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Abstract. As deep learning methods form a critical part in commercially
important applications such as autonomous driving and medical diagnos-
tics, it is important to reliably detect out-of-distribution (OOD) inputs
while employing these algorithms. In this work, we propose an OOD
detection algorithm which comprises of an ensemble of classifiers. We
train each classifier in a self-supervised manner by leaving out a random
subset of training data as OOD data and the rest as in-distribution (ID)
data. We propose a novel margin-based loss over the softmax output
which seeks to maintain at least a margin m between the average entropy
of the OOD and in-distribution samples. In conjunction with the standard
cross-entropy loss, we minimize the novel loss to train an ensemble of
classifiers. We also propose a novel method to combine the outputs of the
ensemble of classifiers to obtain OOD detection score and class prediction.
Overall, our method convincingly outperforms Hendrycks et al. [7] and the
current state-of-the-art ODIN [13] on several OOD detection benchmarks.
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1 Introduction

Deep learning has significantly improved the performance of machine learning
systems in fields such as computer vision, natural language processing, and
speech. In turn, these algorithms are integral in commercial applications such as
autonomous driving, medical diagnosis, and web search. In these applications,
it is critical to detect sensor failures, unusual environments, novel biological
phenomena, and cyber attacks. To accomplish this, systems must be capable of
detecting when inputs are anomalous or out-of-distribution (OOD). In this work,
we propose an out-of-distribution detection method for deep neural networks
and demonstrate its performance across several out-of-distribution classification
tasks on the state-of-the-art deep neural networks such as DenseNet[8] and Wide
ResNet(WRN)[22].

⋆ Equal contribution. Work done when the authors were working at Intel labs.
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We propose a novel margin-based loss term, added to cross-entropy loss over
in-distribution samples, which maintains a margin of at least m between the
average entropy of OOD and ID samples respectively. We propose an ensemble of
K leave-out classifiers for OOD detection. The training dataset with N classes is
partitioned into K subsets such that the classes of each partition are mutually
exclusive with respect to each other. Each classifier samples one of the K subsets
without replacement as out-of-distribution training data and the rest of the
K − 1 subsets as in-distribution training data. We also propose a new OOD
detection score which combines both softmax prediction score and entropy with
temperature scaling [13]. We demonstrate the efficacy of our method on standard
benchmarks proposed in ODIN [13] and outperform them. Our contributions are
(i) proposing a novel loss for OOD detection, (ii) demonstrating a self-supervised
OOD detection method, and (iii) moving the state-of-the-art by outperforming
the current best methods.

The rest of the paper is organized as follows. Section 2 describes the previous
work on the OOD detection. Section 3 describes our method in detail. Section 4
describes various evaluation metrics to measure the performance of OOD detection
algorithms. The ablation results of various design choices and hyper-parameters
are also presented. We then compare our method against the recently proposed
ODIN algorithm [13] and demonstrate that it outperforms it on various OOD
detection benchmarks. Finally, section 5 discusses observations about our method,
future directions and conclusions.

2 Related Work

Traditionally, based on the availability of the data labels, OOD detection methods
can be categorized into supervised [16], semi-supervised [4] and unsupervised
methods [15], [3]. All these classes of methods have access to the OOD data while
training but differ in access to labels. It is assumed that the classifier has labels
for normal as well as OOD classes during training for supervised OOD detection,
while labels for only the normal classes are available in case of semi-supervised
methods, and no labels are provided for unsupervised OOD detection methods
which typically rely on the fact that anomalies occur in much less frequency than
normal data. Our method is able to detect anomalies in test OOD datasets the
very first time it encounters them during testing. We use one OOD dataset as
validation set to search for hyper-parameters.

Notable OOD detection algorithms which work in the same setting as ours are
isolation forests [14], Hendrycks and Gimpel [7], ODIN [13] and Lee et.al, [12]. The
work reported in isolation forests [14] exploits the fact that anomalies are scarce
and different and while constructing the isolation tree, it is observed that the
anomalous samples appear close to the root of the tree. These anomalies are then
identified by measuring the length of the path from the root to a terminating node;
the closer a node is to the root, the higher is its chance of representing an OOD.
Hendrycks and Gimpel [7] is based on the observation that prediction probability
of incorrect and out-of-distribution samples tends to be lower than the prediction
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probability of correct samples. Lee et al. modify the formulation of generative
adversarial networks [6] to generate OOD samples for the given in-distribution.
They achieve this by simultaneously training GAN [6] and standard supervised
neural network. The joint loss consists of individual losses and an additional
connecting term which reduces the KL divergence between the generated sample’s
softmax distribution and the uniform distribution.

Another set of related works are open set classification methods [17], [18], [19],
[1], [2]. Scheirer et.al, [19] introduces and formalizes “open space risk” which
intuitively is the risk associated with labeling those areas in the output feature
space as positive where there is no density support from the training data. Thus
the approximation to the ideal risk is defined as a linear combination of “open
space risk” and the standard “empirical risk”. Bendale and Boult [1] extend
the definition of “open set risk” to open world recognition where the unknown
samples are not static set. The open world recognition defines a multi-class open
set recognition function, a labeling process and an incremental learning function.
The multi-class open set recognition function detects novel classes which are
labeled using the labeling process and finally are fed to incremental learning
function which updates the model. The OSDN [2] work proposes openMax
function which extends the softmax function by adding an additional unknown
class to the classification layer. The value for unknown class is computed by taking
the weighted average of all other classes. The weights are obtained from Weibull
distribution learnt over the pairwise distances between penultimate activation
vectors (AV) of the top farthest correctly classified samples. For an OOD test
sample these weights will be high while for an in-distribution sample these scores
will be low. The final activation vector is re-normalized using softmax function.

The current state-of-the-art is ODIN [13] which proposes to increase the
difference between the maximum softmax scores of in-distribution and OOD
samples by (i) calibrating the softmax scores by scaling the logits that feed into
softmax by a large constant (referred to as temperature) and (ii) pre-processing
the input by perturbing it with the loss gradient. ODIN [13] demonstrated that at
high temperature values, the softmax score for the predicted class is proportional
to the relative difference between largest unnormalized output (logit) and the
remaining outputs (logits). Moreover, they empirically showed that the difference
between the largest logit and the remaining logits is higher for the in-distribution
images than for the out-of-distribution images. Thus temperature scaling pushes
the softmax scores of in- and out-of-distribution images further apart when
compared to plain softmax. Perturbing the input image through gradient ascent
w.r.t to the score of predicted label was demonstrated [13] to have stronger effect
on the in- distribution images than that on out-of-distribution images, thereby,
further pushing apart the softmax scores of in- and out-of-distribution images.
We leverage the effectiveness of both these methods. The proposed method
outperforms all the above methods by considerable margins.
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3 Out-of-Distribution (OOD) Classifier

In this section, we introduce three important components of our method: entropy
based margin-loss function (3.1), training ensemble of leave-out classifiers (3.2),
and OOD detection scores (3.3).

Algorithm 1: Algorithm to train K Leave Out Classifiers

Input : Training Data X, Number of classes N , K Partitions, δ accuracy
bound, Validation OOD Data XvalOOD

Output :K Leave Out Classifiers
1 for i← 1 to K do

2 Xood ← Xi, Xin ← X −Xi;
3 while Not Converged do

4 ood_batch← Sample OOD minibatch;
5 in_batch← Sample in-distribution minibatch;
6 update the classifier Fi by minimizing loss (Equation 1) using SGD;
7 save model with least OOD error on XvalOOD within δ accuracy of

current best accuracy.;
8 end

9 end

10 return {Fi};

3.1 Entropy based Margin-Loss

Given a labeled set (xi ∈ Xin, yi ∈ Yin) of in-distribution (ID) samples and
(xo ∈ Xood) of out-of-distribution (OOD) samples, we propose a novel loss term
in addition to the standard cross-entropy loss on ID samples. This loss term seeks
to maintain a margin of at least m between the average entropy of OOD and ID
samples. Formally, a multi-layer neural network F : x → p which maps an input
x to probability over classes and parametrized by W is learned by minimizing
the margin-loss over the difference of average entropies over OOD samples and
ID samples, and cross entropy loss on ID samples. The loss function is given by
Equation 1,

L = − 1
|Xin|

∑

xi∈Xin

log(Fyi
(xi)) + β ∗ max

(

m+

∑

xi∈Xin

H(F (xi))

|Xin|
−

∑

xo∈Xood

H(F (xo))

|Xood|
, 0

)

(1)

where Fyi
(xi) is the predicted probability of sample xi whose ground truth class

yi, H(·) is the entropy over the softmax distribution, m is the margin and β is
the weight on margin entropy loss.

The new loss term evaluates to its minimum value zero when the difference
between the average entropy of OOD and ID samples is greater than the margin
m. For ID samples, the entropy loss encourages the softmax probabilities of
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non ground-truth classes to decrease and the cross-entropy loss encourages the
softmax probability of ground-truth class to increase. For OOD samples, the
entropy loss encourages the probabilities of all the classes to be equal. When
the OOD entropy is higher than ID entropy by a margin m, the new loss term
evaluates to zero. Our experiments suggest that maximizing OOD entropy leads
to overfitting. Bounding the difference of average entropies of ID samples and
OOD samples entropies with margin has helped in preventing overfitting, and
thus is better for model generalization[11].

Algorithm 2: Algorithm for OOD Detection using K Leave Out Classifiers

Input : Test Image xt, K leave-out Classifiers Fi, i ∈ 1, ...,K and their
temperature scaled versions Fi(xt;T ), perturbation factor ǫ, number of
classes N

Output : Class prediction Ct, OOD score Ot

1 St ← {0}
N , Ot ← 0;

2 for i← 1 to K do

3 St ← St + Fi(xt);

4 x̂t ← xt − ǫ ∗ sign( ∂H(Fi(x̂t;T ))
∂xt

);

5 Ot ← Ot + maxN (Fi(x̂t;T ))−H(Fi(x̂t;T ));

6 end

7 Ct ← argmax(St);
8 return Ct, Ot;

3.2 Training Ensemble of leave-out classifiers

Given an in-distribution training data X which consists of N classes, the data is
divided into K partitions Xi, i ∈ {1, ...,K} such that the classes of each partition
are mutually exclusive to all other partitions. A set of K classifiers are learned
where classifier Fi, i ∈ {1, ...,K} uses the partition Xi as OOD data Xood and
rest of the data X −Xi as in-distribution data Xin. A particularly simple way of
partitioning the classes is to divide them into partitions with equal number of
classes. For example, dividing a dataset of N = 100 classes into K = 5 random
and equal partitions gives us a partition with size of 20 classes. Each of the K
classifiers would then use 20 classes for OOD and 80 classes as ID. Each classifier
Fi is learned by minimizing the proposed margin entropy loss (eqn 1) using the
assigned OOD and ID data. During the training, we also assume a small number
of out-of-distribution images to be available as a validation dataset. At every
epoch, we save the model with best OOD detection rate on this small OOD
validation data and within a δ accuracy bound of the current best accuracy.
The complete algorithm for training the leave-out classifiers in presented in
Algorithm 1.
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3.3 OOD Detection Score for Test Image

At the time of testing, an input image is forward propagated through all the K
leave-out classifiers and the softmax vectors of all the networks are remapped to
their original class indices. For the left-out classes, a score of zero is assigned. For
classification of an input sample, first the softmax vectors of all the classifiers are
averaged and the class with the highest averaged softmax score is considered as
the prediction. For the OOD detection score, for each of the K classifiers, we first
compute both the maximum value and negative entropy of the softmax vectors
with temperature scaling. We then compute the average of all these values to
obtain the OOD detection score.

An in-distribution sample with class labels yi acts as an OOD for exactly
one of the K classifiers. This is because the classes are divided into K mutually
exclusive partitions and class yi can be part of only one of these partitions.
When an in-distribution sample (xi, yi) is forward propagated through these K
classifiers, we would expect the negative entropy and maximum softmax score
to be high for K − 1 classifiers where it was sampled as in-distribution dataset.
However, for an OOD sample xo we expect the negative entropy and maximum
softmax score to be relatively low for all the K classifiers. We thus expect a higher
OOD detection score for ID samples than the OOD samples thus differentiating
them.

Following the work of ODIN [13], we use both temperature scaling and input
preprocessing while testing. In temperature scaling, the logits feeding into softmax
layer are scaled by a constant factor T . It has been established that temper-
ature scaling can calibrate the classification score and in the context of OOD
detection [13], it pushes the softmax scores of in- and out-of-distribution samples
further apart when compared to plain softmax. We modify input preprocessing
by perturbing over entropy loss instead of cross-entropy loss used by ODIN [13].
Perturbing using the entropy loss decreases the entropy of the ID samples much
more than the OOD samples. For an input test image xt, after it is forward
propagated through the neural network Fi, the gradient of the entropy loss with
respect to xt is computed and the input is perturbed with Equation 2. The OOD
detection score is then calculated by the combination of maximum softmax value
and entropy as described previously, both with temperature scaling.

x̂t = xt − ǫ ∗ sign(
∂L(Fi(xt;T ))

∂xt

) (2)

The complete algorithm for OOD detection on a test image is presented in
Algorithm 2.

4 Experimental Results

In this section, we describe our experimental results. The details such as in-
distribution and OOD datasets, the neural network architectures and evaluation
metrics are described in detail. The ablation studies on various hyper-parameters
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Architecture CIFAR-10 CIFAR-100

DenseNet-BC 5.0 19.9

WRN-28-10 5.0 20.4

Table 1: Test error rates on CIFAR-10 and CIFAR-100

of the algorithms are described and conclusions are drawn. Finally, our method
is compared against the current state-of-the-art ODIN [13] and is shown to
significantly outperform it.

4.1 Experimental Setup

We use CIFAR-10 (contains 10 classes) and CIFAR-100 (contains 100 classes) [10]
datasets as in-distribution datasets to train deep neural networks for image
classification. They both consist of 50,000 images for training, and 10,000 images
for testing. The dimensions of an image in both the datasets is 32 × 32. The
classes of both CIFAR-10 and CIFAR-100 are randomly divided into five parts.
As described in Section 3.2, each part is assigned as OOD to a unique network
which is then trained. For each network, the other parts act as in-distribution
samples.

Following the benchmarks given in [13], the following OOD datasets are used
in our experiments. The datasets are described in ODIN[13] and provided as
a part of their code release; here we are simply restating the description for
comprehensiveness.

– TinyImageNet[9] (TIN) is a subset of ImageNet dataset[13]. Tiny Im-
ageNet contains 200 classes which is drawn from original 1,000 classes of
ImageNet. In total, there are 10,000 images in the Tiny ImageNet. By ran-
domly cropping and downsampling each image to 32 × 32, two datasets
TinyImageNetcrop (TINc) and TinyImageNetresize (TINr) are constructed.

– LSUN is the Large Scale UNderstanding dataset (LSUN)[21] created by
Princeton, using deep learning classifiers with humans in the loop. It contains
10,000 images of 10 scene categories. By randomly cropping and downsampling
each image to size 32× 32, two datasets LSUNc and LSUNr are constructed.

– iSUN[20] is collected by gaze tracking from Amazon Mechanical Turk using
a webcam. It contains 8925 scene images. Similar to the above dataset as
other datasets, images are down-sampled to size 32× 32.

– Uniform Noise (UNFM) is synthetic dataset consists of 10,000 noise
images. The RGB value of each pixel in an image is drawn from uniform
distribution in the range [0, 1].

– Gaussian Noise (GSSN) is synthetic dataset consists of 10,000 noise im-
ages. The RGB value of each pixel is drawn from independent and identically
distributed Gaussian with mean 0.5 and unit variance and each pixel value is
clipped to the range [0, 1].
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Neural network architecture Following ODIN[13], two state-of-the-art
neural network architectures, DenseNet [8] and Wide ResNet(WRN) [22], are
adopted to evaluate our method. For DenseNet, we use the DenseNet-BC setup
as in [8], with depth L = 100, growth rate k = 12 and dropout rate 0. For
Wide ResNet, we use WRN-28-10 setup, with depth 28, width 10 and dropout
rate of 0.3. We train both DenseNet-BC and Wide ResNet on CIFAR-10 and
CIFAR-100 for 100 epochs with batch size 100, momentum 0.9, weight decay
0.0005, and margin 0.4. The initial training rate is 0.1 and it is linearly dropped
to 0.0001 over the whole training process. During training, we augment our
training data with random flip and random cropping. We use the smallest OOD
dataset, iSUN, as validation data for hyper-parameter search. We test the rest
four out-of-distribution datasets except iSUN on our trained network. During
testing, we use batch size 100. Similar to ODIN[13], input preprocessing with
ǫ = 0.002 is used.

Table 1 shows the test error rates when our method is trained and tested
on CIFAR-10 and CIFAR-100 respectively using the algorithms 1 and 2. For
CIFAR-10, the vanilla DenseNet-BC [8] and the proposed method gives error
rates of 4.51% and 5.0% respectively. For CIFAR-100, the error rates are 22.27%
and 19.9% respectively. On both these datasets, the difference in error rates is
marginal. For WRN [22] with depth 40, k = 10, the test error rate on CIFAR-10
for the vanilla network is 4.17% and for the proposed network is 5.0%. For
CIFAR-100, the error rates are 20.5% and 20.4% for the vanilla network and
the proposed network respectively. The small difference in the performance on
CIFAR-10 can be explained by the fact that the our method did not use the ZCA
whitening preprocessing while the vanilla network did.

4.2 Evaluation Metrics

To measure the effectiveness of our method to distinguish between in-distribution
and out-of-distribution samples, we adopt five different metrics, same as what was
used in ODIN[13] paper. We restate these metrics below for comprehensiveness.
In the rest of manuscript, TP, TN, FP, FN are used to denote true positives,
true negatives, false positives and false negatives respectively.

FPR at 95% TPR measures the probability that an out-of-distribution
sample is misclassified as in-distribution when the true positive rate (TPR) is
95%. In this metric, TPR is computed by TP/(TP +TN), and FPR is computed
by FP/(FP + TN).

Detection Error measures the minimum misclassification probability over
all possible score thresholds, as defined in ODIN[13]. To have a fair comparison
with ODIN, the same number of positive and negative samples are used during
testing.

AUROC is the Area Under the Receiver Operating Characteristic curve. In
a ROC curve, the TPR is plotted as a function of FPR for different threshold
settings. AUROC equals to the probability that a classifier will rank a randomly
chosen positive sample higher than a randomly chosen negative one. AUROC
score of 100% means perfect separation between positive and negative samples.
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Ablation

Studies
Parameters

FPR at

95% TPR

↓

Detection

Error

↓

AUROC

↑

AUPR

In

↑

AUPR

Out

↑

CLS

Acc

↑
N

u
m

b
e
r

o
f

S
p
li
t
s

3 32.37 13.94 93.50 94.39 92.22 76.41

5 22.95 10.79 95.69 96.55 94.3 80.01

10 28.71 12.53 94.48 95.37 93.26 81.94

20 23.85 10.95 95.49 96.24 94.36 82.33

T
y
p
e

o
f

s
p
li
t
s

Random 22.95 10.79 95.69 96.55 94.3 80.01

Manual 40.16 16.26 91.57 92.90 89.57 79.79

E
p
s
il
o
n

0.000000 53.51 16.37 90.75 93.16 86.71 80.32

0.000313 41.62 14.37 92.8 94.52 90.16 80.22

0.000625 34.64 12.83 94.09 95.4 92.19 80.17

0.001250 25.74 11.19 95.38 96.31 94.04 80.08

0.002000 22.95 10.79 95.69 96.55 94.3 80.01

0.003000 29.07 11.79 94.73 95.9 92.43 79.97

T
e
m

p
-

r
a
t
u
r
e

1 38.57 17.32 91.44 92.7 90.12 80.01

10 27.84 11.93 94.86 95.81 93.39 80.01

100 24.44 10.86 95.6 96.5 94.17 80.01

1000 22.95 10.79 95.69 96.55 94.3 80.01

5000 22.7 10.81 95.66 96.53 94.28 80.01

L
o
s
s

F
u
n
c
t
io

n

SFX 84.09 36.55 68.96 72.38 63.77 54.18

SFX+MaxEntropyDiff 50.70 19.65 88.26 89.71 86.18 72.99

SFX+MarginEntropy 22.95 10.79 95.69 96.55 94.3 80.01

O
O

D

D
e
t
e
c
t
io

n

S
c
o
r
e

SFX 50.52 19.91 88.69 90.91 86.19 80.01

Entropy 36.23 16.48 91.92 93.03 90.74 80.01

SFX+Entropy 38.57 17.32 91.44 92.7 90.12 80.01

SFX@Temp 22.71 10.83 95.65 96.52 94.26 80.01

Entropy@Temp 37.0 14.05 93.33 94.76 91.04 80.01

(SFX+Entropy)@Temp 22.95 10.79 95.69 96.55 94.3 80.01

Table 2: Ablation Studies on CIFAR-100 as in-distribution data and iSUN as
out-of-distribution data on DenseNet-100 network. All values are percentages. ↑
indicates larger value is better, and ↓ indicates lower value is better.

AUPR-In measures the Area Under the Precision-Recall curve. In a PR curve,
the precision= TP/(TP+FP ), is plotted as a function of recall= TP/(TP+FN),
for different threshold settings. Since precision is directly influenced by class
imbalance (due to FP), PR curves can highlight performance differences that
are lost in ROC curves for imbalanced datasets[5]. AUPR score of 100% means
perfect distinguish between positive and negative samples. For AUPR-In metric,
in-distribution images are specified as positive.

AUPR-Out is similar to the metric AUPR-In. The difference lies in that for
AUPR-Out metric, out-of-distribution images are specified as positive.

CLS Acc is the classification accuracy for ID samples.
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4.3 Ablation Studies

In this section, we perform ablation studies to study the effects of various hyper pa-
rameters used in our model. We perform the ablation studies on DenseNet-BC [8]
network with CIFAR-100 [10] as in-distribution while training and iSUN [20] as
the OOD validation data while testing. By default, we use 5 random splits for
CIFAR-100, ǫ = 0.002, SFX+MarginEntropy loss to train network, accuracy
bound δ = 2% to save the models, and use (Softmax + Entropy)@Temperature
with T = 1000 to detect out-of-distribution samples. Results are given in Table 2.

(1) Number of splits: This analysis characterizes the sensitivity of our
algorithm to the number of splits of the training classes which is same as the
number of classifiers in the ensemble. As the number of splits increase, the number
of times a particular training class being in-distribution for the leave-out classifiers
increases too. This enables the ensemble to discriminate an in-distribution sample
from the OOD sample. But it also increases the computational cost. For CIFAR-
100, we studied 3, 5, 10 and 20 splits. Our results show that while 5 splits gave
the best result, 3 splits also provides a good trade-off between accuracy and
computational cost. We choose the number of splits as 5 as default value.

(2) Type of splits: This study characterizes the way in which the classes
are split into mutually exclusive sets. We experiment with splitting the classes
manually using prior knowledge and splitting randomly. For the manual split, the
class labels are first clustered into semantically consistent groups and classes from
each group are then distributed across the splits. The results show that the OOD
detection rates for random selections are better than the manual selection.This
ensures that we can achieve good OOD detection rates even by random selection
of classes when the number of classes is huge.

(3) Different ǫ for input preprocessing: For input preprocessing, we
sweep over ǫ ∈ [0, 0.000313, 0.000625, 0.00125, 0.002, 0.003]. Our results show that
as ǫ increases from 0, the performance of out-of-distribution detector increases,
and it reaches the best performance at 0.002. The further increase of ǫ does not
help performance.

(4) Different T for temperature scaling: For temperature scaling, we
sweep over T ∈ [1, 10, 100, 1000, 5000]. Our results show that for DenseNet-BC
with CIFAR-100, as T increases from 1 to 1000, the performance of out-of-
distribution detector increases. Beyond T = 1000, the performance does not
change much.

(5) Loss function variants: We study the effects of training our method
with different types of losses. The training regime follows the strategy given in
section 3.2, where the training data X is split into K partitions Xi, i ∈ {1, ...,K}.
A total of K classifiers are trained where classifier Fi uses the partition Xi as
OOD data and X −Xi as in-distribution data.

– SFX : We assign an additional label to all the OOD samples and train
classification network using the cross entropy loss.
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– SFX+MaxEntropyDiff : Along with the cross entropy loss, we maximize the
difference between the entropy of in- and out-of-distribution samples across
all in-distribution classes.

– SFX+MarginEntropy : Along with the cross entropy, we maximize the dif-
ference between the entropy of in- and out-of-distribution samples across all
in-distribution classes, but is bounded by a margin as given in Equation 1.

Our results show that the proposed SFX+MarginEntropy loss works dramatically
better than all other types of losses for detecting out-of-distribution samples as
well as for accurate classification. The results demonstrate that the proposed
novel loss function SFX+MarginEntropy (equation 1) is the major factor in
significant improvements over the current state-of-the-art ODIN [13].

(6) Out-of-distribution detector: We study different OOD scoring meth-
ods to discriminate out-of-distribution samples from in-distribution samples.

– Softmax score: Given an input image, the score is given by the average of
maximum softmax outputs over all the classifiers in the ensemble.

– Entropy score: Given an input image, the score is given by the average of
entropy of softmax vector over all the classifiers in the ensemble.

– Softmax + Entropy : Given an input image, both the above scores are added.
– Softmax@Temperature: Given an input image, the above described Softmax

score is computed on temperature scaled (T = 1000) softmax vectors.
– Entropy@Temperature: Given an input image, the above described Entropy

score is computed on temperature scaled (T = 1000) softmax vectors.
– (Softmax + Entropy)@Temperature: Given an input image, the above de-

scribed Entropy@Temperature and Softmax@Temperature are computed
(T = 1000) on softmax vectors and then added.

Among the above OOD scoring methods, the (Softmax + Entropy)@Temperature
(T = 1000) achieved the best performance. Softmax@Temperature (T = 1000)
achieved the second best performance.

4.4 Results and Analysis

Table 3 shows the comparison between our results and ODIN [13] on various
benchmarks. The results are reported on all neural network, in-dataset and OOD
dataset combinations. Our hyperparameters are tuned using iSUN dataset. From
the Table 3, it is very clear that our approach significantly outperforms ODIN [13]
across all neural network architectures on almost all of the dataset pairs. The
combination of novel loss function, OOD scoring method, and the ensemble of
models has enabled our method to significantly improve the performance of
OOD detection on more challenging datasets, such as LSUN (resized), iSUN
and ImageNet(resized), where the images contain full objects as opposed to
the cropped parts of objects. The proposed method is slightly worse on the
uniform and some of Gaussian distribution results. Moreover, our method achieves
significant gains on both CIFAR-10 and CIFAR-100 with the same number of
splits which is 5, even though the number of classes have increased by a factor of
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OOD

Dataset

FPR at

95% TPR

↓

Detection

Error

↓

AUROC

↑

AUPR

In

↑

AUPR

Out

↑

each cell in ODIN[13]/Our Method format

D
e
n
s
e
N

e
t
-B

C

C
IF

A
R

-1
0

TINc 4.30/1.23 4.70/2.63 99.10/99.65 99.10/99.68 99.10/99.64

TINr 7.50/2.93 6.10/3.84 98.50/99.34 98.60/99.37 98.50/99.32

LSUNc 8.70/3.42 6.00/4.12 98.20/99.25 98.50/99.29 97.80/99.24

LSUNr 3.80/0.77 4.40/2.1 99.20/99.75 99.30/99.77 99.20/99.73

UNFM 0.00/2.61 0.20/3.6 100/98.55 100/98.94 100/97.52

GSSN 0.00/0.00 0.50/0.2 99.90/99.84 100/99.89 99.90/99.6

D
e
n
s
e
N

e
t
-B

C

C
IF

A
R

-1
0
0 TINc 17.30/8.29 8.80/6.27 97.10/98.43 97.40/98.58 96.80/98.3

TINr 44.30/20.52 17.50/9.98 90.70/96.27 91.40/96.66 90.10/95.82

LSUNc 17.60/14.69 9.40/8.46 96.80/97.37 97.10/97.62 96.50/97.18

LSUNr 44.00/16.23 16.80/8.77 91.50/97.03 92.40/97.37 90.60/96.6

UNFM 0.50/79.73 2.50/9.46 99.50/92.0 99.60/94.77 99.00/83.81

GSSN 0.20/38.52 1.90/8.21 99.60/94.89 99.70/96.36 99.10/90.01

W
R

N
-2

8
-1

0

C
IF

A
R

-1
0

TINc 23.40/0.82 11.60/2.24 94.20/99.75 92.80/99.77 94.70/99.75

TINr 25.50/2.94 13.40/3.83 92.10/99.36 89.00/99.4 93.60/99.36

LSUNc 21.80/1.93 9.80/3.24 95.90/99.55 95.80/99.57 95.50/99.55

LSUNr 17.60/0.88 9.70/2.52 95.40/99.7 93.80/99.72 96.10/99.68

UNFM 0.00/16.39 0.20/5.39 100/96.77 100/97.78 100/94.18

GSSN 0.00/0.00 0.10/1.03 100/99.58 100/99.71 100/99.2

W
R

N
-2

8
-1

0

C
IF

A
R

-1
0
0 TINc 43.90/9.17 17.20/6.67 90.80/98.22 91.40/98.39 90.00/98.07

TINr 55.90/24.53 23.30/11.64 84.00/95.18 82.80/95.5 84.40/94.78

LSUNc 39.60/14.22 15.60/8.2 92.00/97.38 92.40/97.62 91.60/97.16

LSUNr 56.50/16.53 21.70/9.14 86.00/96.77 86.20/97.03 84.90/96.41

UNFM 0.10/99.9 2.20/14.86 99.10/83.44 99.40/89.43 97.50/71.2

GSSN 1.00/98.26 2.90/16.88 98.50/93.04 99.10/88.64 95.90/71.62

Table 3: Distinguishing in- and out-of-distribution test set data for the image
classification. All values are percentages. ↑ indicates larger value is better, and
↓ indicates lower value is better. Each value cell is in "ODIN[13]/Our Method"
format.

ten from CIFAR-10 to CIFAR-100. Thus the number of splits need not be scaled
linearly with the number of classes, making our method practical. We implicitly
outperform Hendrycks and Gimpel [7] and Lee et.al, [12] as ODIN outperforms
both these works and our method outperform ODIN on all but two benchmarks.

All three components in our method, namely novel loss function, the ensemble
of leave-out classifiers and improved OOD detection metric contributed to the
improvement in performance over state-of-the-art ODIN (refer to table 2). The
contribution of these components can be seen in Table 2 in the rows marked as
“Loss function”, “Number of splits” and “OOD detection scores”.

Our algorithm has stochasticity in the form of random splits of the classes.
Given 100 classes in CIFAR-100, there are many ways to split 100 classes into 5
partitions. Table 4 gives the mean and standard deviation across five random
ways to partition data when we use 5 number of splits for training. We note that
even our worst case results outperform ODIN [13] on more challenging datasets.

Figure 1 compares the histogram of OOD detection scores on ID and OOD
samples when different loss functions are used for training. Figure 1(a) is trained
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OOD

Dataset

DenseNet-BC

CIFAR-10

DenseNet-BC

CIFAR-100

WRN-28-10

CIFAR-10

WRN-28-10

CIFAR-100

TINc 1.49 ± 0.23 10.26 ± 1.33 1.3 ± 0.33 10.35 ± 2.21

TINr 3.95 ± 0.75 26.58 ± 4.16 4.56 ± 1.29 29.84 ± 5.12

LSUNc 4.54 ± 1.42 16.95 ± 1.27 3.81 ± 1.22 15.51 ± 1.4

LSUNr 1.3 ± 0.6 20.22 ± 2.79 1.53 ± 0.41 22.51 ± 6.08

UNFM 14.37 ± 31.84 38.79 ± 19.41 0.75 ± 1.24 47.67 ± 47.19

GSSN 27.09 ± 40.02 82.24 ± 12.81 31.47 ± 33.95 67.48 ± 44.33

Table 4: Mean and standard deviation of FPR at 95% TPR

(a) Cross entropy loss. (b) Margin entropy loss.

Fig. 1: Histogram of ID and OOD detection scores of the proposed method and ODIN [13]

with only cross entropy loss, while Figure 1(b) is trained with proposed margin
entropy loss and cross entropy, the proposed OOD detector is used in both bases.
As shown in Figure 1, the proposed margin entropy loss helps to better separate
ID and OOD distributions than using cross entropy loss alone. Figure 2 presents
the histogram plot of OOD detection scores on ID and OOD samples for both
our method and ODIN [13]. As shown in Figure 2, the proposed method has less
overlap between OOD samples and ID samples compared to ODIN [13] and thus
separates ID and OOD distributions better.

5 Conclusion and Future Work

As deep learning is widely adopted in many commercially important applications,
it is very important that anomaly detection algorithms are developed for these
algorithms. In this work, we have proposed an anomaly detection algorithm
for deep neural networks which is an ensemble of leave-out-classifiers. These
classifiers are learned by maximizing the margin-loss between the entropy of
OOD samples and in-distribution samples. A random subset of training data
serves as OOD data while the rest of the data serves as in-distribution. We show
our algorithm significantly outperforms the current state-of-art methods [7], [12]
and [13] across almost all the benchmarks. Our method contains three important
components, novel loss function, the ensemble of leave-out classifiers, and novel
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(a) ImageNet. (b) resized ImageNet.

(c) LSUN. (d) resized LSUN.

Fig. 2: Histogram of ID and OOD detection scores with proposed OOD detector v.s.
ODIN OOD detector

out-of-distribution detector. Each of this component improves OOD detection
performance. Each of them can be applied independently on top of other methods.

We also note that this method opens up several directions of research to
pursue. First, the proposed method of the ensemble of neural networks requires
large memory and computational resources. This can potentially be alleviated by
all the networks sharing most of the parameters and branch away individually.
Also, the number of splits can be used to trade off between detection performance
and computational overhead. Notice that based on ablation study (Table 2) and
detailed 3 splits results in supplementary document, even 3 splits outperform
ODIN [13]. For use cases where reducing computational time is critical, we
recommend to use 3 splits. Please see supplementary material for detailed results
on 3 splits. Our current work requires an OOD dataset for hyper-parameter
search. This problem can potentially be solved by investigating other surrogate
functions for entropy which are better behaved with the epochs.

References

1. Bendale, A., Boult, T.E.: Towards open world recognition. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 1893–1902 (2015)

2. Bendale, A., Boult, T.E.: Towards open set deep networks. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 1563–1572 (2016)

3. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Comput.
Surv. 41(3), 15:1–15:58 (2009)



OOD detection using an ensemble of leave-out classifiers 15

4. Fujimaki, R., Yairi, T., Machida, K.: An approach to spacecraft anomaly detection
problem using kernel feature space. In: KDD. pp. 401–410 (2005)

5. Goadrich, M., Oliphant, L., Shavlik, J.: Creating ensembles of first-order clauses to
improve recall-precision curves. Machine Learning 64, 231–262 (2006)

6. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in
Neural Information Processing Systems (NIPS) (2014)

7. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-
distribution examples in neural networks. In: International Conference on Learning
Representations (ICLR) (2017)

8. Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks
(2016), arXiv preprint arXiv:1608.06993

9. https://tiny imagenet.herokuapp.com:
10. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images
11. LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., Huang, F.: A tutorial on energy-

based learning. In: Predicting structured data (2006)
12. Lee, K., Lee, H., Lee, K., Shin, J.: Training confidence-calibrated classifiers for

detecting out-of-distribution samples. In: International Conference on Learning
Representations (ICLR) (2018), https://openreview.net/forum?id=ryiAv2xAZ

13. Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image
detection in neural networks. In: International Conference on Learning Representa-
tions (ICLR) (2018)

14. Liu, F.T., Ting, K.M., Zhou, Z.: Isolation forest. In: ICDM. pp. 413–422 (2008)
15. Lu, W., Traoré, I.: Unsupervised anomaly detection using an evolutionary extension

of k-means algorithm. IJICS 2(2), 107–139 (2008)
16. Phua, C., Alahakoon, D., Lee, V.C.S.: Minority report in fraud detection: classifica-

tion of skewed data. SIGKDD Explorations 6(1), 50–59 (2004)
17. Rudd, E.M., Jain, L.P., Scheirer, W.J., Boult, T.E.: The extreme value machine.

IEEE Trans. Pattern Anal. Mach. Intell. 40(3), 762–768 (2018)
18. Scheirer, W.J., Jain, L.P., Boult, T.E.: Probability models for open set recognition.

IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2317–2324 (2014)
19. Scheirer, W.J., de Rezende Rocha, A., Sapkota, A., Boult, T.E.: Toward open set

recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(7), 1757–1772 (2013)
20. Xu, P., Ehinger, K.A., Zhang, Y., Finkelstein, A., Kulkarni, S.R., Xiao, J.: Turk-

ergaze: Crowdsourcing saliency with webcam based eye tracking (2015), arXiv
preprint arXiv:1504.06755

21. Yu, F., Zhang, Y., Song, S., Seff, A., Xiao, J.: Lsun: Construction of a large- scale
image dataset using deep learning with humans in the loop (2015), arXiv preprint
arXiv:1506.03365

22. Zagoruyko, S., Komodakis, N.: Wide residual networks (2016), arXiv preprint
arXiv:1605.07146

https://openreview.net/forum?id=ryiAv2xAZ

