performs significantly worse in depth overall. Upon examining
the results. We found that this error from CopNet was largely due to the fact
that the method had over-smoothed the disparity output. This was mostly due
to the window size used, which is relatively large (39x39). This oversmoothing
tends to pull far away points closer (overestimates disparities), which leads to
higher depth errors, as they are higher at lower disparity levels. However, we
observed that reducing the window sizes resulted in a further reduction in the
overall matching accuracy due to increased ambiguity in the matching, as noted
by the authors in the original paper [12], so there was no immediate solution for
this problem.

The block matching method performed better in terms of mean errors across
all three sequences, although the mean disparity errors for sequences 1 and 3 are



Realtime Time Synchronized Event-based Stereo 13

both less than 1 pixel, which is within the range of the discretization error. In
addition, our method has a higher percentage of points with disparity error <1
across all sequences.

We were unable to achieve comparable performance from semi-global block
matching, which tended to over smooth incorrect regions in the image.

Algorithm Ablations From the ablation study, we can see that removing each
component of the method tends to result in a corresponding decrease in accuracy,
with the time synchronization always resulting in better results. In addition, the
addition of the union cost to the overall cost provides a significant improvement
in accuracy over the intersection cost, which is a pure similarity measure.

Furthermore, we can see that our IoU cost outperforms the timestamp based
cost in both situations, suggesting that it may be a better alternative for more
complex methods, even without the time synchronization. When the proposed
time synchronization is applied at the correct disparity, older timestamps are
mapped to later timestamps from the same point in the image. As the time cost
operates on an image that only keeps the latest timestamp, this results in images
with timestamps that are very similar (all later events), which do not provide
much discriminative power. Future work could consider all of the events that
map to a pixel, but this requires a new cost function.

Finally, the results without outlier rejection have significantly higher mean
disparity errors, suggesting that a large number of outliers were rejected by our
method, while from the % disparity error < 1 results, we can see that only <10%
of the points were rejected.

Velocity Noise Ablation The velocity noise ablation results show stable errors
up to noise with variance up to around 20% of the velocity norm. We believe
that a conventional state estimation pipeline for event cameras should be able
to reliably estimate the camera velocity within these error bounds.

Window Size Ablation We found that window sizes between 24 and 40 pixels
achieved the best results. However, larger window sizes increase the amount of
foreground fattening, as well as the runtime of the algorithm. Therefore, we
recommend a window size of 24 pixels for these test cases. In terms of run time,
the algorithm took 33ms, 40ms and 50ms to run for window sizes of 16, 24 and
32 pixels, respectively. Similarly, the runtime was 25ms and 60ms for disparity
ranges of 16 and 48, with a window size of 24 pixels.

6 Conclusions

We have proposed a novel method for stereo event disparity matching which uses
the motion of the camera to synchronize the event streams in time. We show
that our method, consisting of a simple temporal interpolation of the events,
along with a lightweight matching cost, is able to outperform state of the art
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methods which perform expensive regularizations on top of the disparity map.
In addition, as our disparity results are at a single time, analogous to an image
frame, they can be directly passed into any frame based architecture such as a
state estimator, as compared to an asynchronous disparity stream. We envision
that this method will be coupled with a method for estimating camera velocity,
such as a visual odometry algorithm, for real time performance.
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