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Abstract. We present an end-to-end solution for recognizing merchan-
dise displayed in the shelves of a supermarket. Given images of individual
products, which are taken under ideal illumination for product market-
ing, the challenge is to find these products automatically in the images
of the shelves. Note that the images of shelves are taken using hand-held
camera under store level illumination. We provide a two-layer hypotheses
generation and verification model. In the first layer, the model predicts
a set of candidate merchandise at a specific location of the shelf while
in the second layer, the hypothesis is verified by a novel graph theoretic
approach. The performance of the proposed approach on two publicly
available datasets is better than the competing approaches by at least
10%.

Keywords: Planogram Compliance - Merchandise Recognition

1 Introduction

The display of merchandise on the shelves of a retail store follows a specific strat-
egy, commonly known as planogram. To re-conciliate a planogram, an inspector
visits each shelf and manually checks the availability of the merchandise as speci-
fied in the planogram. This is an expensive and error-prone exercise. We propose
to capture the images of these shelves using hand held camera and provide an
end-to-end solution to detect the products available on the shelves from their
images. We expect that our tool may be used for planogram compliance. We do
not impose any restriction on the camera type and the store lighting condition
for wider acceptability of our proposal.

We assume that individual product images, typically used for marketing, are
available in an image dataset. In addition we assume that the physical dimensions
of the shelves and the individual products are available in any unit of length.
We also assume that the planogram is not available to our software. In other
words, we do not have any prior information about the location of products on
the shelves. Therefore, for our problem, object recognition and localization are
equally important.

A typical shelf image is shown in Fig. 1(a). Individual images of products
present on the shelf and available in the dataset of product images are shown
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Fig.1. (a) An example shelf image. (b)-(e) Sample product images. (f)-(g) Poor qual-
ity product images cropped from shelf image. (d)-(e) and (f)-(g) are images of same
products, respectively.
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in Fig. 1(b) to (d). Notice the variation in illumination, resolution and quality
of images between Fig. 1(a) and (b) to (d). Also note that dataset may contain
product images (Fig. 1(d) and (e)) which are not available on the shelf.

In this paper we address recognition and localization of multiple objects in
a scene at one go. The approaches in [7] propose a set of view-invariant trans-
formations of rgb color vector for recognition of consumer products on the shelf.
These transformations cannot handle the differences in resolution and illumi-
nation between the shelf image and the product image. Further, the unstable
imaging conditions may arise from specular reflections, from shiny packages of
products, instability in taking images by the shelf inspector. Typical degrada-
tion of the quality of product images cropped from a shelf image are shown in
Fig. 1(f) and (g).

Zhang et al. [17] extract SIFT like features from a region using Harris-Affine
interest region detector [13]. Both product image and shelf image are divided
into sub-images and matched using histogram of features. We have compared
our work with [17]. A combination of SIFT and histogram based matching is
used for identifying grocery products in [12].

In [5], George et al. present a multi-label image classification approach for
localization and recognition of products. They first establish a locality-constraint
linear coding (LLC) [15] model using dense SIFT features of product images
present in the dataset. A discriminative random forest [16] is then trained with
LLC features of product images. Using the trained model, a multi-class ranking
of products is estimated at a location by classifying each block of the shelf image.

The authors in [10] perform a deformable spatial pyramid based fast dense
pixel matching and genetic algorithm based optimization scheme [8] for localiza-
tion and recognition of products in the shelf image. In a variation of the above
approach in [6], the authors have also integrated text based recognition [9] and
features derived from discriminative patches as in [14]. The products are recog-
nized using SVM; the recognition performance is improved using active learning
[11] through user feedback.

The approach in [5] looks at the object localization problem more as an
image retrieval challenge. Therefore, [5] fails to serve a key challenge that we
are addressing is that of simultaneous detection, recognition and localization of
multiple products. To explain the challenge further, assume products a and b are
neighbors in a shelf. Assume a is identified incorrectly as another product c. The
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Fig. 2. Overall block diagram of the proposed scheme.

width of ¢ is different from a. Then the region to be cropped to identify b will
be incorrect. This is an important issue for retailers who want to locate both a
and b instead of retrieving them in isolation. We have handled this problem by
introducing a novel graph-theoretic approach to locate all products at the same
time.

As mentioned earlier, we have introduced a two-layer approach of hypothesis
generation and verification for localization and recognition of multiple objects
on the shelf. At the initial stage, our strategy is to allow for exhaustive match
of product images with the content of shelf image. This we refer as hypotheses
generation. From the set of hypotheses, multiple products are predicted at a
particular location on the shelf. In the second layer, one particular product
out of these multiple predictions at a particular location is selected based on
a graph theoretic approach. The overall block diagram of the proposed scheme
is presented in Fig. 2. In the next section, we present the proposed matching
scheme. The results are discussed in Section 3 followed by conclusions.

2 Image Matching

Multiple product identification in the wild is difficult due to many variabilities.
These variables include the unknown scale of the products in the shelf image
and color variability due to unconstrained illumination. Images taken from two
different brands of cameras may result in variation of color space of images [2].
In a given row of multiple products, identification of a product at a particular
location influences identification of neighboring products in the row. We address
these variables in our methodology as presented next.

2.1 Hypothesis Generation

Assume images of N products are available in the dataset of product images D.
Each such product image is referred as D, p = 1,2, --- , N. Typical examples of
D, are shown in Fig. 1(b) to (e). We assume physical dimensions of these indi-
vidual products in any suitable unit of length are available. Note that different
products in D, come in different physical and pixel dimensions.
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Let the shelf image where multiple products are present, be represented by
I,. An example I, image is shown in Fig. 1(a). We do not put any restriction
on the camera used to capture I,. But we do have the physical dimension of the
shelf in any suitable unit of length. The problem is to find the location of D), in
I,.

Dimensions of each image in D in pixels can be converted to the length-to-
pixel scale of I,. Let the rescaled dataset of product images be D’. To emphasize,
pixel dimensions of the pth product, D;) is an approximation and does not rep-
resent true scale of the product image D, in I;. And this is one of the major
challenges of the proposed problem.

Let there be ¢ columns in I,. For every location ¢, ¢ = 1,2,--+ ¢, of I;, N
number of images are cropped from I,. The dimension of each of N crops is
same as that of ’DI'Q, p=1,2,---,N. Each of the N crops are correlated with
the corresponding image of D), to calculate the Pearson correlation coefficient.
Correlation is done in three separate Lab channels and the average of three cor-
relation coefficients are computed. Therefore, at every location i, =1,2,--- , ¢,
of I, there are IV correlation scores.

As mentioned earlier, scaling of D, to D;) is an approximation. To counter
this, we isotropically vary (upscale and downscale) the dimensions of D), within
a range [—1/2,1/2] where | € R. Due to these additional resizes of D,,, additional
I number of transformed images of Dj, are cropped at location i of .

Combining above two scenarios, at a particular location ¢, i = 1,2,--- ¢, of
Iy, (N+N x 1) number of crops of Iy equivalent to image size D,, and its scaled
version are correlated with Dj'j. Algorithm 1 sums up this proposed hypothesis
generation scheme. Function crop crops a patch at ith column of I equivalent to

Algorithm 1 Algorithm for hypothesis generation

1: procedure HYPOTHESIS GENERATION(D', I,)
2:  Define I € RT

3: [h, c] = size(Is)

4: Initialize C, = zeros(c, N)

5: for i € [1,¢]; p € [1,N]; do

6: Q = crop(Is, size(D)), 1)

7 C.[i,p]+ = match_score(Q, Dj,)

8: end for

9: forie[l,c;pe[l,N];ke[-1/2,1/2] do
10: Q = crop(I,size(D,), i, k)

11: C»[i, p]+ = match_score(Q, D,)

12: end for
13: return C,
14: end procedure

the size of D;. In an overloaded version of crop, the k times scaled D; is cropped
at ith location. The match_score function computes average of correlation coef-
ficients in Lab channels between the cropped patch and D;) or its scaled version.
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The cumulative score C,. for pth product at ith location of I, are cumulated for
all possible (N + N x [) values. The top m cumulative scores C, represent m
possible products likely to be present at column i of I, i =1,2,--- ,c. We refer
these m products as top m matches at sth location.

2.2 Matching Strategies

We have explored several image matching strategies between @ and Dj, or its
scaled version other than straightforward correlation. However, we have not seen
significant difference in our desired result due to matching strategies. Again, it
is not our intention to get an exact match at this stage but to keep the right
product in the list of top m matches. The straightforward correlation based
matching proposed in this paper suffices as it always keeps the right product at
a particular location within top m matches.

We have observed that complicated matching strategies with a number of
tunable parameters do not give any advantage in the choice of the top m possible
products at ith location. We have seen that m = 3 consistently finds the correct
product those are likely to be present at location ¢. These top m matches are
the hypotheses at a particular column location.

Transformation of D to D' under store level illumination is a difficult proposi-
tion. While the height of the shelf in any unit of length is known, it is impossible
to find the exact boundary of the shelf in a shelf image taken by a hand held
camera. However, the height of any product cannot be more than the height
of the shelf. Therefore, to take care of all possibilities, height of D}, is scaled
up to the height of the shelf maintaining the aspect ratio of Dj,. This upscaling
determines the value of [/2. By the same amount D), is downscaled //2 times.
This determines the choice of [.

A test suite is designed with 19 product images of D to calculate C, for
identifying products in Fig. 1(a). C, values for 19 products at three random
locations of the shelf of Fig. 1(a) are shown in Fig. 3. The histogram in Fig. 3
shows that product number 12, 19 and 3 are the top-3 likely candidates based
on cumulative score C, at column 2 of Fig. 1(a). Similarly, for column 32, the
likely products are 7, 3 and 12.

This concludes our hypothesis generation step. Next we find the shape based
matching scores for top m possible products using SURF [1].

2.3 Neo SURF based Matching

The Neo SURF (NSURF) introduced for our problem is a speeded up customized
version of SURF. The primary motivation of using SURF is to complement our
intensity based correlation score with the matching using shape based features.
SURF had been used earlier successfully in similar problems [5]. NSURF differs
from SURF in two aspects. First, in our typical use-cases, rotation invariance is
not required [1]. The slant of the box on a shelf with respect to its upright position
is typically £15°. Such minor variations in slant do not affect the estimation
of key points with SURF. Second, for very small images, the performance of
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Fig. 3. C, score of Fig. 1(a) for all 19 products at the 2nd, 32nd and 180th columns.

SURF is found to be poor. The larger sized kernels account for this. For our
implementation, we have restricted the kernel size to a maximum of 51 x 51.
Third, we have used only two lower octaves for NSURF.

NSUREF is applied on the cropped patches corresponding to size of D;’a for top
m products at the ith location of ;. Let the number of keypoints obtained using
NSURF on the patch of I, and D;, be k1 and k2 respectively. Let the feature
vector obtained from each keypoints be K,, 1 < z < k1 and K;, 1 <y < k2
respectively. Each K, or Kj is identified by 64 dimensional vector. Let any
particular K, (say, K4) match best with any particular K; (say K;) with an
Euclidean distance 6. For our implementation, for a potential match between
K, and K, we have chosen a conservative threshold as < 0.04. In addition
we have ensured that the ratio between minimum distance # and the second
minimum distance of Ky from all other K except K| should be less than 0.4.
This ensures a dominant yet reliable matching of keypoints between the patch of
I, (corresponding to top m products) and D;. The total number of such matched
keypoints are taken as NSURF score. Next we present the strategy to combine
the correlation score derived in Section 2.1 with NSURF score.

2.4 Combining Correlation and NSURF Scores

The NSURF score, say U, is significantly higher compared to cumulative correla-
tion score .. We design a composite score with a motivation that magnifies the
discrimination between top m products at ¢th location. The designed composite
score C is given by

C, =U%. (1)

Similar types of products (for example, breakfast cereals or milk containers),
similar in terms of dimension but dissimilar in packaging, are usually available
in one given shelf. The packages are rich in content generating a number of
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NSURF keypoints. Therefore, U € ZT has higher and better discriminatory
value compared to C}., which for an ideal match should be close for similar
products. If we raise U to C,, the value is € R". In other words, (1) helps in
magnifying the difference between products and leads to a positive value.

Combining algorithm 1 and (1), at each column of the shelf image, we have
composite scores for top m products. The next task is to select the winning
product out of these top m possible products. This choice of winner product
should consider all columns in the shelf simultaneously. We employ a directed
graph for this purpose which is detailed next.

2.5 Construction of Directed Graph

Given that there are m possible products at a particular column of I, one
straightforward approach could be to pick up the product with highest C's. How-
ever, the product with highest Cs may not be the correct product. Further if a
product D; is chosen at ¢th column of I, no other product should be selected for
the width of Dj,. However, within the width of D}, there exists other products
whose Cy value may be higher than the D), chosen at the ith column. Therefore
all possible column locations of Iy should be considered simultaneously in order
to find a winner product at the ith column of I;.

To allow for top m products at all positions of I, to compete with each other
with their Cs score, we construct a DAG, directed acyclic graph, G(V, E). An
arbitrary source node S and a sink node 7 is added to G. Therefore, G(V, E)
has total (cm + 2) nodes. The edges are defined in the matrix E. All nodes in
G — S have an incoming edge from S such that B[S, {G — S}] = e. Similarly, all
nodes have directed edges to 7 such that E[{G — T}, 7] = €. A node v;; € V
represents jth product, 1 < j < m at ith location, 1 <1 < c.

For any node v;j,v,p € G — {S,T}, Elvij,vep] = Csli, j],iff (0 —3) >
width(D}). The width of jth product is width(Dj). In other words, there is
an edge from one product Dj to another product D, weighing equivalent to the
composite score of D’ at position i iff D, is at least as far as the width of D;.

o)

& cb_e e
S - T
C(b) @
_ Gc)
width (a) @ >
width (b) @ ————— >
width (c)

Fig. 4. An example graph G is shown. The top 3 possible products at the 1st column
are a, b and ¢ with composite scores Cs(a), Cs(b) and Cs(c) and widths as width(a),
width(b) and width(c), respectively.
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A typical G with some example edge weights is shown in Fig. 4. The red,
green and the yellow dots represent products at the first column. These dots
represent top m products (m = 3 in this case) in terms of score Cs. The black
straight lines at the bottom show the width of each product.

We obtain the maximum weighted path in this graph. We expect that the sum
of the edge weights or composite scores to be maximum in case the products are
identified correctly considering all possible columns of the shelf. Any incorrect
placement of the product(s) should lead to the sum of composite scores being
lower than that due to correct placement. Obtaining a maximum weighted path
in any graph is an NP-hard problem. Since this is a directed acyclic graph, we
have negated the edge weights and obtained the minimum weighted path using
Bellman-Ford algorithm [3]. Next we justify our choice of maximum weighted
path.

2.6 Justification for using Maximum Weighted Path

In this section, we prove the following statement: Solving for detection of mul-
tiple products in a shelf image in Iy (problem A) is equivalent to solving for
maximum weighted path in a graph G (problem B).

Proof. We begin by analyzing the complexity of the graph construction from
I, introduced in Section 2.5. Let n be the number of nodes in the graph. The
algorithm 1 is O(n") and the process of calculation of composite score is O(n).
The construction of the graph is a O(n) algorithm. Thus the overall construction
of the graph G is polynomial in n. We only need to show that if there exists a
solution in B, then there will exist a solution in A. For this we first need to
understand what is a solution in A.

Define ideal crop Q, of the size of a product D,, from I, as the perfect crop
of one instance of D, in I,. Let product D, appear at the oth location of I.
Naturally, the composite score for ), from I; would be maximum at column o
for the product D,.

Now consider another product D;- be present in I, and its ideal patch be
Q- Naturally the ideal crop for D will not be in the range [0, width(Qp) + o).
Without any loss of generalization, let the original position of (); be at column
i, such that ¢ > o. The nodes representing products for ), and @; in G will
be connected by a weighted directed edge from v,, — v;;. Considering the
construction of the graph G detailed in Section 2.5, we need to show that the
maximum weighted path will have to go through the two nodes v,, and v;;.

Let P be the maximum weighted path in G that does not go through {v,p, v;;}.
Thus there exist other nodes in the neighborhood of {v,p, v;; } which has a higher
composite score. Let (a, 3) be the NSURF scores of the two patches @, and Q;
respectively. Since these are ideal patches the correlation score is 1 for both.
Thus the composite score for the path through only these two nodes is (a + ).
It is obvious that,

(a+ ) 2 2[min(a, B)]. (2)
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Fig. 5. Categories of product images in the in-house dataset.

Let the expected value of the NSURF score of falsely matched products around
the region {o0,i} be at most 7. Let ¢ be the expected correlation score of incor-
rectly matched products. Let there be k such products that can be fit in the
region {o0,i}. Then the weight of the path is x7¢. Without loss of generality, we
know that ( << 1 and v << min(a, 3). Thus 7¢ << min(a, 3).

Given the information above, we would now like to analyze the variation of
the total weight of the path P with respect to the width of each product. Let w
be the width of I; wq,ws be the minimum and maximum widths of any product
in D' respectively. Thus k € [w27 wl] and k € Z. For our assumption to be false,
we need to show k7% > 2min(a, 8). For the maximum value of k, we have,

¢ > 2fmin(a, B)]. 3)

wy
Without loss of generality we can assume that the maximum matched NSURF
points, «, are uniformly distributed in the space of an extracted crop . We do
not assume other distributions because if we are able to show it works in uniform
distribution, it can be implied that this would work for other distributions as
well. Thus in an ideal case there is a quadratic relationship between an increase
in width of () and the number of matched keypoints for a particular product D;.
Let us assume that the number of matched keypoints increase at a sub-quadratic
rate with the width for incorrect matches of . We know, i decreases linearly
with increasing w;. But « increases with the width of @, until the ideal crop
dimensions are achieved and then becomes constant. Now, v increases at a sub-
quadratic rate, and ¢ goes down as the correlation between the crop and the
product goes down with the increasing width of the crop.

Since ( is upper bounded by 1, the function < e is constant for very low values
of a, linear for ¢ near 1, and increasing otherwise. Thus the 2[min(«, 8)] always
dominates wllyc. This contradicts (3). Thus any maximum path should pass
through nodes in G represented by @, and ();. This concludes our proof that
solving for problem B is equivalent to solving for problem A.

Since by construction our graph G is a DAG, we can convert the edges to neg-
ative weights and solve for the minimum weighted path. The minimum weighted
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path using Bellman-Ford algorithm considering feed forward edge weights pro-
vides the final arrangement of products on the shelf. The result obtained using
this proposed scheme is discussed next.

3 Results

The experiment is conducted both with in-house and publicly available datasets
of product and shelf images. The in-house dataset consists of images of ap-
proximately 750 products in 7 categories. More than 2000 images of shelves are
collected both from stores and lab settings. The category wise distributions of
image dataset D are shown in Fig. 5. The proposed approach is also tested
and compared using two publicly available datasets [17,5]. We first show some
qualitative results of the proposal followed by quantitative analysis.

The reconstructed image of Fig. 1(a), which is the output of DAG of Sec-
tion 2.5 is shown in Fig. 6(a). Another example of reconstruction is shown in
Fig. 6(b) where the top row is the shelf and the bottom row is the reconstructed
shelf. The correct products are identified in spite of variation in illumination.
Notice even minor variations (red stripe at the top of the box instead of green
stripe) in the product labels of two consecutive boxes of Chocos cereals (at the
right end of the shelf) could be recognized by our approach.

The bottom row of Fig. 7(a) shows yet another reconstruction of the original
shelf image in the top row, where the first product, placed behind with respect
to others, could not be recognized. Another reconstruction in Fig. 7(b) (bottom
row) shows that even though Surf Excel bottle and Surf pouch has identical
dominant texture on the front cover, the bottle and the pouch are identified
correctly. The reconstruction of Fig. 7(c) bottom row clearly establishes the
superiority of the proposal even under extreme specular reflection on some of
the products.

Merler et al. [12] have proposed in situ product matching using color his-
togram. The result following [12] divides both D and I, into smaller blocks
and matches blocks using a score derived from intersection over union of areas
under histograms. The result is shown in Fig. 8(a) whereas the output using

(b)

Fig. 6. (a) Reconstruction of Fig. 1(a). (b) Correct reconstruction (bottom row) of
shelf image (top row). Product with minor variation (two boxes at the right end) is
correctly identified.



U-PC: Unsupervised Planogram Compliance 11

heenios - Cheerios Cheet

Fig. 7. (a) Failure case (bottom row) where the first product is incorrectly identified
due to displaced position of the product in the shelf image in the top row. (b) Surf
bottle and box having identical texture on the cover are identified correctly. (c¢) Cor-
rect reconstruction of the shelf image in spite of extreme specular reflection (top row:
original shelf image, bottom row: reconstruction result).

proposed approach is shown in Fig. 8(b). Clearly, the accuracy of the proposed
approach is better than matching using [12]. The role of integration of NSURF
with correlation as opposed to selecting winner product at a location based only
on maximum correlation score is shown in Fig. 9. The reconstruction result of
Fig. 9(b) is better than that of Fig. 9(a). Similarly, NSURF alone cannot give
desired result as opposed to the composite score as shown in Fig. 10. Note that
all reconstructed results using proposed approach is the final output of DAG
using composite score.

We start the quantitative analysis of our result by plotting the ROC of the
reconstructed result. Assume there are N product images in our dataset where
as r products are available in a given shelf. Typically, r << N. As mentioned
earlier, we are solving both recognition and localization problem. If a product is
identified at column 4 of the shelf and the algorithm predicts the product at a
location i £+ 4, we consider that the product is correctly identified. The shift § is
typically considered as 75mm for approximately 1000 mm wide shelf. Given this,
True Positive (TP), False Positive (FP), True Negative (TN) and False Negative
(FN) are defined as follows for each of the r products available in the shelf.

(b)

Fig. 8. Result using (a) [12], (b) proposed approach (top row: original shelf image,
bottom row: reconstruction).
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Fig. 9. (a) Winner product at a shelf location is selected based on maximum correlation
score. (b) Result using composite score (top row: original shelf image, bottom row:
reconstruction).

Fig. 10. (a) Winner product at a shelf location is selected based on maximum NSURF
score. (b) Result using composite score (top row: original shelf image, bottom row:
reconstruction).

If product A is present at column 4 and the algorithm predicts A at column
i =0, TP of product A is counted as 1. If a product other than A is present at
column i and the algorithm predicts A at column i£4, FP of product A is counted
as 1. If a product other than A is present at column 7 and the algorithm does not
predict A at column 5+, TN of product A is counted as 1. If product A is present
at column 4 and the algorithm predicts a product other than A at column ¢ £ 4,
FN of product A is counted as 1. The true positive rate (TP/(TP+FN)) versus
false positive rate (FP/(FP+TN)) for 2000 shelf images is plotted in Fig. 11(a).
The area under ROC for the proposed approach is significantly better compared
to [12].

The proposed correlation and NSURF integrated graph based matching is
applied on the entire set of shelf images. Approximately 2000 shelf images from
lab and stores are organized in 150 racks, each rack containing multiple shelves.
The histogram of accuracy values of rack-wise product identification using our
approach is shown in Fig. 11(b). The accuracy value is the number of matches
between the products of reconstructed result using our algorithm and the prod-
ucts in the ground truth divided by the total number of products present in the
rack.

Additionally we have performed stress testing on 500 shelf images of Cookies
category. Each of these shelf images is taken after varying camera angle within



U-PC: Unsupervised Planogram Compliance 13

0.9 ——
e
0.8 50 a8
] X i =
§ o m B
o o. =
2 s -
= ) 2
g os Proposed Algorithm Zaw
o Block Based Histogram Matching[12] |~
S, i
2 20
= o3 2
0.2 &
10
0.1
o a 1 2,
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 51-60 61-70 71-80 81-90 91-100
False Positive Rate Accuracy (in %)
(a) (b)

Fig.11. (a) ROC Plot. (b) Accuracy using proposed approach (for example, recon-
struction of 45 or 48 rack images has 71-80% or 81-90% accuracy, respectively).

+15° and at different camera-to-shelf distances. There are 9 unique products in
these shelf images. Therefore, the product image dataset D initially contains 9
product images. The accuracy of detection of these product images in each of
the 500 shelf images are calculated using both the proposed and block based
histogram matching [12].

—&—Block Based Histogram Matching [12] —s—Proposed Algorithm —s—NMS[4]
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Fig.12. Accuracy when the number of product images in D is increased from 9 to 285
in steps of 30. Corresponding computation times are mentioned.

For calculating accuracy, all the product images which are present in the shelf
and identified correctly by both the algorithms are divided by the total number
of products available in the shelves. The accuracy result averaged for 500 shelf
images is reported as accuracy of product identification. The process is now
repeated after increasing the size of the product image dataset D from 9 to 285
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Table 1. Comparison of the proposed approach on publicly available and in-house
datasets [17], [5].

Inhouse|WebMarket [17]|Grocery [5]
Proposed| 92.4 90.8 88.51
S1[17 41.6 62.03 51.28
S2 [17 41.2 68.69 53.43
S3 [17 36 59.29 63.05
MIC [5] 91.2 54.41 69.23
NMS [4] | 47.56 51.02 96.67

in steps of 30. This experiment tests whether the proposed matching algorithm
is confused with the additional 30 product images for each subsequent test. Note
that these additional product images in multiples of 30 are anyway not present in
the 500 shelf images under inspection. The accuracy plot against increasing size
of dataset of product images is shown in Fig. 12. The corresponding computation
time is also shown in Fig. 12. The experiment is repeated using NMS [4]. Fig. 12
shows that our proposal performs better compared to [4]. Further, the proposed
image matching is not confused even with large number of spurious potential
matches whereas [12] performs poorly with the increase in size of D containing
product images not present in the shelf.

Finally the proposed approach is compared with two related approaches [17],
[5]. Subsets of two publicly available datasets of [17], [5] along with in-house data
are used for comparison. The approach in [17] has three matching functions S1,
S2 and S3 as shown in Table 1. The key difference in our result with respect
to competing approaches is that accuracy measure for the proposed approach
on our dataset includes accuracy of both recognition and localization (module
a shift of £§ from the exact location as mentioned earlier) of products on the
shelf. The accuracy using the proposed approach is reported in the top row of the
Table 1. For competing approaches [17], [5], the accuracy refers to recognition
without any penalization for the inaccuracy of localization of the product.

4 Conclusions

We have provided an end-to-end solution for automatically recognizing products
available on the shelf. No a priori information is used to preempt the type of
products expected at a particular location of the shelf. Instead of looking at
a particular discrete location of the shelf, all columns of the shelf are treated
simultaneously using a novel graph based approach. We are now improving the
approach by integrating single instance learning technique with the graph based
search mechanism.
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