
Riemannian Walk for Incremental Learning:

Understanding Forgetting and Intransigence

Arslan Chaudhry⋆, Puneet K. Dokania⋆, Thalaiyasingam Ajanthan⋆, Philip H. S. Torr

University of Oxford, United Kingdom

{firstname.lastname}@eng.ox.ac.uk

Abstract. Incremental learning (IL) has received a lot of attention recently, how-

ever, the literature lacks a precise problem definition, proper evaluation settings,

and metrics tailored specifically for the IL problem. One of the main objectives of

this work is to fill these gaps so as to provide a common ground for better under-

standing of IL. The main challenge for an IL algorithm is to update the classifier

whilst preserving existing knowledge. We observe that, in addition to forgetting,

a known issue while preserving knowledge, IL also suffers from a problem we

call intransigence, its inability to update knowledge. We introduce two metrics

to quantify forgetting and intransigence that allow us to understand, analyse, and

gain better insights into the behaviour of IL algorithms. Furthermore, we present

RWalk, a generalization of EWC++ (our efficient version of EWC [6]) and Path

Integral [25] with a theoretically grounded KL-divergence based perspective. We

provide a thorough analysis of various IL algorithms on MNIST and CIFAR-100

datasets. In these experiments, RWalk obtains superior results in terms of accu-

racy, and also provides a better trade-off for forgetting and intransigence.

1 Introduction

Realizing human-level intelligence requires developing systems capable of learning

new tasks continually while preserving knowledge about the old ones. This is pre-

cisely the objective underlying incremental learning (IL) algorithms. By definition, IL

has ever-expanding output space, and no or limited access to data from the previous

tasks while learning a new one. This makes it more challenging and fundamentally dif-

ferent from the classical learning paradigm where the entire dataset is available and the

output space is fixed. Recently, there have been several works in IL [6,14,19,25] with

varying evaluation settings and metrics making it difficult to establish fair comparisons.

The first objective of this work is to rectify these issues by providing precise definitions,

evaluation settings, and metrics for IL for the classification task.

Let us now discuss the key points to consider while designing IL algorithms. The

first question is ‘how to define knowledge: factors that quantify what the model has

learned’. Usually, knowledge is defined either using the input-output behaviour of the

network [4,19] or the network parameters [6,25]. Once the knowledge is defined, the

objective then is to preserve and update it to counteract two inherent issues with IL

algorithms: (1) forgetting: catastrophically forgetting knowledge of previous tasks; and

⋆ Joint first authors

2 Chaudhry et al.

(2) intransigence: inability to update the knowledge to learn the new task. Both of these

problems require contradicting solutions and pose a trade-off for any IL algorithm.

To capture this trade-off, we advocate the use of measures that evaluate an IL algo-

rithm based on its performance on the past and the present tasks in the hope that this will

reflect in its behaviour in the future unseen tasks. Taking this into account we introduce

two metrics to evaluate forgetting and intransigence. These metrics together with the

standard multi-class average accuracy allow us to understand, analyse, and gain better

insights into the behaviour of various IL algorithms.

In addition, we present a generalization of two recently proposed incremental learn-

ing algorithms, Elastic Weight Consolidation (EWC) [6], and Path Integral (PI) [25]. In

particular, first we show that in EWC, while learning a new task, the model’s likelihood

distribution is regularized using a well known second-order approximation of the KL-

divergence [1,17], which is equivalent to computing distance in a Riemannian manifold

induced by the Fisher Information Matrix [1]. To compute and update the Fisher matrix,

we use an efficient (in terms of memory) and online (in terms of computation) approach,

leading to a faster and online version of EWC which we call EWC++. Note that, a similar

extension to EWC, called online-EWC, is concurrently proposed by Schwarz et al. [21].

Next, we modify the PI [25] where instead of computing the change in the loss per unit

distance in the Euclidean space between the parameters as the measure of sensitivity, we

use the approximate KL divergence (distance in the Riemannian manifold) between the

output distributions as the distance to compute the sensitivity. This gives us the param-

eter importance score which is accumulated over the optimization trajectory encoding

information about the previous tasks as well. Finally, RWalk is obtained by combining

EWC++ and the modified PI.

Furthermore, in order to counteract intransigence, we study different sampling strate-

gies that store a small representative subset (≤ 5%) of the dataset from the previous

tasks. This not only allows the network to recall information about the previous tasks

but also helps in learning to discriminate current and previous tasks. Finally, we present

a thorough analysis to better understand the behaviour of IL algorithms on MNIST [10]

and CIFAR-100 [7] datasets. To summarize, our main contributions are:

1. New evaluation metrics - Forgetting and Intransigence - to better understand the

behaviour and performance of an incremental learning algorithm.

2. EWC++: An efficient and online version of EWC.

3. RWalk: A generalization of EWC++ and PI with theoretically grounded KL-divergence

based perspective providing new insights.

4. An analysis of different methods in terms of accuracy, forgetting, and intransigence.

2 Problem Set-up and Preliminaries

Here we define the IL problem and discuss the practicality of two different evaluation

settings: (a) single-head; and (b) multi-head. In addition, we review the probabilistic

interpretation of neural networks and the connection of KL-divergence with the distance

in the Riemannian manifold, both of which are crucial to our approach.

Riemannian Walk for Incremental Learning 3

2.1 Single-head vs Multi-head Evaluations

We consider a stream of tasks, each corresponding to a set of labels. For the k-th task,

let Dk = {(xk
i , y

k
i)}

nk

i=1 be the dataset, where x
k
i ∈ X is the input and yki ∈ y

k the

ground truth label, and y
k is the set of labels specific to the task. The main distinction

between the single-head and the multi-head evaluations is that, at test time, in single-

head, the task identifier (k) is unknown, whereas in multi-head, it is given. Therefore,

for the single-head evaluation, the objective at the k-th task is to learn a function fθ :
X → Yk, where Yk = ∪k

j=1y
j corresponds to all the known labels. For multi-head,

as the task identifier is known, Yk = y
k. For example, consider MNIST with 5 tasks:

{{0, 1}, · · · , {8, 9}}; trained in an incremental manner. Then, at the 5-th task, for a

given image, the multi-head evaluation is to predict a class out of two labels {8, 9} for

which the 5-th task was trained. However, the single-head evaluation at 5-th task is to

predict a label out of all the ten classes {0, · · · , 9} that the model has seen thus far.

Why is single-head the right evaluation for IL? In the case of single-head, used

by [12,19], the output space consists of all the known labels. This requires the classifier

to learn to distinguish labels from different tasks as well. Since, the tasks are supplied

in a sequence in IL, while learning a task, the classifier must also learn the inter-task

discrimination with no or limited access1 to the previous data. This is a much harder

problem compared to multi-head where the output space contains labels of the current

task only. Furthermore, single-head is more practical as knowing a priori the subset of

labels to look at is a big assumption. For instance, if the task contains only one label,

multi-head evaluation would be equivalent to knowing the ground truth label itself.

2.2 Probabilistic Interpretation of Neural Network Output

If the final layer of a neural network is a soft-max layer and the network is trained

using cross entropy loss, then the output may be interpreted as a probability distribution

over the categorical variables. Thus, at a given θ, the conditional likelihood distribution

learned by a neural network is actually a conditional multinoulli distribution defined as

pθ(y|x) =
∏K

j=1 p
[y=j]
θ,j , where pθ,j is the soft-max probability of the j-th class, K are

the total number of classes, y is the one-hot encoding of length K, and [·] is Iverson

bracket. A prediction can then be obtained from the likelihood distribution pθ(y|x).
Typically, instead of sampling, a label with the highest soft-max probability is chosen

as the network’s prediction. Note that, if y corresponds to the ground-truth label then

the log-likelihood is exactly the same as the negative of the cross-entropy loss, i.e., if

the ground-truth corresponds to the t-th index of the one-hot representation of y, then

log pθ(y|x) = log pθ,t. More insights can be found in the supplementary material.

2.3 KL-divergence as the Distance in the Riemannian Manifold

Let DKL(pθ‖pθ+∆θ) be the KL-divergence [8] between the conditional likelihoods of

a neural network at θ and θ +∆θ, respectively. Then, assuming ∆θ → 0, the second-

1 Since the number of tasks are potentially unlimited in IL, it is impossible to store all the previ-

ous data in a scalable manner.

4 Chaudhry et al.

order Taylor approximation of the KL-divergence can be written as DKL(pθ‖pθ+∆θ) ≈
1
2∆θ⊤Fθ∆θ = 1

2‖∆θ‖2Fθ

2, where Fθ, known as the empirical Fisher Information

Matrix [1,17] at θ, is defined as:

Fθ = E(x,y)∼D

[

(

∂ log pθ(y|x)

∂θ

)(

∂ log pθ(y|x)

∂θ

)⊤
]

, (1)

where D is the dataset. Note that, as mentioned earlier, the log-likelihood log pθ(y|x) is

the same as the negative of the cross-entropy loss function, thus, Fθ can be seen as the

expected loss-gradient covariance matrix. By construction (outer product of gradients),

Fθ is positive semi-definite (PSD) which makes it highly attractive for second-order

optimization techniques [1,17,2,9,15]. Thus, when ∆θ → 0, computing KL-divergence
1
2‖∆θ‖2Fθ

is equivalent to computing the distance in a Riemannian manifold3 [11] in-

duced by the Fisher information matrix at θ. Since Fθ ∈ R
P×P and P is usually in the

order of millions for neural networks, it is practically infeasible to store Fθ. To handle

this, similar to [6], we assume parameters to be independent of each other (diagonal Fθ)

which results in the following approximation of the KL-divergence:

DKL(pθ‖pθ+∆θ) ≈
1

2

P
∑

i=1

Fθi ∆θ2i , (2)

where θi is the i-th entry of θ. Notice, the diagonal entries of Fθ are the expected square

of the gradients, where the expectation is over the entire dataset. Thus, Fθ is expensive

to compute as it requires a full forward-backward pass over the dataset.

3 Forgetting and Intransigence

Since the objective is to continually learn new tasks while preserving knowledge about

the previous ones, an IL algorithm should be evaluated based on its performance both

on the past and the present tasks in the hope that this will reflect in its behaviour on the

future unseen tasks. To achieve this, along with average accuracy, there are two crucial

components that must be quantified (1) forgetting: how much an algorithm forgets what

it learned in the past; and (2) intransigence: inability of an algorithm to learn new tasks.

Intuitively, if a model is heavily regularized over previous tasks to preserve knowledge,

it will forget less but have high intransigence. If, in contrast, the regularization is too

weak, while the intransigence will be small, the model will suffer from catastrophic for-

getting. Ideally, we want a model that suffers less from both, thus efficiently utilizing

the finite model capacity. In contrast, if one observes high negative correlation between

forgetting and intransigence, which is usually the case, then, it suggests that either the

model capacity is saturated or the method does not effectively utilize it. Before defin-

ing metrics for quantifying forgetting and intransigence, we first define the multi-class

average accuracy which will be the basis for defining the other two metrics. Note, some

other task specific measure of correctness (e.g., IoU for object segmentation) can also

be used while the definitions of forgetting and intransigence remain the same.

2 Proof and insights are provided in the supplementary material.
3 Since Fθ is PSD, this makes it a pseudo-manifold.

Riemannian Walk for Incremental Learning 5

Average Accuracy (A) Let ak,j ∈ [0, 1] be the accuracy (fraction of correctly clas-

sified images) evaluated on the held-out test set of the j-th task (j ≤ k) after training

the network incrementally from tasks 1 to k. Note that, to compute ak,j , the output

space consists of either yj or ∪k
j=1y

j depending on whether the evaluation is multi-

head or single-head (refer Sec. 2.1). The average accuracy at task k is then defined as

Ak = 1
k

∑k
j=1 ak,j . The higher the Ak the better the classifier, but this does not pro-

vide any information about forgetting or intransigence profile of the IL algorithm which

would be crucial to judge its behaviour.

Forgetting Measure (F) We define forgetting for a particular task (or label) as the dif-

ference between the maximum knowledge gained about the task throughout the learning

process in the past and the knowledge the model currently has about it. This, in turn,

gives an estimate of how much the model forgot about the task given its current state.

Following this, for a classification problem, we quantify forgetting for the j-th task after

the model has been incrementally trained up to task k > j as:

fk
j = max

l∈{1,··· ,k−1}
al,j − ak,j , ∀j < k . (3)

Note, fk
j ∈ [−1, 1] is defined for j < k as we are interested in quantifying forgetting for

previous tasks. Moreover, by normalizing against the number of tasks seen previously,

the average forgetting at k-th task is written as Fk = 1
k−1

∑k−1
j=1 f

k
j . Lower Fk implies

less forgetting on previous tasks. Here, instead of max one could use expectation or

aj,j in order to quantify the knowledge about a task in the past. However, taking max
allows us to estimate forgetting along the learning process as explained below.

Positive/Negative Backward Transfer ((P/N)BT): Backward transfer (BT) is defined

in [14] as the influence that learning a task k has on the performance on a previous task

j < k. Since our objective is to measure forgetting, negative forgetting (fk
j < 0) implies

positive influence on the previous task or positive backward transfer (PBT) and the op-

posite for NBT. Furthermore, in [14], aj,j is used in place of maxl∈{1,··· ,k−1} al,j (refer

Eq. (3)) which makes the measure agnostic to the IL process and does not effectively

capture forgetting. To understand this, let us consider an example with 4 tasks trained

in an incremental manner and we are interested in measuring forgetting of task 1 after

training up to task 4. Let the accuracies be {a1,1, a1,2, a1,3, a1,4} = {0.7, 0.8, 0.6, 0.5}.

Here, forgetting measured based on Eq. (3) is f4
1 = 0.3, whereas [14] would measure it

as 0.2 (irrespective of the variations in a1,2 and a1,3). Hence, it does not capture the fact

that there was a PBT in the learning process and, we believe, it is vital that an evaluation

metric of an IL algorithm considers such behaviour along the learning process.

Intransigence Measure (I) We define intransigence as the inability of a model to learn

new tasks. The effect of intransigence is more prominent in the single-head setting es-

pecially in the absence of previous data, as the model is expected to learn to differentiate

the current task from the previous ones. Experimentally we show that storing just a few

representative samples (refer Sec. 4.2) from the previous tasks improves intransigence

6 Chaudhry et al.

significantly. Since we wish to quantify the inability to learn, we compare to the stan-

dard classification model which has access to all the datasets at all times. We train a

reference/target model with dataset
⋃k

l=1 Dl and measure its accuracy on the held-out

set of the k-th task, denoted as a∗k. We then define the intransigence for the k-th task as:

Ik = a∗k − ak,k , (4)

where ak,k denotes the accuracy on the k-th task when trained up to task k in an incre-

mental manner. Note, Ik ∈ [−1, 1], and lower the Ik the better the model. A reasonable

reference/target model can be defined depending on the feasibility to obtain it. In situa-

tions where it is highly expensive, an approximation can be proposed.

Positive/Negative Forward Transfer ((P/N)FT): Since intransigence is defined as the

gap between the accuracy of an IL algorithm and the reference model, negative intransi-

gence (Ik < 0) implies learning incrementally up to task k positively influences model’s

knowledge about it, i.e., positive forward transfer (PFT). Similarly, Ik > 0 implies NFT.

However, in [14], FT is quantified as the gain in accuracy compared to the random guess

(not a measure of intransigence) which is complementary to our approach.

4 Riemannian Walk for Incremental Learning

We first describe EWC++, an efficient version of the well known EWC [6], and then

RWalk which is a generalization of EWC++ and PI [25]. Briefly, RWalk has three key

components: (1) a KL-divergence-based regularization over the conditional likelihood

pθ(y|x) (EWC++); (2) a parameter importance score based on the sensitivity of the loss

over the movement on the Riemannian manifold (similar to PI); and (3) strategies to

obtain a few representative samples from the previous tasks. The first two components

mitigate the effects of catastrophic forgetting, whereas the third handles intransigence.

4.1 Avoiding Catastrophic Forgetting

KL-divergence based Regularization (EWC++) We learn parameters for the current

task such that the new conditional likelihood is close (in terms of KL) to the one learned

until previous tasks. To achieve this, we regularize over the conditional likelihood dis-

tributions pθ(y|x) using the approximate KL-divergence, Eq. (2), as the distance mea-

sure. This would preserve the inherent properties of the model about previous tasks as

the learning progresses. Thus, given parameters θk−1 trained sequentially from task 1
to k − 1, and dataset Dk for the k-th task, our objective is:

argmin
θ

L̃k(θ) := Lk(θ) + λDKL (pθk−1(y|x)‖pθ(y|x)) , (5)

where, λ is a hyperparameter. Substituting Eq. (2), the KL-divergence component can

be written as DKL (pθk−1‖pθ) ≈
1
2

∑P
i=1 Fθ

k−1

i

(θi − θk−1
i)2 . Note that, for two tasks,

the above regularization is exactly the same as that of EWC [6]. Here we presented it

Riemannian Walk for Incremental Learning 7

from the KL-divergence based perspective. Another way to look at it would be to con-

sider Fisher4 for each parameter to be its importance score. The intuitive explanation for

this is as follows; since Fisher captures the local curvature of the KL-divergence surface

of the likelihood distribution (as it is the second-derivative component of the Taylor ap-

proximation, refer Sec. 2.3), higher Fisher implies higher curvature, thus suggests to

move less in that direction in order to preserve the likelihood.

In the case of multiple tasks, EWC requires storing Fisher for each task indepen-

dently (O(kP) parameters), and regularizing over all of them jointly. This is practically

infeasible if there are many tasks and the network has millions of parameters. More-

over, to estimate the empirical Fisher, EWC requires an additional pass over the dataset

of each task (see Eq. (1)). To address these two issues, we propose EWC++ that (1)

maintains single diagonal Fisher matrix as the training over tasks progresses, and (2)

uses moving average for its efficient update similar to [15]. Given F t−1
θ at t− 1, Fisher

in EWC++ is updated as:

F t
θ = αF t

θ + (1− α)F t−1
θ , (6)

where F t
θ is the Fisher matrix obtained using the current batch and α ∈ [0, 1] is a

hyperparameter. Note, t represents the training iterations, thus, computing Fisher in this

manner contains information about previous tasks, and also eliminates the additional

forward-backward pass over the dataset. At the end of each task, we simply store F t
θ

as Fθk−1 and use it to regularize the next task, thus storing only two sets of Fisher at

any instant during training, irrespective of the number of tasks. Similar to EWC++, an

efficient version of EWC referred to as online-EWC is concurrently developed in [21].

Fig. 1: Parameter importance accumulated

over the optimization trajectory.

In EWC, Fisher is computed at a lo-

cal minimum of L̃k using the gradients of

Lk, which is nearly zero whenever L̃k ≈
Lk (e.g., smaller λ or when k = 1). This

results in negligible regularization lead-

ing to catastrophic forgetting. This issue

is partially addressed in EWC++ using

moving average. However, to improve it

further and to capture model’s behaviour

not just at the minimum but also during

the entire training process, we augment

each element of the diagonal Fisher with a positive scalar as described below. This also

ensures that the augmented Fisher is always positive-definite.

Optimization-path based Parameter Importance Since Fisher captures the intrinsic

properties of the model and it only depends on Lk, it is blinded towards the influence

of parameters over the optimization path on the loss surface of L̃k. Similar to [25], we

accumulate parameter importance based on L̃k over the entire training trajectory. This

score is defined as the ratio of the change in the loss function to the distance between

the conditional likelihood distributions per step in the parameter space.

4 By Fisher we always mean the empirical Fisher information matrix.

8 Chaudhry et al.

More precisely, for a change of parameter from θi(t) to θi(t+1) (where t is the time

step or training iteration), we define parameter importance as the ratio of the change in

the loss to its influence in DKL(pθ(t)‖pθ(t+1)). Intuitively, importance will be higher

if a small change in the distribution causes large improvement over the loss. Formally,

using the first-order Taylor approximation, the change in loss L can be written as:

L(θ(t+∆t))− L(θ(t))≈−

P
∑

i=1

t+∆t
∑

t=t

∂L

∂θi
(θi(t+ 1)− θi(t))=−

P
∑

i=1

∆Lt+∆t
t (θi), (7)

where ∂L
∂θi

is the gradient at t, and ∆Lt+∆t
t (θi) represents the accumulated change in

the loss caused by the change in the parameter θi from time step t to t + ∆t. This

change in parameter would cause a corresponding change in the model distribution

which can be computed using the approximate KL-divergence (Eq. (2)). Thus, the

importance of the parameter θi from training iteration t1 to t2 can be computed as

st2t1(θi) =
∑t2

t=t1

∆L
t+∆t

t
(θi)

1
2
F t

θi
∆θi(t)2+ǫ

, where ∆θi(t) = θi(t +∆t) − θi(t) and ǫ > 0. The

denominator is computed at every discrete intervals of ∆t ≥ 1 and F t
θi

is computed ef-

ficiently at every t-th step using moving average as described while explaining EWC++.

The computation of this importance score is illustrated in Fig. 1. Since we care about

the positive influence of the parameters, negative scores are set to zero. Note that, if the

Euclidean distance is used instead, the score st2t1(θi) would be similar to that of PI [25].

Final Objective Function (RWalk) We now combine Fisher information matrix based

importance and the optimization-path based importance scores as follows:

L̃k(θ) = Lk(θ) + λ

P
∑

i=1

(F
θ
k−1

i

+ s
tk−1

t0
(θi))(θi − θk−1

i)2 . (8)

Here, s
tk−1

t0
(θi) is the score accumulated from the first training iteration t0 until the last

training iteration tk−1, corresponding to task k − 1. Since the scores are accumulated

over time, the regularization gets increasingly rigid. To alleviate this and enable contin-

ual learning, after each task the scores are averaged: s
tk−1

t0
(θi) =

1
2

(

s
tk−2

t0
(θi) + s

tk−1

tk−2
(θi)

)

.

This continual averaging makes the tasks learned far in the past less influential than the

tasks learned recently. Furthermore, while adding, it is important to make sure that the

scales of both F
θ
k−1

i

and s
tk−1

t0
(θi) are in the same order, so that the influence of both

the terms is retained. This can be ensured by individually normalizing them to be in

the interval [0, 1]. This, together with score averaging, have a positive side-effect of the

regularization hyperparameter λ being less sensitive to the number of tasks. However,

EWC [6] and PI [25] are highly sensitive to λ, making them relatively less reliable for

IL. Note, during training, the space complexity for RWalk is O(P), independent of the

number of tasks.

4.2 Handling Intransigence

Experimentally, we observed that training k-th task with Dk leads to a poor test accu-

racy for the current task compared to previous tasks in the single-head evaluation setting

Riemannian Walk for Incremental Learning 9

(refer Sec. 2.1). This happens because during training the model has access to Dk which

contains labels only for the k-th task, yk. However, at test time the label space is over

all the tasks seen so far Yk = ∪k
j=1y

j , which is much larger than y
k. This in turn

increases confusion at test time as the predictor function has no means to differentiate

the samples of the current task from the ones of previous tasks. An intuitive solution to

this problem is to store a small subset of representative samples from the previous tasks

and use it while training the current task [19]. Below we discuss different strategies to

obtain such a subset. Note that we store m points from each task-specific dataset as the

training progresses, however, it is trivial to have a fixed total number of samples for all

the tasks similar to iCaRL [19].

Uniform Sampling A naı̈ve yet highly effective (shown experimentally) approach is

to sample uniformly at random from the previous datasets.

Plane Distance-based Sampling In this case, we assume that samples closer to the

decision boundary are more representative than the ones far away. For a given sam-

ple {xi, yi}, we compute the pseudo-distance from the decision boundary d(xi) =
φ(xi)

⊤wyi , where φ(·) is the feature mapping learned by the neural network and wyi

are the last fully connected layer parameters for class yi. Then, we sample points based

on q(xi) ∝
1

d(xi)
. Here, the intuition is, since the change in parameters is regularized,

the feature space and the decision boundaries do not vary much. Hence, the samples

that lie close to the boundary would act as boundary defining samples.

Entropy-based Sampling Given a sample, the entropy of the output soft-max distri-

bution measures the uncertainty of the sample which we used to sample points. The

higher the entropy the more likely is that the sample would be picked.

Mean of Features (MoF) iCaRL [19] proposes a method to find samples based on the

feature space φ(·). For each class y, m number of points are found whose mean in the

feature space closely approximate the mean of the entire dataset for that class. However,

this subset selection strategy is inefficient compared to the above sampling methods. In

fact, the time complexity is O(nfm) where n is dataset size, f is the feature dimension

and m is the number of required samples.

5 Related Work

One way to address catastrophic forgetting is by dynamically expanding the network

for each new task [24,18,20,23]. Though intuitive and simple, these approaches are not

scalable as the size of the network increases with the number of tasks. A better strat-

egy would be to exploit the over-parametrization of neural networks [3]. This entails

regularizing either over the activations (output) [19,13] or over the network parame-

ters [6,25]. Even though activation-based approach allows more flexibility in parameter

updates, it is memory inefficient if the activations are in millions, e.g., semantic seg-

mentation. On the contrary, methods that regularize over the parameters - weighting

10 Chaudhry et al.

the parameters based on their individual importance - are suitable for such tasks. Our

method falls under the latter category and we show that our method is a generalization

of EWC++ and PI [25], where EWC++ is our efficient version of EWC [6], very similar

to the concurrently developed online-EWC [21]. Similar in spirit to regularization over

the parameters, Lee et al. [12] use moment matching to obtain network weights as the

combination of the weights of all the tasks, and Nguyen et al. [16] enforce the distribu-

tion over the model parameters to be close via a Bayesian framework. Different from

the above approaches, Lopez-Paz et al. [14] update gradients such that the losses of

the previous tasks do not increase, while Shin et al. [22] resort to a retraining strategy

where the samples of the previous tasks are generated using a learned generative model.

6 Experiments

Datasets We evaluate baselines and our proposed model - RWalk - on two datasets:

1. Incremental MNIST: The standard MNIST dataset is split into five disjoint subsets

(tasks) of two consecutive digits, i.e., ∪ky
k = {{0, 1}, . . . , {8, 9}}.

2. Incremental CIFAR: To show that our approach scales to bigger datasets, we use

incremental CIFAR where CIFAR-100 dataset is split into ten disjoint subsets such

that ∪ky
k = {{0− 9}, . . . , {90− 99}}.

Architectures The architectures used are similar to [25]. For MNIST, we use an MLP

with two hidden layers each having 256 units with ReLU nonlinearites. For CIFAR-

100, we use a CNN with four convolutional layers followed by a single dense layer

(see supplementary for more details). In all experiments, we use Adam optimizer [5]

(learning rate = 1× 10−3, β1 = 0.9, β2 = 0.999) with a fixed batch size of 64.

Baselines We compare RWalk against the following baselines:

– Vanilla: Network trained without any regularization over past tasks.

– EWC [6] and PI [25]: Both use parameter based regularization. Note, we observed

that EWC++ performed at least as good as EWC and therefore, in all the experi-

ments, by EWC we mean the stronger baseline EWC++.

– iCaRL [19]: Uses regularization over the activations and a nearest-exempler-based

classifier. Here, iCaRL-hb1 refers to the hybrid1 version, which uses the standard

neural network classifier. Both the versions use previous samples.

Note, we use a few samples from the previous tasks to consolidate our baselines

further in the single-head setting.

6.1 Results

We report the results in Tab. 1 where RWalk outperforms all the baselines in terms of

average accuracy and provides better trade-off between forgetting and intransigence.

We now discuss the results in detail.

Riemannian Walk for Incremental Learning 11

Table 1: Comparison with different baselines on MNIST and CIFAR in both multi-head

and single-head evaluation settings. Baselines where samples are used are appended

with ’-S’. For MNIST and CIFAR, 10 (0.2%) and 25(5%) samples are used from the

previous tasks using mean of features (MoF) based sampling strategy (refer Sec. 4.2).

Methods MNIST CIFAR

Multi-head Evaluation

λ A5(%) F5 I5 λ A10(%) F10 I10

Vanilla 0 90.3 0.12 6.6× 10
−4 0 44.4 0.36 0.02

EWC 75000 99.3 0.001 0.01 3× 10
6 72.8 0.001 0.07

PI 0.1 99.3 0.002 0.01 10 73.2 0 0.06

RWalk (Ours) 1000 99.3 0.003 0.01 1000 74.2 0.004 0.04

Single-head Evaluation

Vanilla 0 38.0 0.62 0.29 0 10.2 0.36 -0.06

EWC 75000 55.8 0.08 0.77 3× 10
6 23.1 0.03 0.17

PI 0.1 57.6 0.11 0.8 10 22.8 0.04 0.2

iCaRL-hb1 - 36.6 0.68 -0.01 - 7.4 0.40 0.06

iCaRL - 55.8 0.19 0.46 - 9.5 0.11 0.35

Vanilla-S 0 73.7 0.30 0.03 0 12.9 0.64 -0.3

EWC-S 75000 79.7 0.14 0.22 15× 10
5 33.6 0.27 -0.05

PI-S 0.1 78.7 0.24 0.05 10 33.6 0.27 -0.03

RWalk (Ours) 1000 82.5 0.15 0.14 500 34.0 0.28 -0.06

In the multi-head evaluation setting [25,14], except Vanilla, all the methods pro-

vide state-of-the-art accuracy with almost zero forgetting and intransigence (top row of

Fig. 2). This gives an impression that IL problem is solved. However, as discussed in

Sec. 2.1, this is an easier evaluation setting and does not capture the essence of IL.

However, in the single-head evaluation, forgetting and intransigence increase sub-

stantially due to the the inability of the network to differentiate among tasks. Hence,

the performance significantly drops for all the methods (refer Tab. 1 and the middle row

of Fig. 2). For instance, on MNIST, forgetting and intransigence of Vanilla deteriorates

from 0.12 to 0.62, and 6.6 × 10−4 to 0.29, respectively, causing the average accuracy

to drop from 90.3% to 38.0%. Although, regularized methods, EWC and PI, designed

to counter catastrophic forgetting, result in less degradation of forgetting, their accu-

racy is still significantly worse - compare 99.3% of PI in multi-head against 57.6% in

single-head. In Tab. 1, a similar performance decrease is observed on CIFAR-100 as

well. Such a degradation in accuracy even with less forgetting shows that it is not only

important to preserve knowledge (quantified by forgetting) but also to update knowl-

edge (captured by intransigence) to achieve better performance. Task-level analysis for

CIFAR dataset, similar to Fig. 2, is presented in the supplementary material.

We now show that even with a few representative samples intransigence can be

mitigated. For example, in the case of PI on MNIST with only 10 (≈ 0.2%) samples for

each previous class, the intransigence drops from 0.8 to 0.05 which results in improving

the average accuracy from 57.6% to 78.7%. Similar improvements can be seen for other

12 Chaudhry et al.

1 2 3 4 5

Tasks

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

Task 1 (0 to 1)

1 2 3 4 5

0.5

0.6

0.7

0.8

0.9

1.0

Task 2 (2 to 3)

1 2 3 4 5

0.5

0.6

0.7

0.8

0.9

1.0

Task 3 (4 to 5)

1 2 3 4 5

0.5

0.6

0.7

0.8

0.9

1.0

Task 4 (6 to 7)

1 2 3 4 5

0.5

0.6

0.7

0.8

0.9

1.0

Task 5 (8 to 9)

1 2 3 4 5

0.5

0.6

0.7

0.8

0.9

1.0

Average (Ak)

1 2 3 4 5

Tasks

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Task 1 (0 to 1)

1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Task 2 (2 to 3)

1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Task 3 (4 to 5)

1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Task 4 (6 to 7)

1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Task 5 (8 to 9)

1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Average (Ak)

1 2 3 4 5

Tasks

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

Task 1 (0 to 1)

1 2 3 4 5

0.5

0.6

0.7

0.8

0.9

1.0

Task 2 (2 to 3)

1 2 3 4 5

0.5

0.6

0.7

0.8

0.9

1.0

Task 3 (4 to 5)

1 2 3 4 5

0.5

0.6

0.7

0.8

0.9

1.0

Task 4 (6 to 7)

1 2 3 4 5

0.5

0.6

0.7

0.8

0.9

1.0

Task 5 (8 to 9)

1 2 3 4 5

0.5

0.6

0.7

0.8

0.9

1.0

Average (Ak)

Vanilla

PI

EWC

iCaRL-hb1

iCaRL

RWalk

Fig. 2: Accuracy on incremental MNIST with multi-head evaluation (top), and single-

head evaluation without (middle) and with samples (bottom). First five columns show

the variation in performance for different tasks, e.g., the first plot depicts the perfor-

mance variation on Task 1 when trained incrementally over five tasks. The last column

shows the accuracy (Ak, refer Sec. 3). Mean of features (MoF) sampling is used.

methods as well. On CIFAR-100, with only 5% representative samples, almost identical

behaviour is observed.

In our CIFAR-100 experiments (CNN instead of ResNet32), we note that the perfor-

mance of iCaRL [19] is significantly worse than what has been reported by the authors.

We believe this is due to the dependence of iCaRL on a highly expressive feature space,

as both the regularization and the classifier depend on it. Perhaps, this reduced expres-

sivity of the feature space due to the smaller network resulted in the performance loss.

Interplay of Forgetting and Intransigence In Fig. 3 we study the interplay of forget-

ting and intransigence in the single-head setting. Ideally we would like a model to be in

the quadrant marked as PBT, PFT (i.e., positive backward transfer and positive forward

transfer). On MNIST, since all the methods, except iCaRL-hb1, lie on the top-right

quadrant, hence for models with comparable accuracy, a model which has the smallest

distance from (0, 0) would be better. As evident, RWalk is closest to (0, 0), provid-

ing a better trade-off between forgetting and intransigence compared to all the other

methods. On CIFAR-100, the models lie on both the top quadrants and with the intro-

duction of samples, all the regularized methods show positive forward transfer. Since

the models lie on different quadrants, their comparison of forgetting and intransigence

becomes application specific. In some cases, we might prefer a model that performs

well on new tasks (better intransigence), irrespective of its performance on the old ones

Riemannian Walk for Incremental Learning 13

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

Intransigence (I5)

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

F
o
rg

e
tt

in
g

(F
5
)

NBT, NFTNBT, PFT

PBT, PFT PBT, NFT

Vanilla

PI

EWC

iCaRL-hb1

iCaRL

Vanilla-S

PI-S

EWC-S

RWalk

(a) MNIST

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

Intransigence (I5)

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

F
o
rg

e
tt

in
g

(F
5
)

NBT, NFTNBT, PFT

PBT, PFT PBT, NFT

Vanilla

PI

EWC

iCaRL-hb1

iCaRL

Vanilla-S

PI-S

EWC-S

RWalk

(b) CIFAR

Fig. 3: Interplay between forgetting and intransigence.

0 20 40 60 80 100

Samples

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
v
g

A
cc

u
ra

cy
(A

k
)

Vanilla

PI

EWC

RWalk

(a) MNIST

0 50 100 150 200

Samples

0.0

0.1

0.2

0.3

0.4

0.5

A
v
g

A
cc

u
ra

cy
(A

k
)

(b) CIFAR

Fig. 4: Comparison by increasing the

number of samples. On MNIST and

CIFAR each class has around 5000

and 500 samples, respectively. With

increasing number of samples, the

performance of Vanilla improved, but

in the range where Vanilla is poor,

RWalk consistently performs the best.

Uniform sampling is used.

(can compromise forgetting), and vice versa. Note that, RWalk maintains comparable

performance to other baselines while yielding higher average accuracy on CIFAR-100.

Effect of Increasing the Number of Samples As expected, for smaller number of

samples, regularized methods perform far superior compared to Vanilla (refer Fig. 4).

However, once the number of samples are sufficiently large, Vanilla starts to perform

better or equivalent to the regularized models. The reason is simple because now the

Vanilla has access to enough samples of the previous tasks to relearn them at each step,

thereby obviating the need of regularized models. However, in an IL problem, a fixed

small-sized memory budget is usually assumed. Therefore, one cannot afford to store

large number of samples from previous tasks. Additionally, for a simpler dataset like

MNIST, Vanilla quickly catches up to the regularized models with small number of

samples (20, 0.4% of total samples) but on a more challenging dataset like CIFAR it

takes considerable amount of samples (200, 40% of total samples) of previous tasks for

Vanilla to match the performance of the regularized models.

Comparison of Different Sampling Strategies In Fig. 5 we compare different subset

selection strategies discussed in Sec. 4.2. It can be observed that for all the methods

Mean-of-Features (MoF) subset selection procedure, introduced in iCaRL [19], per-

forms the best. Surprisingly, uniform sampling, despite being simple, is as good as

14 Chaudhry et al.

0 10 20 30 40 50 60

Samples

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
v
g

A
cc

u
ra

cy
(A

k
)

0 10 20 30 40 50 60

Samples

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
v
g

A
cc

u
ra

cy
(A

k
)

0 10 20 30 40 50 60

Samples

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
v
g

A
cc

u
ra

cy
(A

k
)

0 10 20 30 40 50 60

Samples

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
v
g

A
cc

u
ra

cy
(A

k
)

Uniform

Entropy

PD

MoF

0 50 100 150 200 250

Samples

0.0

0.1

0.2

0.3

0.4

0.5

A
v
g

A
cc

u
ra

cy
(A

k
)

(a) Vanilla

0 50 100 150 200 250

Samples

0.0

0.1

0.2

0.3

0.4

0.5

A
v
g

A
cc

u
ra

cy
(A

k
)

(b) PI

0 50 100 150 200 250

Samples

0.0

0.1

0.2

0.3

0.4

0.5

A
v
g

A
cc

u
ra

cy
(A

k
)

(c) EWC

0 50 100 150 200 250

Samples

0.0

0.1

0.2

0.3

0.4

0.5

A
v
g

A
cc

u
ra

cy
(A

k
)

Uniform

Entropy

PD

MoF

(d) RWalk

Fig. 5: Comparison of different sampling strategies discussed in Sec. 4.2 on MNIST

(top) and CIFAR-100 (bottom). Mean of features (MoF) outperforms others.

more complex MoF, Plane Distance (PD) and entropy-based sampling strategies. Fur-

thermore, the regularized methods remain insensitive to different sampling strategies,

whereas in Vanilla, performance varies a lot against different strategies. We believe this

is due to the unconstrained change in the last layer weights of the previous tasks.

7 Discussion

In this work, we analyzed the challenges in the incremental learning problem, namely,

catastrophic forgetting and intransigence, and introduced metrics to quantify them. Such

metrics reflect the interplay between forgetting and intransigence, which we believe

will encourage future research for exploiting model capacity, such as, sparsity enforc-

ing regularization, and exploration-based methods for incremental learning. In addition,

we have presented an efficient version of EWC referred to as EWC++, and a generaliza-

tion of EWC++ and PI with a KL-divergence-based perspective. Experimentally, we

observed that these parameter regularization methods suffer from high intransigence in

the practical single-head setting and showed that this can be alleviated with a small sub-

set of representative samples. Since these methods are memory efficient compared to

knowledge distillation-based algorithms such as iCaRL, future research in this direction

would enable the possibility of incremental learning on segmentation tasks.

Acknowledgements

This work was supported by The Rhodes Trust, EPSRC, ERC grant ERC-2012-AdG

321162-HELIOS, EPSRC grant Seebibyte EP/M013774/1 and EPSRC/MURI grant

EP/N019474/1.

Riemannian Walk for Incremental Learning 15

References

1. Amari, S.I.: Natural gradient works efficiently in learning. Neural Computation (1998) 2, 4

2. Grosse, R., Martens, J.: A kronecker-factored approximate fisher matrix for convolution lay-

ers. In: ICML (2016) 4

3. Hecht-Nielsen, R., et al.: Theory of the backpropagation neural network. Neural Networks

1(Supplement-1), 445–448 (1988) 9

4. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: NIPS

(2014) 1

5. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: ICLR (2015) 10

6. Kirkpatrick, J., Pascanu, R., Rabinowitz, N.C., Veness, J., Desjardins, G., Rusu, A.A., Milan,

K., Quan, J., Ramalho, T., Grabska-Barwinska, A., Hassabis, D., Clopath, C., Kumaran,

D., Hadsell, R.: Overcoming catastrophic forgetting in neural networks. Proceedings of the

National Academy of Sciences of the United States of America (PNAS) (2016) 1, 2, 4, 6, 8,

9, 10

7. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.

https://www.cs.toronto.edu/ kriz/cifar.html (2009) 2

8. Kullback, S., Leibler, R.A.: On information and sufficiency. The Annals of Mathematical

Statistics (1951) 3

9. Le Roux, N., Pierre-Antoine, M., Bengio, Y.: Topmoumoute online natural gradient algo-

rithm. In: NIPS (2007) 4

10. LeCun, Y.: The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/

(1998) 2

11. Lee, J.M.: Riemannian manifolds: an introduction to curvature, vol. 176. Springer Science

& Business Media (2006) 4

12. Lee, S.W., Kim, J.H., Ha, J.W., Zhang, B.T.: Overcoming catastrophic forgetting by incre-

mental moment matching. In: NIPS (2017) 3, 10

13. Li, Z., Hoiem, D.: Learning without forgetting. In: ECCV (2016) 9

14. Lopez-Paz, D., Ranzato, M.: Gradient episodic memory for continuum learning. In: NIPS

(2017) 1, 5, 6, 10, 11

15. Martens, J., Grosse, R.: Optimizing neural networks with kronecker-factored approximate

curvature. In: ICML (2015) 4, 7

16. Nguyen, C.V., Li, Y., Bui, T.D., Turner, R.E.: Variational continual learning. ICLR (2018)

10

17. Pascanu, R., Bengio, Y.: Revisiting natural gradient for deep networks. In: ICLR (2014) 2, 4

18. Rebuffi, S.A., Bilen, H., Vedaldi, A.: Learning multiple visual domains with residual

adapters. In: NIPS (2017) 9

19. Rebuffi, S.V., Kolesnikov, A., Lampert, C.H.: iCaRL: Incremental classifier and representa-

tion learning. In: CVPR (2017) 1, 3, 9, 10, 12, 13

20. Rusu, A.A., Rabinowitz, N.C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K.,

Pascanu, R., Hadsell, R.: Progressive neural networks. arXiv preprint arXiv:1606.04671

(2016) 9

21. Schwarz, J., Luketina, J., Czarnecki, W.M., Grabska-Barwinska, A., Teh, Y.W., Pascanu, R.,

Hadsell, R.: Progress & compress: A scalable framework for continual learning. In: ICML

(2018) 2, 7, 10

22. Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative replay. In:

NIPS (2017) 10

23. Terekhov, A.V., Montone, G., ORegan, J.K.: Knowledge transfer in deep block-modular neu-

ral networks. In: Conference on Biomimetic and Biohybrid Systems. pp. 268–279 (2015) 9

16 Chaudhry et al.

24. Yoon, J., Yang, E., Lee, J., Hwang, S.J.: Lifelong learning with dynamically expandable

networks. In: ICLR (2018) 9

25. Zenke, F., Poole, B., Ganguli, S.: Continual learning through synaptic intelligence. In: ICML

(2017) 1, 2, 6, 7, 8, 9, 10, 11

