
Piggyback: Adapting a Single Network to

Multiple Tasks by Learning to Mask Weights

Arun Mallya, Dillon Davis, and Svetlana Lazebnik

University of Illinois at Urbana-Champaign
{amallya2,ddavis14,slazebni}@illinois.edu

Abstract. This work presents a method for adapting a single, fixed
deep neural network to multiple tasks without affecting performance on
already learned tasks. By building upon ideas from network quantization
and pruning, we learn binary masks that “piggyback” on an existing net-
work, or are applied to unmodified weights of that network to provide
good performance on a new task. These masks are learned in an end-to-
end differentiable fashion, and incur a low overhead of 1 bit per network
parameter, per task. Even though the underlying network is fixed, the
ability to mask individual weights allows for the learning of a large num-
ber of filters. We show performance comparable to dedicated fine-tuned
networks for a variety of classification tasks, including those with large
domain shifts from the initial task (ImageNet), and a variety of network
architectures. Our performance is agnostic to task ordering and we do
not suffer from catastrophic forgetting or competition between tasks.

Keywords: Incremental Learning, Binary Networks.

1 Introduction

The most popular method used in prior work for training a deep network for a
new task or dataset is fine-tuning an established pre-trained model, such as the
VGG-16 [1] trained on ImageNet classification [2]. A major drawback of fine-
tuning is the phenomenon of “catastrophic forgetting” [3], by which performance
on the old task degrades significantly as the new task is learned, necessitating
one to store specialized models for each task or dataset. For achieving progress
towards continual learning [4,5], we need better methods for augmenting capabil-
ities of an existing network while avoiding catastrophic forgetting and requiring
as few additional parameters as possible.

Prior methods for avoiding catastrophic forgetting, such as Learning with-
out Forgetting (LwF) [6] and Elastic Weight Consolidation (EWC) [4], maintain
performance on older tasks through proxy losses and regularization terms while
modifying network weights. Another recent work, PackNet [7], adopts a differ-
ent route of iteratively pruning unimportant weights and fine-tuning them for
learning new tasks. As a result of pruning and weight modifications, a binary
parameter usage mask is produced by PackNet. We question whether the weights
of a network have to be changed at all to learn a new task, or whether we can get

2 A. Mallya, D. Davis, and S. Lazebnik

Elementwise Masking

Dense filter (W) of pre-
trained backbone network

Binary mask (m)
for Task K

Effective filter for Task K

⊙

Real-valued mask
weights (m r)
for Task K

Thresholding Function

Eval Time

Behavior
Train Time

Behavior

e.g. Binarizer

Fig. 1: Overview of our method for learning piggyback masks for fixed backbone
networks. During training, we maintain a set of real-valued weights mr which are
passed through a thresholding function to obtain binary-valued masks m. These
masks are applied to the weights W of the backbone network in an elementwise
fashion, keeping individual weights active, or masked out. The gradients obtained
through backpropagation of the task-specific loss are used to update the real-
valued mask weights. After training, the real-valued mask weights are discarded
and only the thresholded mask is retained, giving one network mask per task.

by with just selectively masking, or setting certain weights to 0, while keeping
the rest of the weights the same as before. Based on this idea, we propose a novel
approach in which we learn to mask weights of an existing “backbone” network
for obtaining good performance on a new task, as shown in Figure 1. Binary
masks that take values in {0, 1} are learned in an end-to-end differentiable fash-
ion while optimizing for the task at hand. These masks are elementwise applied
to backbone weights, allowing us to learn a large range of different filters, even
with fixed weights. We find that a well-initialized backbone network is crucial for
good performance and that the popular ImageNet pre-trained network general-
izes to multiple new tasks. After training for a new task, we obtain a per-task
binary mask that simply “piggybacks” onto the backbone network.

Our experiments conducted on image classification, and presented in Sec-
tion 4, show that this proposed method obtains performance similar to using a
separate network per task, for a variety of datasets considered in prior work [7]
such as CUBS birds [8], Stanford cars [9], Oxford flowers [10], as well datasets
with a significant departure from the natural image domain of the ImageNet
dataset such as WikiArt paintings [11] and human sketches [12]. We demon-
strate the applicability of our method to multiple network architectures includ-
ing VGG-16 [1], ResNets [13,14], and DenseNets [15]. Section 5 tries to offer some
insight into the workings of the proposed method, and analyzes design choices
that affect performance. As presented in Section 6, we also obtain performance

Piggyback: Adapting a Network by Learning to Mask Weights 3

competitive with the best methods [16] on the Visual Decathlon challenge [17]
while using the least amount of additional parameters. Finally, we show that
our method can be used to train a fully convolutional network for semantic
segmentation starting from a classification backbone.

2 Related Work

While multiple prior works [18,19,20] have explored multi-task training, wherein
data of all tasks is available at the time of training, we consider the setting
in which new tasks are available sequentially, a more realistic and challenging
scenario. Prior work under this setting is based on Learning without Forgetting
(LwF) [5,6,21] and Elastic Weight Consolidation (EWC) [4,22]. LwF uses initial
network responses on new data as regularization targets during new task train-
ing, while EWC imposes a smooth penalty on changing weights deemed to be
important to prior tasks. An issue with these methods is that it is not possible to
determine the change in performance on prior tasks beforehand since all weights
of the network are allowed to be modified to varying degrees. PackNet [7] avoids
this issue by identifying weights important for prior tasks through network prun-
ing, and keeping the important weights fixed after training for a particular task.
Additional information is stored per weight parameter of the network to indicate
which tasks it is used by. However, for each of these methods, performance be-
gins to drop as many tasks are added to the network. In the case of LwF, a large
domain shift for a new task causes significant drop in prior task performance [6].
For PackNet, performance on a task drops as it is added later to the network
due to the lack of available free parameters, and the total number of tasks that
can be added is ultimately limited due to the fixed size of the network [7].

Our proposed method does not change weights of the initial backbone net-
work and learns a different mask per task. As a result, it is agnostic to task or-
dering and the addition of a task does not affect performance on any other task.
Further, an unlimited number of tasks can piggyback onto a backbone network
by learning a new mask. The parameter usage masks in PackNet were obtained
as a by-product of network pruning [23], but we learn appropriate masks based
on the task at hand. This idea of masking is related to PathNet [24], which learns
selective routing through neurons using evolutionary strategies. We achieve sim-
ilar behavior through an end-to-end differentiable method, which is less com-
putationally demanding. The learning of separate masks per task decouples the
learning of multiple tasks, freeing us from having to choose hyperparameters
such as batch mixing ratios [20], pruning ratios [7], and cost weighting [6].

Similar to our proposed method, another set of methods adds new tasks by
learning additional task-specific parameters. For a new task, Progressive Neural
Networks [25] duplicates the base architecture while adding lateral connections to
layers of the existing network. The newly added parameters are optimized for the
new task, while keeping old weights fixed. This method incurs a large overhead
as the network is replicated for the number of tasks added. The method of
Residual Adapters [17] develops on the observation that linearly parameterizing

4 A. Mallya, D. Davis, and S. Lazebnik

a convolutional filter bank of a network is the same as adding an additional
per-task convolutional layer to the network. The most recent Deep Adaptation
Networks (DAN) [16] allows for learning new filters that are linear combinations
of existing filters. Similar to these methods, we enable the learning of new per-
task filters. However, these new filters are constrained to be masked versions of
existing filters. Our learned binary masks incur an overhead of 1 bit per network
parameter, smaller than all of the prior work. Further, we do not find it necessary
to learn task-specific layer biases and batch normalization parameters.

Our method for training binary masks is based on the technique introduced
by Courbariaux et al. [26,27] for the training of a neural network with binary-
valued weights from scratch. The authors maintain a set of real-valued weights
that are passed through a binarizer function during the forward pass. Gradients
are computed with respect to the binarized weights during the backward pass
through the application of the chain rule, and the real-valued weights are updated
using the gradients computed for the binarized versions. In [26], the authors
argue that even though the gradients computed in this manner are noisy, they
effectively serve as a regularizer and quantization errors cancel out over multiple
iterations. Subsequent work including [28,29] has extended this idea to ternary-
valued weights. Unlike these works, we do not train a quantized network from
scratch but instead learn quantized masks that are applied to fixed, real-valued
filter weights. Work on sparsifying dense neural networks, specifically [30], has
used the idea of masked weight matrices. However, only their weight matrix
was trainable and their mask values were a fixed function of the magnitude of
the weight matrix and not explicitly trainable. In contrast, we treat the weight
matrix of the backbone network as a fixed constant.

3 Approach

The key idea behind our method is to learn to selectively mask the fixed weights
of a base network, so as to improve performance on a new task. We achieve this
by maintaining a set of real-valued weights that are passed through a deter-
ministic thresholding function to obtain binary masks, that are then applied to
existing weights. By updating the real-valued weights through backpropagation,
we hope to learn binary masks appropriate for the task at hand. This process
is illustrated in Figure 1. By learning different binary-valued {0, 1} masks per
task, which are element-wise applied to network parameters, we can re-use the
same underlying base network for multiple tasks, with minimal overhead. Even
though we do not modify the weights of the network, a large number of differ-
ent filters can be obtained through masking. For example, a dense weight vector
such as [0.1, 0.9,−0.5, 1] can give rise to filters such as [0.1, 0, 0, 1], [0, 0.9,−0.5, 0],
and [0, 0.9,−0.5, 1] after binary masking. In practice, we begin with a network
such as the VGG-16 or ResNet-50 pre-trained on the ImageNet classification
task as our base network, referred to as the backbone network, and associate a
real-valued mask variable with each weight parameter of all the convolutional
and fully-connected layers. By combining techniques used in network binariza-

Piggyback: Adapting a Network by Learning to Mask Weights 5

tion [26,27] and pruning [30], we train these mask variables to learn the task at
hand in an end-to-end fashion, as described in detail below. The choice of the
initialization of the backbone network is crucial for obtaining good performance,
and is further analyzed in Section 5.1.

For simplicity, we describe the mask learning procedure using the example of
a fully-connected layer, but this idea can easily be extended to a convolutional
layer as well. Consider a simple fully-connected layer in a neural network. Let
the input and output vectors be denoted by x = (x1, x2, · · · , xm)T of size m×1,
and y = (y1, y2, · · · , yn)

T of size n × 1, respectively. Let the weight matrix of
the layer be W = [w]ji of size n × m. The input-output relationship is then
given by y = Wx, or yj =

∑m

i=1
wji · xi. The bias term is ignored for ease

of notation. Let δv denote the partial derivative of the error function E with
respect to the variable v. The backpropagation equation for the weights W of
this fully-connected layer is given by

δwji ,
∂E

∂wji

=

(

∂E

∂yj

)

·

(

∂yj
∂wji

)

(1)

= δyj · xi (2)

∴ δW ,

[

∂E

∂w

]

ji

= δy · xT , (3)

where δy = (δy1, δy2, · · · , δyn)
T is of size n× 1.

Our modified fully-connected layer associates a matrix of real-valued mask
weights mr = [mr]ji with every weight matrix W, of the same size as W (n×m),
as indicated by the rightmost filter in Figure 1. We obtain thresholded mask
matrices m = [m]ji by passing the real-valued mask weight matrices mr through
a hard binary thresholding function given by

mji =

{

1, if mr
ji ≥ τ

0, otherwise
, (4)

where τ is a selected threshold. The binary-valued matrixm activates or switches
off contents of W depending on whether a particular value mji is 0 or 1. The
layer’s input-output relationship is given by the equation y = (W ⊙ m)x, or
yj =

∑m

i=1
wji ·mji ·xi, where ⊙ indicates elementwise multiplication or masking.

As mentioned previously, we set the weights W of our modified layer to those
from the same architecture pre-trained on a task such as ImageNet classification.
We treat the weights W as fixed constants throughout, while only training the
real-valued mask weights mr. The backpropagation equation for the thresholded
mask weights m of this fully-connected layer is given by

δmji ,
∂E

∂mji

=

(

∂E

∂yj

)

·

(

∂yj
∂mji

)

(5)

= δyj · wji · xi (6)

∴ δm ,

[

∂E

∂m

]

ji

= (δy · xT)⊙W. (7)

6 A. Mallya, D. Davis, and S. Lazebnik

Even though the hard thresholding function is non-differentiable, the gradi-
ents of the thresholded mask values m serve as a noisy estimator of the gradients
of the real-valued mask weights mr, and can even serve as a regularizer, as shown
in prior work [26,27]. We thus update the real-valued mask weights mr using
gradients computed for m, the thresholded mask values. After adding a new
final classification layer for the new task, the entire system can be trained in an
end-to-end differentiable manner. In our experiments, we did not train per-task
biases as prior work [7] showed that this does not have any significant impact
on performance. We also did not train per-task batch-normalization parameters
for simplicity. Section 5.3 analyzes the benefit of training per-task batchnorm
parameters, especially for tasks with large domain shifts.

After training a mask for a given task, we no longer require the real-valued
mask weights. They are discarded, and only the thresholded masks associated
with the backbone network layers are stored. A typical neural network parameter
is represented using a 32-bit float value (including in our PyTorch implementa-
tion). A binary mask only requires 1 extra bit per parameter, leading to an
approximate per-task overhead of 1/32 or 3.12% of the backbone network size.

Practical optimization details. From Eq. 7, we observe that |δm|, |δmr| ∝
|W|. The magnitude of pre-trained weights varies across layers of a network, and
as a result, the mask gradients would also have different magnitudes at different
layers. This relationship requires us to be careful about the manner in which we
initialize and train mask weights mr. There are two possible approaches:

1) Initialize mr with values proportional to the weight matrix W of the corre-
sponding layer. In this case, the ratio |δmr|/|mr| will be similar across layers,
and a constant learning rate can be used for all layers.

2) Initialize mr with a constant value, such as 0.01, for all layers. This would
require a separate learning rate per layer, due to the scaling of the mask gradient
by the layer weight magnitude. While using SGD, scaling gradients obtained at
each layer by a factor of 1/avg(|W|), while using a constant learning rate, has
the same effect as layer-dependent learning rates. Alternatively, one could use
adaptive optimizers such as Adam, which would learn appropriate scaling factors.

The second initialization approach combined with the Adam optimizer pro-
duced the best results, with a consistent gain in accuracy by ∼ 2% compared to
the alternatives. We initialized the real-valued weights with a value of 1e-2 with
a binarizer threshold (τ , in Equation 4) of 5e-3 in all our experiments. Randomly
initializing the real-valued mask weights such that the thresholded binary masks
had an equal number of 0s and 1s did not give very good performance. Ensuring
that all thresholded mask values were 1 provides the same network initialization
as that of the baseline methods.

We also tried learning ternary masks {−1, 0, 1} by using a modified version
of Equation 4 with two cut-off thresholds, but did not achieve results that were
significantly different from those obtained with binary masks. As a result, we
only focus on results obtained with binary masks in the rest of this work.

Piggyback: Adapting a Network by Learning to Mask Weights 7

4 Experiments and Results

We consider a wide variety of datasets, statistics of which are summarized in
Table 1, to evaluate our proposed method. Similar to PackNet [7], we evaluate our
method on two large-scale datasets, the ImageNet object classification dataset [2]
and the Places365 scene classification dataset [31], each of which has over a
million images, as well as the CUBS [8], Stanford Cars [9], and Flowers [10]
fine-grained classification datasets. Further, we include two more datasets with
significant domain shifts from the natural images of ImageNet, the WikiArt
Artists classification dataset, created from the WikiArt dataset [11], and the
Sketch classifcation dataset [12]. The former includes a wide genre of painting
styles, as shown in Figure 2a, while the latter includes black-and-white sketches
drawn by humans, as shown in Figure 2b. For all these datasets, we use networks
with an input image size of 224× 224 px.

Dataset #Train #Eval #Classes

ImageNet [2] 1,281,144 50,000 1,000

Places365 [31] 1,803,460 36,500 365

CUBS [8] 5,994 5,794 200

Stanford Cars [9] 8,144 8,041 196

Flowers [10] 2,040 6,149 102

WikiArt [11] 42,129 10,628 195

Sketch [12] 16,000 4,000 250

Table 1: Summary of datasets used.

(a) WikiArt (b) Sketch

Fig. 2: Datasets unlike ImageNet.

Table 2 reports the errors obtained on fine-grained classification tasks by
learning binary-valued piggyback masks for a VGG-16 network pre-trained on
ImageNet classification. The first baseline considered is Classifier Only, which
only trains a linear classifier using fc7 features extracted from the pre-trained
VGG-16 network. This is a commonly used method that has low overhead as
all layers except for the last classification layer are re-used amongst tasks. The
second and more powerful baseline is Individual Networks, which finetunes
a separate network per task. We also compare our method to the recently in-
troduced PackNet [7] method, which adds multiple tasks to a network through
iterative pruning and re-training. We train all methods for 30 epochs. We train
the piggyback and classifier only, using the Adam optimizer with an initial learn-
ing rate of 1e-4, which is decayed by a factor of 10 after 15 epochs. We found
SGDm with an initial learning rate of 1e-3 to work better for the individual VGG
network baseline. For PackNet, we used a 50% pruned initial network trained
with SGDm with an initial learning rate of 1e-3 using the same decay scheme as
before. We prune the network by 75% and re-train for 15 epochs with a learn-
ing rate of 1e-4 after each new task is added. All errors are averaged over 3
independent runs.

8 A. Mallya, D. Davis, and S. Lazebnik

Dataset
Classifier PackNet [7] Piggyback Individual

Only ↓ ↑ (ours) Networks

ImageNet
28.42 29.33 28.42 28.42
(9.61) (9.99) (9.61) (9.61)

CUBS 36.49 22.30 29.69 20.99 21.30

Stanford Cars 54.66 15.81 21.66 11.87 12.49

Flowers 20.01 10.33 10.25 7.19 7.35

WikiArt 49.53 32.80 31.48 29.91 29.84

Sketch 58.53 28.62 24.88 22.70 23.54

Models (Size) 1 (537 MB) 1 (587 MB) 1 (621 MB) 6 (3,222 MB)

Table 2: Errors obtained by starting from an ImageNet-trained VGG-16 net-
work and then using various methods to learn new fine-grained classification
tasks. PackNet performance is sensitive to order of task addition, while the rest,
including our proposed method, are agnostic. ↓ and ↑ indicate that tasks were
added in the CUBS → Sketch, and Sketch → CUBS order, resp. Values in paren-
theses are top-5 errors, rest are top-1 errors.

As seen in Table 2, training individual networks per task clearly provides a
huge benefit over the classifier only baseline for all tasks. PackNet significantly
improves over the classifier only baseline, but begins to suffer when more than
3 tasks are added to a single network. As PackNet is sensitive to the ordering of
tasks, we try two settings - adding tasks in order from CUBS to Sketch (top to
bottom in Table 2), and the reverse. The order of new task addition has a large
impact on the performance of PackNet, with errors increasing by 4-7% as the
addition of a task is delayed from first to last (fifth). The error on ImageNet is
also higher in the case of PackNet, due to initial network pruning. By training
binary piggyback masks, we are able to obtain errors slightly lower than the
individual network case. We believe that this is due to the regularization effect
caused by the constrained filter modification allowed by our method. Due to the
learning of independent masks per task, the obtained performance is agnostic
to the ordering of new tasks, albeit at a slightly higher storage overhead as
compared to PackNet. The number of weights switched off varies per layer and
by dataset depending on its similarity to the ImageNet dataset. This effect is
further examined in Section 5.2.

While the results above were obtained by adding multiple smaller fine-grained
classification tasks to a network, the next set of results in Table 3 examines the
effect of adding a large-scale dataset, the Places365 scene classification task
with 1.8M images, to a network. Here, instead of the Classifier Only baseline,
we compare against the Jointly Trained Network of [31], in which a single
network is simultaneously trained for both tasks. Both PackNet and Piggyback
were trained for 20 epochs on Places365. Once again, we are able to achieve close
to best-case performance on the Places365 task, obtaining top-1 errors within
0.36% of the individual network, even though the baselines were trained for 60-
90 epochs [31]. The performance is comparable to PackNet, and for the case of
adding just one task, both incur a similar overhead.

Piggyback: Adapting a Network by Learning to Mask Weights 9

Dataset
Jointly Trained PackNet Piggyback Individual

Network∗ [7] (ours) Networks

ImageNet
33.49 29.33 28.42 28.42
(12.25) (9.99) (9.61) (9.61)

Places365
45.98 46.64 46.71 46.35
(15.59) (15.92) (16.18) (16.14)∗

Models (Size) 1 (537 MB) 1 (554 MB) 1 (554 MB) 2 (1,074 MB)

Table 3: Adding a large-scale dataset to an ImageNet-trained VGG-16 network.
Values in parentheses are top-5 errors, rest are top-1 errors. ∗ indicates models
downloaded from https://github.com/CSAILVision/places365, trained by [31].

Dataset
Classifier PackNet [7] Piggyback Individual

Only ↓ ↑ (ours) Networks

VGG-16 BN

ImageNet
26.63 27.18 26.63 26.63
(8.49) (8.69) (8.49) (8.49)

CUBS 33.88 20.21 23.82 18.37 19.57

Stanford Cars 51.62 14.05 17.60 9.87 9.41

Flowers 19.38 7.82 7.85 4.84 4.55

WikiArt 48.05 30.21 29.59 27.50 26.68

Sketch 59.96 25.47 23.53 21.41 21.92

Models (Size) 1 (537 MB) 1 (587 MB) 1 (621 MB) 6 (3,222 MB)

ResNet-50

ImageNet
23.84 24.29 23.84 23.84
(7.13) (7.18) (7.13) (7.13)

CUBS 29.97 19.59 28.62 18.41 17.17

Stanford Cars 47.20 13.89 19.99 10.38 8.17

Flowers 14.01 6.96 9.45 5.23 3.44

WikiArt 44.40 30.60 29.69 28.67 24.40

Sketch 49.14 23.83 21.30 20.09 19.22

Models (Size) 1 (94 MB) 1 (103 MB) 1 (109 MB) 6 (564 MB)

DenseNet-121

ImageNet
25.56 25.60 25.56 25.56
(8.02) (7.89) (8.02) (8.02)

CUBS 26.55 19.26 30.36 19.50 18.08

Stanford Cars 43.19 15.35 22.09 10.87 8.64

Flowers 16.56 8.94 8.46 5.31 3.49

WikiArt 45.08 33.66 30.81 29.56 23.59

Sketch 46.88 25.35 21.08 20.30 19.48

Models (Size) 1 (28 MB) 1 (31 MB) 1 (33 MB) 6 (168 MB)

Table 4: Results on other network architectures. Values in parentheses are top-5
errors, rest are top-1 errors. ↑ and ↓ indicate order of task addition for PackNet.

The previous results were obtained using the large VGG-16 network, and
it is not immediately obvious whether the piggyback method would work for

https://github.com/CSAILVision/places365

10 A. Mallya, D. Davis, and S. Lazebnik

much deeper networks that have batch normalization layers. Masking out filter
weights can change the average magnitude of activations, requiring changes to
batchnorm parameters. We present results obtained with a VGG-16 network
with batch normalization layers, the ResNet-50, and DenseNet-121 networks in
Table 4. We observe that the method can be applied without any changes to
these network architectures with batchnorm, residual, and skip connections. In
the presented results, we do not learn task-specific batchnorm parameters. We
however notice that the deeper a network gets, the larger the gap between the
performance of piggyback and individual networks. For the VGG-16 architecture,
piggyback can often do as well as or better than individual models, but for the
ResNet and DenseNet architectures, the gap is ∼2%. In Section 5.3 we show that
learning task-specific batchnorm parameters in the case of datasets that exhibit
a large domain shift, such as WikiArt, for which the performance gap is 4-5%
(as seen in Table 4), helps further close the gap.

5 Analysis

5.1 Does Initialization Matter?

Here, we analyze the importance of the initialization of the backbone network. It
is well known that training a large network such as the VGG-16 from scratch on a
small dataset such as CUBS, or Flowers leads to poor performance, and the most
popular approach is to fine-tune a network pre-trained on the ImageNet classi-
fication task. It is not obvious whether initialization is just as important for the
piggyback method. Table 5 presents the errors obtained by training piggyback
masks for tasks using the ResNet-50 as the backbone network, but with differ-
ent initializations. We consider 3 different initializations: 1) a network trained
on the ImageNet classification task, the popular initialization for fine-tuning,
2) a network trained from scratch on the Places365 scene classification task, a
dataset larger than ImageNet (1.8 M v/s 1.3 M images), but with fewer classes
(365 v/s 1000), and lastly 3) a randomly initialized network.

We observe in Table 5 that initialization does indeed matter, with the ImageNet-
initialized network outperforming both the Places365 and randomly initialized
network on all tasks. In fact, by training a piggyback mask for the Places365
dataset on an ImageNet-initialized backbone network, we obtain an accuracy
very similar to a network trained from scratch on the Places365 dataset. The
ImageNet dataset is very diverse, with classes ranging from animals, to plants,
cars and other inanimate objects, whereas the Places365 dataset is solely de-
voted to the classification of scenes such as beaches, bedrooms, restaurants, etc.
As a result, the features of the ImageNet-trained network serve as a very general
and flexible initialization A very interesting observation is that even a randomly
initialized network obtains non-trivial accuracies on all datasets. This indicates
the learning a mask is indeed a powerful technique of utilizing fixed filters and
weights for adapting a network to a new task.

Piggyback: Adapting a Network by Learning to Mask Weights 11

Dataset
Pre-training/Initialization

ImageNet Places365 Random

CUBS 18.41 28.50 66.24

Stanford Cars 10.38 13.70 77.79

Flowers 5.23 10.92 71.17

WikiArt 28.67 31.24 64.74

Sketch 20.09 23.17 43.75

ImageNet
23.84 32.56 71.48
(7.13) (11.92) (46.73)

Places365
45.17 45.39 60.41
(15.12) (15.05) (28.94)

Table 5: Errors obtained by piggyback masks for the ResNet-50 backbone net-
work with different initializations. Errors in parentheses are top-5 errors, the
rest are top-1 errors.

Dataset VGG-16
VGG-16 ResNet-50 Dense-

BN ImNet-init. Places-init. Net-121

CUBS 14.09% 13.24% 12.21% 15.22% 12.01%

Stanford Cars 17.03% 16.70% 15.65% 17.72% 15.80%

Flowers 4.51% 4.52% 4.48% 6.45% 5.28%

WikiArt 34.14% 33.01% 30.47% 30.04% 29.11%

Sketch 27.23% 26.05% 23.04% 24.23% 22.24%

ImageNet – – – 37.59% –

Places365 43.47% – 37.99% – –

Table 6: Percentage of zeroed out weights after training a binary mask for the
respective network architectures and datasets.

5.2 Learned sparsity and its distribution across network layers

Table 6 reports the total sparsity, or the number of mask values set to 0 in
a binary piggyback mask learned for the corresponding choice of dataset and
network architecture. This measures the amount of change that is required to
be made to the backbone network, or the deviation from the ImageNet pre-
trained initialization, in order to obtain good performance on a given dataset.
We note that the amount of sparsity obtained on fine-grained datasets seems
to be proportional to the errors obtained by the Classifier Only method on
the respective datasets. The easiest Flowers dataset requires the least number
of changes, or a sparsity of 4.51%, while the harder WikiArt dataset leads to
a 34.14% sparsity for a VGG-16 network mask. Across network architectures,
we observe a similar pattern of sparsity based on the difficulty of the tasks.
The sparsity obtained is also a function of the magnitude of the real-valued
mask initialization and threshold used for the binarization (See Equation 4),
with a higher threshold leading to higher sparsity. The numbers in Table 6 were
obtained using our default settings of a binarizer threshold of 5e-3 and a uniform
real-valued mask initialization of 1e-2.

12 A. Mallya, D. Davis, and S. Lazebnik

conv1_1
conv1_2
conv2_1
conv2_2
conv3_1
conv3_2
conv3_3
conv4_1
conv4_2
conv4_3
conv5_1
conv5_2
conv5_3
fc6
fc7

0.0

0.5

1.0

1.5

2.0

2.5

%
 ze

ro
'e

d
ou

t w
ei

gh
ts CUBS

conv1_1
conv1_2
conv2_1
conv2_2
conv3_1
conv3_2
conv3_3
conv4_1
conv4_2
conv4_3
conv5_1
conv5_2
conv5_3
fc6
fc7

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

%
 ze

ro
'e

d
ou

t w
ei

gh
ts Flowers

conv1_1
conv1_2
conv2_1
conv2_2
conv3_1
conv3_2
conv3_3
conv4_1
conv4_2
conv4_3
conv5_1
conv5_2
conv5_3
fc6
fc7

0

5

10

15

20

%
 ze

ro
'e

d
ou

t w
ei

gh
ts WikiArt

Zero'ed out weights per VGG-16 layer

Fig. 3: Percentage of weights masked out per ImageNet pre-trained VGG-16
layer. Datasets similar to ImageNet share a lot of the lower layers, and require
fewer changes. The number of masked out weights increases with depth of layer.

We observe that a Places365-initialized network requires more changes as
compared to an ImageNet-initialized network (refer to the ResNet-50 column
of Table 6). This once again indicates that features learned on ImageNet are
more diverse and serve as better initialization than those learned on Places365.
Figure 3 shows the sparsity obtained per layer of the ImageNet pre-trained VGG-
16 network, for three datasets considered. While the total amount of sparsity
obtained per dataset is different, we observe a consistent pattern of sparsity
across the layers. In general, the number of changes increases with depth of the
network layer. For datasets similar to ImageNet, such as CUBS, and Flowers, we
observe that the low-level features (conv1-conv3) are mostly re-used without any
major changes. WikiArt, which has a significant domain shift from ImageNet,
requires some changes in the low-level features. All tasks seem to require changes
to the mid-level (conv4-conv5) and high-level features (fc6-fc7) in order to learn
new task-specific features. Similar behavior was also observed for the deeper
ResNet and DenseNet networks.

5.3 Handling large input domain shifts

In Table 4, we observe that WikiArt, which has a large domain shift from the
ImageNet dataset on which the backbone network was trained on, has a larger
gap in performance (4–5%) between the piggyback and individual network meth-
ods, especially for the deeper ResNet and DenseNet networks. Those numbers
are duplicated in the Piggyback - Fixed BN and Individual Network columns
of Table 7. We suspect that keeping batchnorm parameters fixed while train-
ing the piggyback masks might be a reason for the gap in performance, as the
domain shift is likely to cause a larger discrepancy between the ideal batch-
norm parameter values and those inherited from ImageNet, the effect of which
is cascaded through the large number of layers. We performed these experiments
again, but while updating batchnorm parameters, and report the results in the
Piggyback - Trained BN column of Table 7. The top-1 error on WikiArt reduces
from 28.67% to 25.92% for the ResNet-50 network, and from 29.56% to 25.90%
for the DenseNet-121 network if the batchnorm parameters are allowed to up-

Piggyback: Adapting a Network by Learning to Mask Weights 13

Dataset
Piggyback (ours) Individual

Fixed BN Trained BN Network

ResNet-50

WikiArt 28.67 25.92 24.40

Sketch 20.09 19.82 19.22

DenseNet-121

WikiArt 29.56 25.90 23.59

Sketch 20.30 20.12 19.48

Table 7: Effect of task-specific batch normalization layers on the top-1 error.

Method #par ImNet. Airc. C100 DPed DTD GTSR Flwr Oglt SVHN UCF Mean Score

Scratch [17] 10 59.87 57.1 75.73 91.2 37.77 96.55 56.3 88.74 96.63 43.27 70.32 1625

Feature [17] 1 59.67 23.31 63.11 80.33 45.37 68.16 73.69 58.79 43.54 26.8 54.28 544

Finetune [17] 10 59.87 60.34 82.12 92.82 55.53 97.53 81.41 87.69 96.55 51.2 76.51 2500

Res.Adapt. [17] 2 59.67 56.68 81.2 93.88 50.85 97.05 66.24 89.62 96.13 47.45 73.88 2118

Res.Adapt. (J) [17] 2 59.23 63.73 81.31 93.3 57.02 97.47 83.43 89.82 96.17 50.28 77.17 2643

DAN [16] 2.17 57.74 64.12 80.07 91.3 56.54 98.46 86.05 89.67 96.77 49.38 77.01 2851

Piggyback (Ours) 1.28 57.69 65.29 79.87 96.99 57.45 97.27 79.09 87.63 97.24 47.48 76.60 2838

Table 8: Top-1 accuracies obtained on the Visual Decathlon online test set.

date. For the Sketch dataset, training separate batchnorm parameters leads to a
small decrease in error. Task-specific batchnorm parameters thus help improve
performance, while causing a small increase of ∼1 MB in the storage overhead
for both networks considered.

6 Results on Visual Decathlon & Semantic Segmentation

We also evaluate our proposed method on the newly introduced Visual Decathlon
challenge [17] consisting of 10 classification tasks. While the images of this task
are of a lower resolution (72 × 72 px), they contain a wide variety of tasks
such as pedestrian, digit, aircraft, and action classification, making it perfect for
testing the generalization abilities of our method. Evaluation on this challenge
reports per-task accuracies, and assigns a cumulative score with a maximum
value of 10,000 (1,000 per task) based on the per-task accuracies. The goal is to
learn models for maximizing the total score over the 10 tasks while using the least
number of parameters. Complete details about the challenge settings, evaluation,
and datasets used can be found at http://www.robots.ox.ac.uk/~vgg/decathlon/.

Table 8 reports the results obtained on the online test set of the challenge.
Consistent with prior work [17], we use a Wide Residual Network [14,16] with
a depth of 28, widening factor of 4, and a stride of 2 in the first convolutional
layer of each block. We use the 64× 64 px ImageNet-trained network of [16] as
our backbone network, and train piggyback masks for the remaining 9 datasets.
We train for a total of 60 epochs per dataset, with learning rate decay by a
factor of 10 after 45 epochs. Adam with a base learning rate of 1e-4 was used
for updating the real-valued piggyback masks. Data augmentation by random
cropping, horizontal flipping, and resizing the entire image was chosen based

http://www.robots.ox.ac.uk/~vgg/decathlon/

14 A. Mallya, D. Davis, and S. Lazebnik

on cross-validation. As observed in Table 8, our method obtains performance
competitive with the state-of-the-art, while using the least amount of additional
parameters. Assuming that the base network uses 32-bit parameters, it accounts
for a parameter cost of 32n bits, where n is the number of parameters. A binary
mask per dataset requires n bits, leading to a total cost of approximately (32n+
9n) = 41n bits, or a parameter ratio of (41/32) = 1.28, as reported.

conv1_1

fc7

VGG-16

classifier

conv1_1

fc7

VGG-16

deconv

classifier

Piggyback

masking

Finetuning

from scratch

Classification Segmentation

Fig. 4: Mixed training of layers
using finetuning from scratch
and piggyback masking.

The results presented in Section 4 only re-
quired a single fully connected layer to be added
on top of the backbone network. Our method
can also be extended to cases where more than
one layers are added and trained from scratch
on top of a backbone network, as shown in Fig-
ure 4. We tested our method on the task of pix-
elwise segmentation using the basic Fully Con-
volutional Network architecture [32] which has
fully connected layer followed by a deconvolu-
tional layer of stride 32. We trained our net-
works on the 21-class PASCAL 2011 + SBD dataset, using the official splits
provided by [33] for 15 epochs. Using the VGG-16 finetuned network, we obtain
a mean IOU of 61.081. Using the piggyback method, we obtain a competitive
mean IOU of 61.41. Instead of replicating the whole VGG-16 network of ∼500
MB, we only need an overhead of 17 MB for masking the backbone network and
7.5 MB for the newly added layers. These results show that piggyback does not
face any issues due to mixed training schemes.

7 Conclusions

We have presented a novel method for utilizing the fixed weights of a network
for obtaining good performance on a new task, empirically showing that the
proposed method works for multiple datasets and network architectures. We
hope that the piggyback method will be useful in practical scenarios where new
skills need to be learned on a deployed device without having to modify existing
weights or download a new large network. The re-usability of the backbone
network and learned masks should help simplify and scale the learning of a new
task across large numbers of potential users and devices. One drawback of our
current method is that there is no scope for added tasks to benefit from each
other. Apart from addressing this issue, another interesting area for future work
is the extension to tasks such as object detection that require specialized layers,
and expanding existing layers with more capacity.

Acknowledgments: This material is based upon work supported in part by the
National Science Foundation under Grants No. 1563727 and 1718221, Amazon
Research Award, AWS Machine Learning Research Award, and Google Research
Award.
1 This is lower than the 63.6 mIOU obtained by [32] owing to differences in the Caffe
and PyTorch VGG-16 initializations, as documented at https://goo.gl/quvmm2.

https://goo.gl/quvmm2

Piggyback: Adapting a Network by Learning to Mask Weights 15

References

1. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2014)

2. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet Large
Scale Visual Recognition Challenge. IJCV (2015)

3. French, R.M.: Catastrophic forgetting in connectionist networks. Trends in cogni-
tive sciences 3(4) (1999) 128–135

4. Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu,
A.A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al.: Overcoming
catastrophic forgetting in neural networks. PNAS (2017)

5. Rannen, A., Aljundi, R., Blaschko, M.B., Tuytelaars, T.: Encoder based lifelong
learning. In: ICCV. (2017)

6. Li, Z., Hoiem, D.: Learning without forgetting. In: ECCV. (2016)

7. Mallya, A., Lazebnik, S.: PackNet: Adding multiple tasks to a single network by
iterative pruning. arXiv:1711.05769 (2017)

8. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD
Birds-200-2011 Dataset. Technical Report CNS-TR-2011-001, California Institute
of Technology (2011)

9. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3d object representations for fine-
grained categorization. In: CVPRW. (2013)

10. Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number
of classes. In: ICCVGIP. (2008)

11. Saleh, B., Elgammal, A.: Large-scale classification of fine-art paintings: Learning
the right metric on the right feature. In: ICDMW. (2015)

12. Eitz, M., Hays, J., Alexa, M.: How do humans sketch objects? In: SIGGRAPH.
(2012)

13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR. (2016)

14. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: BMVC. (2016)

15. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: CVPR. (2017)

16. Rosenfeld, A., Tsotsos, J.K.: Incremental learning through deep adaptation.
arXiv:1705.04228 (2017)

17. Rebuffi, S.A., Bilen, H., Vedaldi, A.: Learning multiple visual domains with residual
adapters. In: NIPS. (2017)

18. Bilen, H., Vedaldi, A.: Integrated perception with recurrent multi-task neural
networks. In: NIPS. (2016)

19. Caruana, R.: Multitask learning. In: Learning to learn. (1998)

20. Kokkinos, I.: Ubernet: Training a universal convolutional neural network for low-,
mid-, and high-level vision using diverse datasets and limited memory. In: CVPR.
(2017)

21. Shmelkov, K., Schmid, C., Alahari, K.: Incremental learning of object detectors
without catastrophic forgetting. In: ICCV. (2017)

22. Lee, S.W., Kim, J.H., Ha, J.W., Zhang, B.T.: Overcoming catastrophic forgetting
by incremental moment matching. In: NIPS. (2017)

23. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for
efficient neural network. In: NIPS. (2015)

16 A. Mallya, D. Davis, and S. Lazebnik

24. Fernando, C., Banarse, D., Blundell, C., Zwols, Y., Ha, D., Rusu, A.A., Pritzel,
A., Wierstra, D.: PathNet: Evolution channels gradient descent in super neural
networks. arXiv:1701.08734 (2017)

25. Rusu, A.A., Rabinowitz, N.C., Desjardins, G., Soyer, H., Kirkpatrick, J.,
Kavukcuoglu, K., Pascanu, R., Hadsell, R.: Progressive neural networks.
arXiv:1606.04671 (2016)

26. Courbariaux, M., Bengio, Y., David, J.P.: Binaryconnect: Training deep neural
networks with binary weights during propagations. In: NIPS. (2015)

27. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural
networks. In: NIPS. (2016)

28. Li, F., Zhang, B., Liu, B.: Ternary weight networks. arXiv:1605.04711 (2016)
29. Zhu, C., Han, S., Mao, H., Dally, W.J.: Trained ternary quantization. In: ICLR.

(2017)
30. Guo, Y., Yao, A., Chen, Y.: Dynamic network surgery for efficient dnns. In: NIPS.

(2016)
31. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: A 10 million

image database for scene recognition. TPAMI (2017)
32. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic

segmentation. In: CVPR. (2015)
33. BerekeleyVision: Segmentation data splits. https://github.com/shelhamer/fcn.

berkeleyvision.org/tree/master/data/pascal Accessed: 2018-03-11.

https://github.com/shelhamer/fcn.berkeleyvision.org/tree/master/data/pascal
https://github.com/shelhamer/fcn.berkeleyvision.org/tree/master/data/pascal

