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Abstract. We propose a novel end-to-end semi-supervised adversarial frame-

work to generate photorealistic face images of new identities with a wide range

of expressions, poses, and illuminations conditioned by synthetic images sam-

pled from a 3D morphable model. Previous adversarial style-transfer methods

either supervise their networks with a large volume of paired data or train highly

under-constrained two-way generative networks in an unsupervised fashion. We

propose a semi-supervised adversarial learning framework to constrain the two-

way networks by a small number of paired real and synthetic images, along with a

large volume of unpaired data. A set-based loss is also proposed to preserve iden-

tity coherence of generated images. Qualitative results show that generated face

images of new identities contain pose, lighting and expression diversity. They

are also highly constrained by the synthetic input images while adding photore-

alism and retaining identity information. We combine face images generated by

the proposed method with a real data set to train face recognition algorithms and

evaluate the model quantitatively on two challenging data sets: LFW and IJB-A.

The generated images by our framework consistently improve the performance of

deep face recognition networks trained with the Oxford VGG Face dataset, and

achieve comparable results to the state-of-the-art.

1 Introduction

Deep learning has shown a great improvement in performance of several computer vi-

sion tasks [41,22,17,18,13,14,66] including face recognition [37,47,63,34,62] in the re-

cent years. This was mainly thanks to the availability of large-scale datasets. Yet the

performance is often limited by the volume and the variations of training examples.

Larger and wider datasets improve the generalization and overall performance of the

model [47,1].

The process of collecting and annotating training examples for every specific com-

puter vision task is laborious and non-trivial. To overcome this challenge, additional

synthetic training examples along with limited real training examples can be utilised to

train the model. Some of the recent works such as 3D face reconstruction [42], gaze

https://labicvl.github.io/
https://www.surrey.ac.uk/centre-vision-speech-signal-processing


2 B. Gecer, B. Bhattarai, J. Kittler, and T.K. Kim

Fig. 1: Our approach aims to synthesize photorealistic images conditioned by a given

synthetic image by 3DMM. It regularizes cycle consistency [71] by introducing an addi-

tional adversarial game between the two generator networks in an unsupervised fashion.

Thus the under-constraint cycle loss is supervised to have correct matching between the

two domains by the help of a limited number of paired data. We also encourage the

generator to preserve face identity by a set-based supervision through a pretrained clas-

sification network.

estimation [69,61], human pose, shape and motion estimation [58] etc. use additional

synthetic images generated from 3D models to train deep networks. One can generate

synthetic face images using a 3D morphable model (3DMM) [3] by manipulating iden-

tity, expression, illumination, and pose parameters. However, the resulting images are

not photorealistic enough to be suitable for in-the-wild face recognition tasks. It is be-

cause the information of real face scans is compressed by the 3DMM and the graphical

engine that models illumination and surface is not perfectly accurate. Thus, the main

challenge of using synthetic data obtained from 3DMM model is the discrepancy in

the nature and quality of synthetic and real images which poses the problem of domain

adaptation [38]. Recently, adversarial training methods [48,51,12] have become popular

to mitigate such challenges.

Generative Adversarial Network (GAN), introduced by Goodfellow et al. [20], and

its variants [39,28,2,15] are quite successful in generating realistic images. However,

in practice, GANs are likely to stuck in mode collapse for large scale image genera-

tion. They are also unable to produce images that are 3D coherent and globally con-

sistent [20]. To overcome these drawbacks, we propose a semi-supervised adversarial

learning framework to synthesize photorealistic face images of new identities exhibiting

extensive data variation supplied by a 3DMM. We address these shortcomings by excit-

ing a generator network with synthetic images sampled from 3DMM and transforming

them into photorealistic domain using adversarial training as a bridge. Unlike most of

the existing works that excite their generators with a noise vector [39,2], we feed our

generator network by synthetic face images. Such a strong constraint naturally helps in

avoiding the mode collapse problem, one of the main challenges faced by the current

GAN methods. Fig. 1 shows a general overview of the proposed method. We discuss

the proposed method in more details in Sec. 3.

In this paper, we address the challenge of generating photorealistic face images from

3DMM rendered faces of different identities with arbitrary poses, expressions, and il-

luminations. We formulate this problem as a domain adaptation problem i.e. aligning
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the 3DMM rendered face domain into realistic face domain. One of the previous works

closest to ours [26] addresses the style transfer problem between a pair of domains with

classical conditional GAN. The major bottleneck of this method is that it requires a

large number of paired examples from both domains which are hard to collect. Cycle-

GAN [71], another recent method and closest to our work, proposes a two-way GAN

framework for unsupervised image-to-image translation. However, the cycle consis-

tency loss proposed in their method is satisfied as long as the transitivity of the two

mapping networks is maintained. Thus, the resulting mapping is not guaranteed to pro-

duce the intended transformation. To overcome the drawbacks of these methods [26,71],

we propose to use a small amount of paired data to train an inverse mapping network as

a matching aware discriminator. In the proposed method, the inverse mapping network

plays the role of both the generator and the discriminator. To the best of our knowl-

edge, this is the first attempt for adversarial semi-supervised style translation for an

application with such limited paired data.

Adding realism to the synthetic face images and preserving their identity informa-

tion is a challenging problem. Although synthetic input images, 3DMM rendered faces,

contain distinct face identities, the distinction between them vanishes as a result of the

inherent non-linear transformations induced by the discriminator to encourage realism.

To tackle such a problem, prior works either employ a separate pre-trained network [65]

or embed Identity labels (id) [55] into the discriminator. Unlike existing works, which

are focused on generating new images of existing identities, we are interested in gen-

erating multiple images of new identities. Therefore, such techniques are not directly

applicable to our problem. To address this challenge, we propose to use set-based cen-

ter [59] and pushing loss functions [19] on top of a pre-trained face embedding network.

This will keep track of the changing average of embeddings of generated images be-

longing to the same identity (i.e. centroids). In this way identity preservation becomes

adaptive to the changing feature space during the training of the generator network un-

like softmax layer that converges very quickly at the beginning of the training before

meaningful images are generated.

Our contributions can be summarized as follows:

– We propose a novel end-to-end adversarial training framework to generate photore-

alistic face images of new identities constrained by synthetic 3DMM images with

identity, pose, illumination and expression diversity. The resulting synthetic face

images are visually plausible and can be used to boost face recognition as addi-

tional training data or any other graphical purposes.

– We propose a novel semi-supervised adversarial style transfer approach that trains

an inverse mapping network as a discriminator with paired synthetic-real images.

– We employ a novel set-based loss function to preserve consistency among unknown

identities during GAN training.

2 Related Works

In this Section we discuss the prior art that are closely related to the proposed method.
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Domain Adaptation. As stated in the introduction, our problem of generating photo-

realistic face images from 3DMM rendered faces can be seen as a domain adaptation

problem. A straightforward adaptation approach is to align the distributions at the fea-

ture level by simply adding a loss to measure the mismatch either through second-order

moments [52] or with adversarial losses [56,57,16].

Recently, pixel level domain adaptation became popular due to practical break-

throughs on Kullback-Leibler divergence [21,20,39], namely GANs which optimize

a generative and discriminative network through a mini-max game. It has been applied

to a wide range of problems including fashion clothing [31], person specific avatar

creation [60], text-to-image synthesis [67], face frontalization [65], and retinal image

synthesis [12].

Pixel domain adaptation can be done in a supervised manner simply by conditioning

the discriminator network [26] or directly the output of the generator [9] with the ex-

pected output when there is enough paired data from both domains. Please note collect-

ing a large number of paired training examples is expensive, and often requires expert

knowledge. [40] proposes a text-to-image synthesis GAN with a matching aware dis-

criminator. They optimize their discriminator for image-text matching beside requiring

realism with the information provided by additional mismatched text-image pairs.

For the cases where paired data is not available, many approaches adapt unsuper-

vised learning such as imposing pixel-level consistency between input and output of

the generator network [6,48], an encoder architecture that is shared by both domains[7]

and adaptive instance normalization [24]. An interesting approach is to have two way

translation between domains with two distinct generator and discriminator networks.

They constrain the two mappings to be inverses of each other with either ResNet [71]

or encoder-decoder network [33] as the generator.

Synthetic Training Data Generation. The usage of synthetic data as additional training

data is shown to be helpful even if they are graphically rendered images in many ap-

plications such as 3D face reconstruction [42], gaze estimation [69,61], human pose,

shape and motion estimation [58]. Despite the availability of almost infinite number of

synthetic images, those approaches are limited due to the domain difference from that

of in-the-wild images.

Many existing works utilize adversarial domain adaptation to translate images into

photorealistic domain so that they are more useful as training data. [70] generates many

unlabeled samples to improve person re-identification in a semi-supervised fashion.

RenderGAN [51] proposes a sophisticated approach to refine graphically rendered syn-

thetic images of tagged bees to be used as training data for a bee tag decoding ap-

plication. WaterGAN [32] synthesizes realistic underwater images by modeling camera

parameters and environment effects explicitly to be used as training data for a color cor-

rection task. Some studies deform existing images by a 3D model to augment diverse

datasets [36] without adversarial learning.

One of the recent works, simGAN [48], generates realistic synthetic data to improve

eye gaze and hand pose estimation. It optimizes the pixel level correspondence between

input and output of the generator network to preserve the content of the synthetic im-

age. This is in fact a limited solution since the pixel-consistency loss encourages the

generated images to be similar to synthetic input images and it partially contradicts



Semi-supervised Adversarial Learning to Generate Face Imgs of New Ids from 3DMM 5

adversarial realism loss. Instead, we employ an inverse translation network similar to

cycleGAN [71] with an additional pair-wise supervision to preserve the initial condi-

tion without hurting realism. This network also behaves as a discriminator to a straight

mapping network trained with real paired data to avoid possible biased translation.

Identity Preservation. To preserve the identity/category of the synthesized images,

some of the recent works such as [10,55] keep categorical/identity information in dis-

criminator network as an additional task. Some of the others propose to employ a sepa-

rate classification network which is usually pre-trained [35,65]. In both these cases, the

categories/identities are known beforehand and are fixed in number. Thus it is trivial

to include such supervision in a GAN framework by training the classifier with real

data. However such setup is not feasible in our case as images of new identities to-be-

generated are not available to pre-train a classification network.

To address the limitation of existing methods of retaining identity/category informa-

tion of synthesized images, we employ a combination of different set-based supervision

approaches for unknown identities to be distinct in the pre-trained embedding space. We

keep track of moving averages of same-id features by the momentum-like centroid up-

date rule of center loss [59] and penalize distant same-id samples and close different-id

samples by a simplified variant of the magnet loss[43] without its sophisticated sam-

pling process and with only a single cluster per identity (see Section 3.3 for further

discussions).

3 Adversarial Identity Generation

In this Section, we describe in details the proposed method. Fig. 1 shows a schematic di-

agram of our method. Specifically, the synthetic image set x ∈ S is formed by a graph-

ical engine for the randomly sampled of 3DMM with its identity, pose and lighting pa-

rameters α. The generated images they are translated into a more photorealistic domain

G(x) through the network, G, and mapped back to its synthetic domain (G′(G(x)))
through the network, G′, to retain x. The adversarial synthetic and real domain transla-

tion of G and G′ networks are supervised by the discriminator networks DR and DS ,

with an additional adversarial game between G and G′ as a generator and a discrimina-

tor respectively. During training, the identities generated by 3DMM are preserved with

a set-based loss on a pre-trained embedding network C. In the following sub-sections,

we further describe these components i.e. domain adaptation, real-synthetic pair dis-

criminator, and identity preservation.

3.1 Unsupervised Domain Adaptation

Given a 3D morphable model (3DMM) [3], we synthesize face images of new identities

sampled from its Principal Components Analysis (PCA) coefficients’ space with ran-

dom variation of expression, lighting and pose. Similar to [71], a synthetic input image

(x ∈ S) is mapped to a photorealistic domain by a residual network (G : S → R̂) and

mapped back to the synthetic domain by a 3DMM fitting network (G′ : R̂ → Ŝ) to
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complete the forward cycle only3. To preserve cycle consistency, the resulting image

G′(G(x)) is encouraged to be the same as input x by a pixel level L1 loss:

Lcyc = Ex∈S‖G
′(G(x))− x‖1 (1)

In order to encourage the resulting images G(x) and G′(G(x)) to have a similar distri-

bution as real and synthetic domains respectively, those refiner networks are supervised

by discriminator networks DR and DS with images of the respective domains. The

discriminator networks are formed as auto-encoders as in the boundary equilibrium

GAN (BEGAN) architecture [2] in which the generator and discriminator networks are

trained by the following adversarial training formulation:

LG = Ex∈S‖G(x)−DR(G(x))‖1 (2)

LG′ = Ex∈S‖G
′(G(x))−DS(G

′(G(x)))‖1 (3)

LDR
= Ex∈S,y∈R‖y −DR(y)‖1 − kDR

t LG (4)

LDS
= Ex∈S‖x−DS(x)‖1 − kDS

t LG′ (5)

where for each training step t and the generator network (G for kDR

t , G′ for kDS

t )

we update the balancing term with kDt = kDt−1 + 0.001(0.5LD − LG). As suggested

by [2], this term helps to maintain a balance between the interests of the generator and

discriminator and stabilize the training.

3.2 Adversarial Pair Matching

The cycle consistency loss ensures the bijective transitivity of functions G and G′ which

means generated image G(x) ∈ R̂ should be transformed back to x ∈ Ŝ. Convolu-

tional networks are highly under-constrained and they are free to make any unintended

changes as long as the cycle consistency is satisfied. Therefore, without an additional

supervision, it is not guaranteed to achieve the correct mapping that preserves shape,

texture, expression, pose and lighting attributes of the face image from domains S to

R̂ and R̂ to Ŝ. This problem is often addressed by introducing pixel-level penaliza-

tion between input and output of the networks [71,48] which is sub-optimal for domain

adaptation as it encourages to stay in the same domain.

To overcome this issue, we propose an additional pair-wise adversarial loss that

assigns the G′ network an additional role as a pair-wise discriminator to supervise the

G network. Given a set of paired synthetic and real images (PS ,PR), the discriminator

loss is computed by BEGAN as follows:

LDP
= Es∈PS ,r∈PR

‖s−G′(r)‖1 − kDP

t Lcyc (6)

While the G′ network is itself a generator network (G′ : R̂ → Ŝ) with a separate

discriminator (DS), we use it as a third pair-matching discriminator to supervise G by

means of a distribution of paired correspondence of real and synthetic images. Thus

3 We empirically found that removing the backward cycle-loss improves performance when the

task is to map from artificial images to real as also shown in Tab.4 of [71]
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(a) DC-GAN[39] (b) BEGAN [2] (c) Ours (d) GAN-CLS [40]

Fig. 2: Comparison of our pair matching method to the related work. (a) In the tra-

ditional GAN approach, the discriminator module aligns the distribution of real and

synthetic images by means of a classification network. (b) BEGAN[2] and many oth-

ers showed that the alignment of reconstruction error distributions offers a more stable

training. (c) We propose to utilize this autoencoder approach to align the distribution

of pairs to encourage generated images to be transformed to the realistic domain with a

game between real and synthetic pairs. (d) An alternative to our method is to introduce

wrongly labeled images to the discriminator to teach pair-wise matching as proposed

by [40] for text to images synthesis.

while cycle-loss optimizes for the biject correspondences, we expect the resulting pairs

of (x ∈ S,G(x) ∈ R̂) to have the similar correlation distribution as paired training data

(s ∈ PS , r ∈ PR). Fig 2 shows its relation to the previous related art and comparison

to an alternative which is a matching aware discriminator with paired inputs for text

to image synthesis, as suggested by [40]. Please note that how BEGAN autoencoder

architecture is utilized to align the distribution of pairs of synthetic and real images

with synthetic and generated images.

Alternatively, one could pretrain the G′ network as a 3DMM fitting network as in

[54,49,53,11] . However, we trained it from scratch to balance the adversarial zero-

sum game between the generator (G) and the pair-wise discriminator (G′). Otherwise

the gradient would vanish as there would be no success in fooling the discriminator.

Moreover, those networks provide only fitted 3DMM parameters which then would

need to be rendered into 3DMM images by a differentiable tensor operation.



8 B. Gecer, B. Bhattarai, J. Kittler, and T.K. Kim

Fig. 3: Quality of 9 images of 3 identities (per row) during the training. Red plot shows

the proposed identity preservation loss over the iterations. Note the changes of fine-

details on the faces which is the main motivation of set-based identity preservation.

3.3 Identity Preservation

Although identity information is provided by the 3DMM in shape and texture param-

eters, it may be lost to some extent by virtue of a non-linear transformation. Some

studies [65,55] address this issue by employing identity labels of known subjects as

additional supervision either with a pre-trained classification network or within the dis-

criminator network. However, we intend to generate images of new identities sampled

from the 3DMM parameter space and their photorealistic images simply do not exist

yet. Furthermore, training a new softmax layer and the rest of the framework simulta-

neously becomes a chicken-egg problem and results in failed training.

In order to preserve identity in the changing image space, we propose to adapt a

set-based approach over a pre-trained face embedding network. We import the idea of

pulling same-id samples as well as pushing close samples from different identities in

the embedding space such that same-id images are gathered and distinct from other

identities regardless of the quality of the images during the training. At the embedding

layer of a pre-trained network C, the generator network (G) is supervised by a combi-

nation of the center [59] and pushing loss [19] (which is also a simplified version of the

Magnet loss [43] formulation) defined for a given mini-batch (M) as:

LC = Ex∈S,ix∈N+

M∑

x

−log
exp( 1

2σ2 ‖C(G(x))− cix‖
2
2 − η)

∑
j 6=ix

exp( 1
2σ2 ‖C(G(x))− cj‖22)

(7)

where ix stands for the identity label of x provided by 3DMM sampling and cj stands

for the mean embedding of identity j. The margin term, η, is set to 1 and the variance

is computed by σ =
∑

M

x
‖C(G(x))−cix‖

2
2

M−1 .

While the quality of images is improved during the training, i.e. better photo-realism,

their projection on the embedding space is shifting. In order to adapt to those changes,

we update identity centroids (cj) with a momentum of β = 0.95 when new images

of id j become available. Following [59], for a given x, the moving average of an

identity centroid is calculated by ct+1
j = ctj − βδ(ix = j)(ctj − C(G(x))) where

δ(condition) = 1, if the condition is satisfied and δ(condition) = 0 if not. Centroids

(cj) are initialized with zero and after few iterations, they converge to embedding cen-

ters and then continue updating to adapt to the changes caused by the simultaneous

training of G. Fig. 3 shows the quality of 9 images of 3 identities over training itera-

tions. Please note the difference of the images after convergence with the images at the
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beginning of the training, produced by the Softmax layer which fails to supervise the

forthcoming images in later iterations.

Full Objective

Overall, the framework is optimized by the following updates simultaneously:

θG = argmin
θG

LG + λcycLcyc + λCLC (8)

θG′ = argmin
θ
G′

LG′ + λcycLcyc + λDP
LDP

(9)

θDR
, θDS

= argmin
θDR

,θDS

LDR
+ LDS

(10)

where λ parameters balance the contribution of different modules. The selection of

those parameters is discussed in the next section.

4 Implementation Details

Network Architecture: For the generator networks (G and G′), we use a shallow ResNet

architecture as in [27] which supplies smooth transition without changing the global

structure because of its limited capacity, having only 3 residual blocks. In order to

benefit from 3DMM images fully, we also add skip connections to the network G. We

also add dropout layers after each block in the forward pass with a 0.9 keep rate to

introduce some noise that could be caused by uncontrolled environmental changes.

We construct the discriminator networks (DR and DS) as autoencoders trained

by boundary equilibrium adversarial learning with Wasserstein distance as proposed

by [2]. The classification network C, is a shallow FaceNet architecture [47], more

specifically we use NN4 network with an input size of 96 × 96 where we randomly

crop, rotate and flip generated images G(x) which are of size 108× 108.

Data: Our framework needs a large amount of real and synthetic face images. For real

face images, we use CASIA-Web Face Dataset [64] that consists of ∼500K face images

of ∼10K individuals.

The proposed method trains the G′ network as a discriminator (DP ) with a small

number of paired real and synthetic images. For that, we use a combination of 300W-

3D [46,45,4] and AFLW2000-3D datasets as our paired training set [72] which consist

of 5K real images with their corresponding 3DMM parameter annotations. We render

synthetic images by those parameters and pair them with the matching real images. This

dataset is relatively small, compared to the ones used by fully supervised transformation

GANs (i.e. Amazon Handbag dataset used by [26] contains 137K bag images).

We randomly sample face images of new identities as our synthetic data set using

Large Scale Face Model (LSFM) [5] for shape, Basel Face Model [25] for texture and

Face Warehouse model [8] for expression. While the shape and texture parameters of

new identities are sampled from the Gaussian distribution of the original model, expres-

sion, lighting and pose parameters are sampled with the same Gaussian distribution as

that of synthetic samples of 300-3D [46,45,4] and AFLW2000-3D [72]. All images are

aligned by MTCNN [68] and centre cropped to the size of 108× 108 pixels.
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Fig. 4: Random samples from GANFaces dataset. Each row belongs to the same iden-

tity. Notice the variation in pose, expression and lighting.

Training Details: We train all the components of our framework together from scratch

except for the classification network C which is pre-trained by using a subset of Oxford

VGG Face Dataset [37]. The whole framework takes about 70 hours to converge on a

Nvidia GTX 1080TI GPU in 248K iterations with a batch size of 16. We start with a

learning rate of 8 × 10−5 with ADAM solver [29] and halve it after 128Kth, 192Kth,

224Kth, 240Kth, 244Kth, 246Kth and 247Kth iterations.

As shown in Eqn. 8, 9, λ is a balancing factor which controls the contribution of

each optimization. We set λcyc = 0.5, λDP
= 0.5, λC = 0.001 to achieve a balance

between realism, cycle-consistency, identity preservation and the supervision by the

paired data. We also add identity loss (Lid = ‖x − G(x)‖) as suggested by [71] to

regularize the training with a balancing term λid = 0.1. During the training, we keep

track of moving averages of the network parameters to generate images.

5 Results and Discussions

In this section, we show the qualitative and quantitative results obtained with the pro-

posed framework. We also discuss and show the contribution of each module (i.e. Lcyc,

DP , C) with an ablation study in the supplementary materials. For the experiments,

we generate 500,000 and 5,000,000 images of 10,000 different identities with varia-

tions on expression, lighting and poses. We name this synthetic dataset GANFaces4

(i.e. GANFaces-500K, GANFaces-5M).

4 The dataset, training code, pre-trained models and face recognition experiments can be viewed

at https://github.com/barisgecer/facegan

https://github.com/barisgecer/facegan
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(a) 3DMM inputs (b) simGAN [[6] (c) CycleGAN [[71] (d) Reconstruction Err.

Fig. 5: Comparison to (a) input 3DMM images, (b) results with simGAN settings [6],(c)

results with cycleGAN settings [71] and (d) results with additional reconstruction loss.

Figures correspond to left half of the Fig. 4 and each row belongs to the same identity.

5.1 Qualitative Evaluation

Please see Fig. 4 for random samples from the dataset. Fig. 5 compares our results

(left half of the Fig. 4) with the 3DMM inputs, the results with simGAN [6] and cy-

cleGAN [71] settings, and our setup with the addition of the reconstruction loss of the

paired data within the G network. We observe good correspondence when we compare

first 4 columns of Fig.4 to Fig. 5(a) in terms of identity, pose, expression and lighting.

Compared to ours (Fig. 4), [6] suffers from the loss of identity-specific facial features

(Fig. 5(b)) while [71] generates images visually less pleasant (Fig. 5(c)). An additional

reconstruction loss used in our framework to train the G network with the paired data

produces the results in Fig. 5(d). We achieved less clear images by this step probably

because of the severity of the influence of the direct reconstruction loss on the adver-

sarial balance. The superiority of the proposed framework is also confirmed by the

quantitative experiments shown in Table. 1.

One of the main goals of this work is to generate face images guided by the attributes

of synthetic input images i.e. shape, expression, lighting, and poses. We can see from

Fig. 6 that our model is capable of generating photorealistic images preserving the

attributes conditioned by the synthetic input images. In the figure, top row shows the

variations of pose and expression on input synthetic faces and the left column shows

the input synthetic faces of different identities. The rest are the images generated by

our model, conditioned on the corresponding attributes from the top row and the left

column. We can clearly see that the conditioning attributes are preserved on the images

generated by our model. We can also observe that fine-grained attributes such as shapes

of chin, nose and eyes are also retained in the images generated by our model. In the case

of extreme poses, the quality of the image generated by our model becomes less sharp

as the CASIA-WebFace dataset, which we used to learn the parameters of discriminator

network DR, lacks a sufficient number of examples with extreme poses.

5.2 The Added Realism and Identity Preservation

In order to show that synthetic images are effectively transformed to the realistic do-

main with preserving identities, we perform a face verification experiments on GAN-

Faces dataset. We took pre-trained face-recognition CNN network, namely FaceNet
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Fig. 6: Images generated by the proposed approach conditioned by identity variation

in the vertical axis, normalized and mouth open expression in left and right blocks and

pose variation in the horizontal axis. Images in this figure are not included in the training

NN4 architecture [47] trained on CASIA-WebFace [64] to compute the features of the

face images. The verification performance of the network on LFW is %95.6 accuracy

and %95.5 1-EER which shows that the model is well optimized for in-the-wild face

verification. We created 1000 similar (belonging to same identity) and 1000 dis-similar

(belonging to different identities) face image pairs from GANFaces. Similarly, we also

generated the same number of similar and dis-similar face image pairs from the VGG

face dataset [37] and the synthetic 3DMM rendered faces dataset. Fig. 7 shows the

histograms of euclidean distances between similar and dis-similar images measured in

the embedding space for the three datasets. The addition of realism and preservation

of identities of the GANFaces can be seen from the comparison of its distribution to

the 3DMM synthetic dataset distribution. As the images become more realistic, they

become better separable in the pre-trained embedding space. We also observe that the

separation of positive and negative pairs of GANFaces is better than that of VGG faces

pairs. The probable reason for VGG not achieving a better separation than GANFaces

is noisy face labels as indicated in the original study [37].

5.3 Face Recognition with GANFaces dataset

We augmented GANFaces with real face dataset i.e. VGG Faces [37] and trained the

VGG19 [50] network and tested its performance on two challenging datasets: LFW [23]

and IJB-A [30]. We restrict ourselves from limited access to full access of real face

dataset and train deep network on different combination of real and GANFaces. Follow-

ing [36], we use a pre-trained VGGNet by [50] with 19 layers trained on the ImageNet

dataset [44] and took these parameters as initial parameters. We train the network with

different portions of the Oxford VGG Face dataset [37], augmented with the GANFaces

dataset. We remove the last layer of the deep VGGNet and add two soft-max layers to
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Fig. 7: Distances of 1000 positive and 1000 negative pairs from three different datasets

(GANFaces, 3DMM synthetic images, Oxford VGG) embedded on a NN4 network that

is trained with CASIA Face dataset

the previous layer, one for each of the datasets. The learning rate is set to 0.1 for the

soft-max layers and 0.01 to the pre-trained layers with the ADAM optimizer. Also we

halve the gradient coming from the GANFaces soft-max. We decrease the learning rate

exponentially and train for 80,000 iterations where all of our models converge well

without overfitting. For a given input size of 108 × 108, we randomly crop and flip

96× 96 patches and the overall training takes around 9 hours on a GTX 1080TI GPU.

We train 6 models with %20, %50 and %100 of the VGG Face dataset with and

without the augmentation of GANFaces-500K. As seen in Fig. 8, we evaluate the mod-

els on LFW and IJB-A datasets and the benchmark scores are improved with the ad-

dition of this dataset even though the image resolution is low. The contribution of

GANFaces-500K increases inversely proportional to the number of images included

from the VGG dataset, which indicates more synthetic images might improve the re-

sults even further.

We compare our best model trained by full VGG dataset and GANFaces to the

other state of the art methods in Table 1. Despite the lower resolution, GANFaces was

able to improve our baseline to the numbers comparable to the state-of-the-art. Note

that generative methods, such as [36,65], do generation (i.e. pose augmentation and

Method Real Synth Test time Synth Image size Acc. (%) 100% - EER

FaceNet [47] 200M - No 220×220 98.87 -

VGG Face [37] 2.6M - No 224×224 98.95 99.13

Masi et al. [36] 495K 2.4M Yes 224×224 98.06 98.00

Yin et al. [65] 495K 495K Yes 100×100 96.42 -

VGG + Recons. Err. 1.8M 500K No 96×96 94.7 94.8

VGG + simGAN [48] 1.8M 500K No 96×96 94.7 94.8

VGG + cycleGAN [71] 1.8M 500K No 96×96 94.5 94.7

VGG(%100) 1.8M - No 96×96 94.8 94.6

VGG(%100) + GANFaces-500K 1.8M 500K No 96×96 94.9 95.1

VGG(%100) + GANFaces-5M 1.8M 5M No 96×96 95.2 95.1

Table 1: Comparison with state-of-the-art studies on LFW performances
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Fig. 8: Face recognition benchmark experiments. (Left) Number of images used from

the two datasets in the experiments. The total number of images in the VGG data set

is 1.8M since some images were removed from the URL (Middle) Performance on the

LFW dataset with (solid) and without (dashed) the GANFaces-500K dataset. (Right)

True Positive Rates on the IJB-A verification task with (solid) and without (dashed) the

GANFaces-500K dataset.

normalization) in the test time whereas we use only given test images. Together with

the benefit of low resolution, this makes our models more efficient at test time.

6 Conclusions

This paper proposes a novel end-to-end semi-supervised adversarial training framework

to generate photorealistic faces of new identities with wide ranges of poses, expressions,

and illuminations from 3DMM rendered faces. Our extensive qualitative and quantita-

tive experiments show that the generated images are realistic and identity preserving.

We generated a synthetic dataset of face images closer to a photorealistic domain

and combined it with a real face image dataset to train a face recognition CNN and

improved the performance in recognition and verification tasks. In the future, we plan

to generate millions of high resolution images of thousands of new identities to boost

the state-of-the-art face recognition.

The proposed framework helps to avoid some of the common GAN problems such

as mode collapse and 3D coherency. It shows how the data generated by 3DMM or any

other explicit model can be utilized to improve and control the behaviour of GANs.
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