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Abstract. We present a convolutional autoencoder that enables high
fidelity volumetric reconstructions of human performance to be captured
from multi-view video comprising only a small set of camera views. Our
method yields similar end-to-end reconstruction error to that of a prob-
abilistic visual hull computed using significantly more (double or more)
viewpoints. We use a deep prior implicitly learned by the autoencoder
trained over a dataset of view-ablated multi-view video footage of a wide
range of subjects and actions. This opens up the possibility of high-end
volumetric performance capture in on-set and prosumer scenarios where
time or cost prohibit a high witness camera count.
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Fig. 1. Two high fidelity character models (JP, Magician) where 3D geometry was fully
reconstructed using only two wide-baseline camera views via our proposed method.

1 Introduction

Image based model reconstruction from multi-view video acquisition is enabling
new forms of content production across the creative industries. In particular,
the capture of human performance in three dimensions (3D) enables rendering
from an arbitrary viewpoint (free-viewpoint video rendering - FVVR) [1–3] and
photo-realistic replay within immersive VR/AR experiences. Commercial studios
now operate for the capture of volumetric (“holographic”) performance capture
e. g. implementations of at Mixed Reality Capture Studios (San Francisco, Lon-
don) [4] and Intel Studios (Los Angeles) both utilising over 100 camera views
of a ∼ 2.5m3 capture volume. Whilst able to reconstruct detailed 3D models
of performance, such configurations do not scale to on-set deployments where
practical constraints limit the number of deployable witness cameras (e. g. due to
cost or rigging overheads). The contribution of this paper is to explore whether
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a deeply learned prior can be incorporated into volumetric reconstruction to
minimise the number of views required at acquisition. Specifically, we investigate
for the first time whether convolutional autoencoder architectures, commonly
applied to visual content for de-noising and up-scaling (super-resolution), may be
adapted to enhance the fidelity of volumetric reconstructions derived from just a
few wide-baseline camera viewpoints. We describe a symmetric autoencoder with
3D convolutional stages capable of refining a probabilistic visual hull (PVH) [5]
i. e. voxel occupancy data derived from a small set of views. Hallucinating a PVH
of approximately equal fidelity to that obtainable from the same performance
captured with significantly greater (double or more) camera viewpoints (Fig. 1).
This extends the space of use scenarios for volumetric capture to stages with
low camera counts, prosumer scenarios where cost similarly limits the number of
available camera views, or settings where volumetric capture is not possible due
to restrictions on camera placement and cost such as sports events [6].

2 Related Work

Volumetric performance capture pipelines typically fuse imagery from multiple
wide baseline viewpoints [1, 7] equispaced around the capture volume. Initially,
an estimate of volume occupancy is obtained by fusing silhouettes across views
to yield a volumetric [8] or polyhedral [9] “visual hull” of the performer. Stereo-
matching and volume optimisation subsequently fuse appearance data to refine
the volume estimate ultimately yielding a textured mesh model [3, 10]. In the
case of video, a 4D alignment step is applied to conform 3D mesh topology over
time [11]. Reconstruction error can be mitigated by temporally propagating error
through a soft i. e. probabilistic visual hull (PVH) [5] estimate. Or where practical
by increasing the number of camera views since view sparsity limits the ability to
resolve fine volume detail leading to the introduction of phantom volumes. Shape
refinement and hole filling has been explored with a LSTM and 3D convolutional
model [12] for objects. 3D ShapeNets by Wu [13], learnt the distribution of 3D
objects across arbitrary poses and was able to discover hierarchical compositional
part representation automatically for object recognition and shape completion
while Sharma learnt the shape distribution of objects to enhance corrupted 3D
shapes [14]

Our work is inspired by contemporary super-resolution (SR) algorithms that
apply learned priors to enhance visual detail in images. Classical approaches to
image restoration and SR combine multiple data sources (e. g. multiple images
obtained at sub-pixel misalignments [15], fusing these within a regularisation
constraint e. g. total variation [16]. SR has been applied also to volumetric data
in microscopy [17] via depth of field, and multi-spectral sensing data [18] via sparse
coding. Most recently, deep learning has been applied in the form of convolutional
neural network (CNN) autoencoders for image [19, 20] and video-upscaling [21].
Symmetric autoencoders effectively learn an image transformation between clean
and synthetically noisy images [22] and are effective at noise reduction e. g. due
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Fig. 2. Overview and autoencoder architecture. A coarse PVH (b) captured using
minimal camera views (a) is encoded into a latent representation via 3D convolutional
and full-connected layers (c). The decoder uses the latent representation to synthesise
an output PVH of identical size but improved fidelity (d) which is subsequently meshed
and textured to yield the performance capture model; meshing/texturing (e) is not
a contribution of this paper. The encoder-decoder is optimised during training using
exemplar PVH pairs of the coarse and Hi-Fi PVH volumes.

to image compression. Similarly, Dong [23] trained end-to-end networks to learn
image up-scaling.

Whilst we share the high-level goal of learning deep models for detail enhance-
ment, our work differs from prior work including deep autoencoders in several
respects. We are dealing with volumetric (PVH) data and seek not to up-scale
(increase resolution) as in SR, but instead, enhance detail within a constant-sized
voxel grid to simulate the benefit of having additional viewpoints available during
the formation of the PVH. This motivates the exploration of alternative (3D)
convolutional architectures and training methodologies.

3 Minimal Camera Volumetric Reconstruction

The goal of our method is to learn a generative model for high fidelity 3D volume
reconstruction given a low number of wide baseline camera views. We first de-
scribe the convolutional autoencoder architecture used to learn this model using
a training set of sub-volume pairs sampled from full volumetric reconstructions
(PVHs) of performance obtained using differing camera counts (Sec. 3.1). By
using a PVH we are able to process wide baseline views, that would cause failure
for a correspondence based method. Our process for refining the PVH echos
the stages employed in traditional image de-noising. First, a pre-processing step
(adapted from [5]) reconstructs a coarse PVH using a limited number of cameras.
This low quality result will contain phantom limbs and blocky false positive
voxels (Fig. 2b). Next, a latent feature representation of the PVH (akin to the
low-fidelity image in traditional pipelines) is deeply encoded via a series of con-
volution layers. We then perform non-linear mapping decoding the latent feature
space to a high fidelity PVH (akin to the high-fidelity image). The reconstruction
is performed in a piece-wise fashion using densely overlapping sub-volumes, This
mitigates the instabilities and memory constraints of training and inference on
a network with a large receptive (volumetric) field (Sec. 3.2). The high fidelity
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PVH is then meshed and textured with appearance data from the camera views
yielding a video-realistic character model (Sec. 3.3). Note that the final stage
is not a contribution of this paper, rather we demonstrate the benefits of the
PVH refinement using the method of Casas et al. [3] but any textured meshing
pipeline could be substituted as a post-process.

3.1 Volumetric Autoencoder

We wish to learn a deep representation given input tensor VL ∈ R
X×Y×Z×1,

where the single channel encodes the probability of volume occupancy p(X,Y, Z)
derived from a PVH obtained using a low camera count (eq.5). We wish to
train a deep representation to solve the prediction problem VH = F(VL) for
similarly encoded tensor VH ∈ R

X×Y×Z×1 derived from a higher fidelity PVH of
identical dimension obtained using a higher camera count. Function F is learned
using a CNN specifically a convolutional autoencoder consisting of successive
three-dimensional (3D) alternate convolutional filtering operations and down- or
up-sampling with non linear activation layers. Fig. 2 illustrates our architecture
which has symmetric structure with skip connections bridging hourglass encoder-
decoder stages, the full network parameters are:

ne =[64,64,128,128,256]
nd = [256,128,128,64,64]
ke = [3,3,3,3,3]
kd= [3,3,3,3,3]
ks = [0,1,0,1,0]
NumEpoch = 10

where k[i] indicates the kernel size and n[i] is the number of filters at layer i for
the encoder (e) and decoder (d) parameters respectively. The location of the two
skip connections are indicated by s and link two groups of convolutional layers to
their corresponding mirrored up-convolutional layer. The passed convolutional
feature maps are summed to the up-convolutional feature maps element-wise
and passed to the next layer after rectification. The central fully-connected layer
encodes the 100-D latent representation.

Learning the end-to-end mapping from blocky volumes generated from a small
number of camera viewpoints to cleaner high fidelity volumes, as if made by a
greater number of camera viewpoints, requires estimation of the weights φ in F
represented by the convolutional and deconvolutional kernels. Specifically, given
a collection of N training sample pairs xi, zi, where xi ∈ VL is an instance of a
low camera count volume and zi ∈ VH is the high camera count output volume
provided as a groundtruth, we minimise the Mean Squared Error (MSE) at the
output of the decoder across N = X × Y × Z voxels:

L(φ) =
1

N

N
∑

i=1

‖F(xi : φ)− zi‖22. (1)
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To train F we use Adadelta [24] an extension of Adagrad that seeks to reduce
it’s aggressive, radically diminishing learning rates, restricting the window of
accumulated past gradients to some fixed size w. Given the amount of data and
variation in it due to the use of patches the number of epochs required for the
approach to converge is small at around 5 to 10 epochs.

Skip Connections Deeper networks in image restoration tasks can suffer from
performance degradation. Given the increased number of convolutional layers,
finer image details can be lost or corrupted, as given a compact latent feature
abstraction, the recovery of all the image detail is an under-determined problem.
This issue is exasperated by the need to reconstruct the additional dimension
in volumetric data. Deeper networks also often suffer from vanishing gradients
and become much harder to train. In the spirit of highway [25] and deep residual
networks [26], we add skip connections between two corresponding convolutional
and deconvolutional layers as shown in Fig. 2. These connections mitigate detail
loss by feeding forward higher frequency content to enable up-convolutional stages
to recover a sharper volume. Skip connections also benefit back-propagation to
lower layers, enhancing the stability of training. Our proposed skip connections
differ from that proposed in recent image restoration work [25, 26] which concern
only smoother optimisation. Instead, we pass the feature activation’s at intervals
of every two convolutional layers to their mirrored up-convolutional layers to
enhance reconstruction detail.

3.2 Volumetric Reconstruction and Sampling

The low-fidelity input PVH (VL) is reconstructed using a variant of [5]. We
assume a capture volume observed by a limited number C of camera views
c = [1, C] for which extrinsic parameters {Rc, COP c} (camera orientation and
focal point) and intrinsic parameters {fc, o

x
c , o

y
c} (focal length, and 2D optical

centre) are known, and for which soft foreground mattes are available from each
camera image Ic using background subtraction BG.

The studio capture volume is finely decimated into voxels VL
i =

[

vix viy viz
]

for i = [1, . . . , |VL|]; each voxel is approximately 5mm3 in size. The point (xc, yc)
is the point within Ic to which VL

i projects in a given view:

x[VL
i] =

fcv
i
x

viz
+ oxc and y[VL

i] =
fcv

i
y

viz
+ oyc , where (2)

[

vix viy viz
]

= COP c −R−1
c V i

L. (3)

The probability of the voxel being part of the performer in a given view c is:

p(VL
i|c) = BG(x[VL

i], y[VL
i]). (4)

The overall likelihood of occupancy for a given voxel p(VL
i) is:

p(VL
i) =

C
∏

i=1

1/(1 + ep(VL
i|c)). (5)
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We compute p(VL
i) for all voxels to create the PVH for volume VL.

In practice, the extent of VL is limited to a sub-volume (a 3D “patch”) of the
capture volume. Patches are densely sampled to cover the capture volume, each
of which is processed through F independently at both training and inference
time. Similar to prior image super-resolution and de-noising work [23] this makes
tractable the processing of large capture volumes without requiring excessively
large receptive fields or up-convolutional layer counts in the CNN. In Sec. 4.1 we
evaluate the impact of differing degrees of patch overlap during dense sampling.
For efficiency we ignore any patches where

∑

i p(VL
i) = 0.

3.3 Meshing and texturing

Given VH inferred from the network we produce a “4D” (i. e. moving 3D) per-
formance capture. To generate the mesh for a given frame, the PVH is converted
to a vertex and face based mesh using the marching-cubes algorithm. The iter-
ative process fits vertices to the PVH output by the CNN using the marching
cubes algorithm [27] with a dynamically chosen threshold, thus producing a high-
resolution triangle mesh, that is used as the geometric proxy for resampling of
the scene appearance onto the texture. Without loss of generality, we texture
the mesh using the approach of Casas et al. [3] where a virtual camera view Ic∗
is synthesised in the renderer by compositing the appearance sampled from the
camera views I1,...,C closest to that virtual viewpoint.

Fig. 3. Samples of the multi-view video datasets used to evaluate our method.

4 Experiments and Discussion

We evaluate the quantitative improvement in reconstruction accuracy, as well as
the qualitative improvement in visual fidelity, due to the proposed method. Re-
construction accuracy is evaluated using two public multi-view video datasets of
human performance; TotalCapture [28] (8 camera dataset of 5 subjects performing
4 actions with 3 repetitions at 60Hz in 360◦ arrangement) and Human3.6M [29]
(4 camera view dataset of 10 subjects performing 210 actions at 50Hz in a 360◦

arrangement). Perceptual quality of textured models is evaluated using the public
4D datasets Dan:JumpLong [3], JP:Flashkick [30], JP:Lock2Pop [30], and Magi-

cian [31]1 (see Fig. 3 for samples of each dataset).

1 We use the datasets released publicly at http://cvssp.org/data/cvssp3d/
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Fig. 4. Visualisation of raw PVH occupancy volumes estimated with C=2,4,8 views
using standard method (i. e. without enhancement via our approach). PVH is a prob-
ability between 0 and 1 of the subject’s occupancy. This data forms the input to our
auto-encoder and illustrates the phantom volumes and artefacts to contend with at
C = {2, 4} versus the C = 8 ground-truth (GT) for this dataset (TotalCapture).

4.1 Evaluating Reconstruction Accuracy

We study the accuracy gain due to our method by ablating the set of camera
views available on TotalCapture. The autoencoder model is trained using high
fidelity PVHs obtained using all (C = 8) views of the dataset, and corresponding
low fidelity PVHs obtained using fewer views (we train for C = 2 and C = 4
random neighbouring views). The model is then tested on held-out footage to
determine the degree to which it can reconstruct a high fidelity PVH from the
ablated set of camera views. The dataset consists of a total of four male and
one female subjects each performing four diverse performances, repeated three
times: ROM, Walking, Acting and Freestyle, and each sequence lasts around
3000-5000 frames. The train and test partitions are formed wrt. to the subjects
and sequences, the training consists of ROM1,2,3; Walking1,3; Freestyle1,2 and
Acting1,2 on subjects 1,2 and 3. The test set is the performances Freestyle3
(FS3), Acting (A3) and Walking2 (W2) on subjects 1,2,3,4 and 5. This split
allows for separate evaluation on unseen and on seen subjects but always on
unseen sequences.

The PVH is set to z ∈ R
256×256×256. The sub-volume (’patch’) size i. e.

receptive field of the autoencoder (VL and VH ∈ R
n×n×n is varied across n =

{16, 32, 64} the latter being a degenerate case where the entire volume is scaled
and passed through the CNN in effect a global versus patch based filter of the
volume. Patches are sampled with varying degrees of overlap; overlapping densely
every 8, 16 or 32 voxels (Table 1). The PVH at C = 8 provides a ground-truth
for comparison, whilst the C = {2, 4} input covers at most a narrow 90◦ view
of the scene. Prior to refinement via the autoencoder, the ablated view PVH
data exhibits phantom extremities and lacks fine-grained detail, particularly at
C = 2 (Fig. 4). These crude volumes would be unsuitable for reconstruction
with texture as they do not reflect the true geometry and would cause severe
visual misalignments when camera texture is projected onto the model. Applying
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our autoencoder method to clean up and hallucinate a volume equivalent to one
produced by the unabated C = 8 camera viewpoints solves this issue.

Table 1 quantifies error between the unablated (C = 8) and the reconstructed
volumes for C = {2, 4} view PVH data, baselining these against C = {2, 4} PVH
prior to enhancement via the auto-encoder (input). To measure the performance
we compute the average per-frame MSE of the probability of occupancy across
each sequence. The 2 and 4 camera PVH volume prior to enhancement is also
shown and our results indicate a reduction in MSE of around 4 times through
our approach when 2 cameras views are used for the input and a halving of
MSE for a PVH formed from 4 cameras. We observe that C = 4 in a 180◦ arc
around the subject perform slightly better than C = 2 neighbouring views in a
90◦ arc. However, the performance decrease is minimal for the greatly increased
operational flexibility that a 2 camera deployment provides. In all cases, MSE is
more than halved (up to 34% lower) using our refined PVH for a reduced number
of views. Using only 2 cameras, a comparable volume to that reconstructed from
a full 360◦ C = 8 setup can be produced. Qualitative results of using only 2 and
4 camera viewpoint to construct the volume are shown in Figure 5, where high
quality reconstructions are possible despite the presence of phantom limbs and
extensive false volumes in the input PVH. The bottom line includes results, from
increasingly wide baseline cameras, separated by 45◦, 90◦, and 135◦. Furthermore,
the patch overlap is examined with the steps of 8,16 and 32. When sampled at 32
voxel increments i. e. without any overlap, performance is noticeably worse. This
distinction between the patch overlap (16) and not (32) is visualised in Fig. 7.
In all cases, performance is slightly better when testing on seen versus unseen
subjects.

Patch NumCams SeenSubjects(S1,2,3) UnseenSubjects(S4,5) Mean
Overlap C W2 FS3 A3 W2 FS3 A3

Input 2 19.1 28.5 23.9 23.4 27.5 25.2 24.6
Input 4 11.4 16.5 12.5 12.0 15.2 14.2 11.6

8 2 5.49 9.98 6.94 5.46 9.86 8.79 7.75
16 2 5.43 10.03 6.70 5.34 10.05 8.71 7.71
32 2 6.21 12.75 8.08 5.98 11.88 10.30 9.20

8 4 5.01 9.07 6.48 4.98 9.81 8.61 7.33
16 4 5.49 9.56 6.58 5.12 10.01 8.81 7.60
32 4 5.98 10.02 7.85 5.32 10.85 9.21 8.28

Table 1. Quantitative performance of volumetric reconstruction on the TotalCapture
dataset using 2-4 cameras prior to our approach (Input) and after, versus unablated
groundtruth using 8 cameras (error as MSE ×10−3). Patch size is 323 voxels; patch
overlap of 32 implies no overlap. Our method reduces reconstruction error to 34% of
the baseline (Input) for 2 views.



Volumetric performance capture from minimal camera viewpoints 9

Fig. 5. Qualitative visual comparison of a PVH before (left) and after (right) enhance-
ment, showing detail improvement from C = {2, 4} views (TotalCapture). False colour
volume occupancy (PVH) and groundtruth C = 8 PVH. Bottom line indicates perfor-
mance for different pairs of cameras separated by increased amounts

Cross-dataset generalisation Given that the learned model on TotalCapture

can improve the fidelity of a PVH acquired with 2-4 views to approximate a PVH
reconstructed from 8 views, we explore the performance of the same model on a
second dataset (Human3.6M) which only has on C = 4 views. The Human3.6M

PVH models are poor quality as there are only 4 cameras at body height in four
corners of a studio covering a relatively large capture area. This causes phantom
parts and ghosting to occur. Examples of the PVH reconstructed using C = {2, 4}
views on Human3.6M are shown in Fig. 6 (red). These volumes are of poorer
quality, even for 4 camera reconstructions, primarily due to the cameras being
closer to the ground causing greater occlusion. However, we are able to transfer
our trained CNN models for 2 7→ 8 and 4 7→ 8 views on TotalCapture without any
further training, to hallucinate volumes as if 8 cameras were used at acquisition.
Fig. 6 visualises the enhanced fidelity due to significantly reduced phantom
volumes that would otherwise frustrate efforts to render the volume. C = 4 result
provides a more complete volume but slightly enlarged. Quantitatively, the MSE
of the input PVH with C = 2 against the groundtruth C = 4 PVH across the
test datasets of S9 and S11 is 17.4× 10−3. However, after using our trained CNN
model on the C = 2 input PVH this MSE is reduced to 12.3× 10−3, mirroring
the qualitative improvement shown in Figure 6.
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Fig. 6. Qualitative visual comparison of a PVH before (left) and after (right) enhance-
ment, showing detail improvement from C = {2, 4} views (Human3.6M). False colour
volume occupancy (PVH) and source footage.
Receptive Field Size The use of densely sampled sub-volumes (patches) rather
than global processing of the PVH is necessary for computational tractability
of volumes at R

256×256×256, since the 3D convolutional stages greatly increase
the number of network parameters and GPU memory footprint for batches dur-
ing training. However, a hypothesis could be that the use of patches ignores the
global context that the network could be learning about the subjects thus increas-
ing error. Therefore we performed an experiment on the TotalCapture dataset
using the network with a modified input vector of z ∈ R

64×64×64, therefore mak-
ing each voxel around 30mm3, against standard p ∈ R

32×32×32, p ∈ R
16×16×16

and p ∈ R
8×8×8 patches sampled from the same z ∈ R

64×64×64 vector, with a
patch sampling overlap of 8, 16 and 32. Quantitative results of the average MSE
against the groundtruth 8 camera reconstruction volume are shown in table 2
and qualitative results are shown in Figure 7.

Comparing the performance of the whole volume against patch based methods
shows little change both quantitatively and qualitatively, providing that overlap-
ping patches are utilised (therefore an overlap of 8 and 8 or 16 for p ∈ R

16×16×16

and p ∈ R
32×32×32 respectively. Therefore we can conclude that there is no

requirement for global semantics to be learned as separate patches provide a
measured compromise against the computational costs of training using a single
global volume. However, the benefit of using patches is that much larger PVH
can be processed, as in our experiments (2563 voxels).

4.2 4D Character Reconstruction

We explore the efficacy of our approach as a pre-process to a state of the art
4D model reconstruction technique [3]. We use three popular 4D datasets (J-
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Patch Patch NumCams SeenSubjects(S1,2,3) UnseenSubjects(S4,5) Mean
Size Overlap C W2 FS3 A3 W2 FS3 A3

Input - 2 20.1 24.2 22.3 23.5 25.7 26.8 23.8
Input - 4 9.9 14.2 13.5 11.8 14.1 13.9 12.9

64 - 2 4.34 6.45 5.78 5.01 7.45 6.98 6.00
16 8 2 4.43 6.42 5.65 4.99 7.56 7.23 6.05
16 16 2 5.45 7.03 6.03 6.56 8.02 7.98 6.85

32 8 2 4.56 6.47 5.48 5.13 7.98 6.90 6.10
32 16 2 4.42 6.52 5.63 5.23 7.78 6.97 6.10
32 32 2 5.67 7.34 6.34 7.02 8.87 8.03 7.20

Table 2. Quantifying the effect of patch (sub-volume) size and patch overlap during
dense sampling of the PVH; TotalCapture dataset (error as MSE ×10−3).

Fig. 7. Visual comparison accompanying quantitative data in Tbl. 2 comparing the
efficacy of different patch sizes and overlaps (where a patch size of 64 implies whole
volume processing).

P, Dan, Magician) intended to be reconstructed from a PVH derived from 8
cameras in a 360◦ configuration. We pick a subset of 2 neighbouring views at
random from the set of 8, compute the low fidelity PVH from those views, and
use our proposed method to enhance the fidelity of the PVH prior to running
the reconstruction process [3] and obtaining model geometry (Sec. 3.3). The
geometric proxy recovered via [3] is then textured using all views. The purpose of
the test is to assess the impact of any incorrect geometry on texture alignment.

The datasets all comprise a single performer indoors in a 3m2 capture volume.
The cameras are HD resolution running at 30Hz. Across all datasets, there are
a total of 20 sequences of duration 80-3000 frames. We randomly select for
test sequences: Dan:JumpLong, JP:FlashKick, JP:Lock2Pop and Magician; the
remaining 16 sequences and a total of 5000 frames used as training. Given the
lower number of frames available for training, the autoencoder is initially trained
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Fig. 8. Visual comparison of reconstructions from 2- (our) and 8-view (baseline) PVHs
rendered from the viewpoint of an unused camera. The difference images (SSIM) show
only minor differences relative to the real camera footage, with 2- and 8- reconstructions
near identical. The error is quantified in Tbl. 3 and AMT user study (Tbl. 4).

on TotalCapture dataset per Sec. 4.1 then fine-tuned (with unfixed weights) using
these 5000 frames. We quantify the visual fidelity of our output by rendering it
from a virtual viewpoint coinciding with one of the 6 ablated viewpoints (picked
randomly). This enables a direct pixel comparison between our rendering and the
original camera data for that ablated view. As a baseline, we also compare our
rendering against a baseline built using all 8 views using Casas [3] with identical
parameters. Each frame of test data thus yields a triplet of results for comparison;
2-view PVH, 8-view PVH, and real footage from the viewpoint.

Fig. 8 presents a visual comparison for a representative triplet from each
of the 4 test data. In particular, we are examining the differences in geometry
which would manifest e. g. via texture misalignment or spurious mesh facets that
would cause texture artefacts. The results are nearly indistinguishable with only
minor texture artefacts present; a high quality result considering only 2 views
are used for estimate the geometry. Table 3 quantifies performance using two
metrics; PSNR and structural similarity (SSIM) [32], which closely correlates with
perceptual quality. The metrics compare the 2-view and 8-view reconstructions
to the camera footage which is considered to be the ground truth.

Method Dan JP JP Magic
Mean

JumpLong flashkick lock2pop Magician

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Casas [3] 38.0 0.903 31.8 0.893 32.4 0.893 38.1 90.4 35.1 0.898
Proposed 37.5 0.902 33.6 0.896 32.3 0.893 36.1 90.3 34.9 0.899

Table 3. Quantifying 4D reconstruction fidelity in terms of PSNR and SSIM averaged
across frames of the sequence. We compare running [3] over our proposed output; a
PVH recovered from 2 views via the autoencoder, against a baseline reconstructed
directly from an 8 view PVH. The reconstruction errors are very similar, indicating our
model correctly learns to hallucinate structure from the missing views.



Volumetric performance capture from minimal camera viewpoints 13

The main sources of error between the rendered frames and the original im-
ages are found in the high frequency areas such as the face and hands, where
additional vertices could provide greater detail. However, the overall reconstruc-
tion is impressive considering the poor quality of the input PVH due to the
minimal camera view count.

Perceptual User Study We conducted a study via Amazon Mechanical Turk
(AMT) to compare the performance of our rendering to the 8-view baseline. A
total of 500 frames sampled from the four 4D test sequences is reconstructed as
above, yielding 500 image triplets. The camera view was presented to the partic-
ipant alongside the 2- and 8-view reconstructions in random order. Participants
were asked to ”identify the 3D model that is closest to the real camera image”.
Each result was presented 15 times, gathering in total 7763 annotations, from
343 unique users. Tbl. 4 reports the preferences expressed. It was our expectation
that the preference would be around random at 50%, and over the 7.8K results,
yet our approach was chosen as most similar to the real camera view 50.7% of
the time. An unpaired t-test indicates the likelihood of identical preference is
p > 0.9984. Given also the near-identical SSIM and PSNR scores we can conclude
that despite only using 2 camera viewpoints our reconstructions are statistically
indistinguishable from those sourced using the full 8 camera viewpoints.

Sequence Our Approach Casas [3]

Dan:JumpLong 43.5 % 56.3%
JP:Flashkick 53.2 % 46.7%
JP:Lock2Pop 57.7% 42.2%
Magician 48.2% 51.7%

Mean 50.7 49.2%
Standard Deviation 6.15% 6.11%

Table 4. Perceptual user study (7.8k annotations). 334 AMT participants were asked
to ”identify the 3D model that is closest to the real camera image” and could not
perceive a difference between the 2- an 8-view reconstructed models.

4.3 Failure cases

Despite the excellent performance of our approach at reconstructing view im-
poverished scenes, Fig. 9 highlights failure cases sometimes encountered by the
proposed method. The use of the soft mattes from the 2D images to form the
PVH can limit performance e. g. in Fig. 9(a) the initial coarse PVH input has a
large horizontal hole and this isn’t compensated for by the deeply learned prior;
in general we find the prior learns to erode phantom volumes instead of dilating
existing volumes. Fig. 9(b) illustrates that sometimes the extremities of the arms
are missed, due to ambiguities in the input PVH. Finally, Fig. 9(c), indicates a
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reconstruction failure due to incomplete removal of a phantom limb, caused by
inaccurate geometry created from the PVH volume.

Fig. 9. Illustrative failure cases. Large holes due to errors in multiple 2D mattes can
cause holes in the PVH that are non-recoverable. Texture misalignments can occur in
areas of phantom geometry. Discussion in Sec. 4.3.

5 Conclusion

Volumetric performance capture from multi-view video is becoming increasingly
popular in the creative industries, but reconstructing high fidelity models re-
quires many wide-baseline views. We have shown that high fidelity 3D models
can be built with as few as a couple of views, when accompanied by a deep
representation prior learned via our novel autoencoder framework. We demon-
strated that the models reconstructed via our method are quantitatively similar
(Tables 1,2) and perceptually indistinguishable (AMT study, Table 4) from mod-
els reconstructed from considerably more camera views via existing volumetric
reconstruction techniques. An additional feature of our approach is that we are
able to greatly reduce the computational cost of 4D character reconstruction.
Whilst training the autoencoder takes several hours, computing the PVH and
passing it through the trained network for inference of a higher fidelity volume is
comfortably achievable at 25 fps on commodity GPU hardware. Furthermore, the
cross-data set performance of the autoencoder appears strong without (Sec. 4.1)
or with minimal (Sec. 4.2) fine-tuning.

Future work could include exploring the efficacy of our deep prior beyond
the domain of human performance capture, or inference of meshes directly from
a coarse PVH. Nevertheless, we believe these findings are promising first steps
toward the commoditisation of volumetric video, unlocking broader use cases for
volumetric characters in immersive content.
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