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Fig. 1. ModularGAN: Results of proposed modular generative adversarial network
illustrated on multi-domain image-to-image translation task on the CelebA [19] dataset.

Abstract. Existing methods for multi-domain image-to-image transla-
tion (or generation) attempt to directly map an input image (or a random
vector) to an image in one of the output domains. However, most existing
methods have limited scalability and robustness, since they require build-
ing independent models for each pair of domains in question. This leads
to two significant shortcomings: (1) the need to train exponential num-
ber of pairwise models, and (2) the inability to leverage data from other
domains when training a particular pairwise mapping. Inspired by recent
work on module networks, this paper proposes ModularGAN for multi-
domain image generation and image-to-image translation. ModularGAN
consists of several reusable and composable modules that carry on differ-
ent functions (e.g., encoding, decoding, transformations). These modules
can be trained simultaneously, leveraging data from all domains, and
then combined to construct specific GAN networks at test time, accord-
ing to the specific image translation task. This leads to ModularGAN’s
superior flexibility of generating (or translating to) an image in any de-
sired domain. Experimental results demonstrate that our model not only
presents compelling perceptual results but also outperforms state-of-the-
art methods on multi-domain facial attribute transfer.

Keywords: Neural Modular Network, Generative Adversarial Network,
Image Generation, Image Translation
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1 Introduction

Image generation has gained popularity in recent years following the introduc-
tion of variational autoencoder (VAE) [15] and generative adversarial networks
(GAN) [6]. A plethora of tasks, based on image generation, have been studied,
including attribute-to-image generation [20, 21, 31], text-to-image generation [24,
23, 30, 32, 33] or image-to-image translation [11, 14, 25, 34, 5, 18]. These tasks can
be broadly termed conditional image generation, which takes an attribute vec-
tor, text description or an image as the conditional input, respectively, and out-
puts an image. Most existing conditional image generation models learn a direct
mapping from inputs, which can include an image or a random noise vector, and
target condition to output an image containing target properties.

Each condition, or condition type, effectively defines a generation or image-
to-image output domain (e.g., domain of expression (smiling) or gender (male
/ female) for facial images). For practical tasks, it is desirable to be able to
control a large and variable number of conditions (e.g., to generate images of
person smiling or brown haired smiling man). Building a function that can deal
with the exponential, in the number of conditions, domains is difficult. Most ex-
isting image translation methods [11, 14, 25, 34] can only translate images from
one domain to another. For multi-domain setting this results in a number of
shortcomings: (i) requirement to learn an exponential number of pairwise trans-
lation functions, which is computationally expensive and practically infeasible
for more than a handful of conditions; (ii) it is impossible to leverage data from
other domains when learning a particular pairwise mapping; and (iii) the pair-
wise translation function could potentially be arbitrarily complex in order to
model the transformation between very different domains. To address (i) and
(ii), multi-domain image (and language [13]) translation [5] models have been
introduced very recently. A fixed vector representing the source/target domain
information can be used as the condition for a single model to guide the transla-
tion process. However, the sharing of information among the domains is largely
implicit and the functional mapping becomes even more excessively complex.

We posit that dividing the image generation process into multiple simpler
generative steps can make the model easier and more robust to learn. In partic-
ular, we neither train pairwise mappings [11, 34] nor one complex model [22, 5];
instead we train a small number of simple generative modules that can compose
to form complex generative processes. In particular, consider transforming an
image from domain A (man frowning) to C (woman smiling): DA → DC . It is
conceivable, even likely, that first transforming the original image to depict a

female and subsequently smiling (DA
female
−−−−−→ DB

smiling
−−−−−→ DC) would be more

robust than directly going from domain A to C. The reason is two fold: (i)
the individual transformations are simpler and spatially more local, and (ii) the
amount of data in the intermediate female and smile domains are by definition
larger than in the final domain of woman smiling. In other words, in this case, we
are leveraging more data to learn simpler translation/transformation functions.
This intuition is also consistent with recently introduced modular networks [2,
1], which we here conceptually adopt and extend for generative image tasks.
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To achieve and formalize this incremental image generation process, we pro-
pose the modular generative adversarial network (ModularGAN). ModularGAN
consists of several different modules, including generator, encoder, reconstructor,
transformer and discriminator, trained jointly. Each module performs specific
functionality. The generator module, used in image generation tasks, generates
a latent representation of the image from a random noise and an (optional) con-
dition vector. The encoder module, used for image-to-image translation, encodes
the input image into a latent representation. The latent representation, produced
by either generator or encoder, is manipulated by the the transformermodule ac-
cording to the provided condition. The reconstructor module then reconstructs
the transformed latent representation to an image. The discriminator module
is used to distinguish whether the generated or transformed image looks real
or fake, and also to classify the attributes of the image. Importantly, different
transformer modules can be composed dynamically at test time, in any order,
to form generative networks that apply a sequence of feature transformations in
order to obtain more complex mappings and generative processes.

Contributions: Our contributions are multi-fold,

- We propose ModularGAN – a novel modular multi-domain generative ad-
versarial network architecture. ModularGAN consists of several reusable and
composable modules. Different modules can be combined easily at test time,
in order to generate/translate an image in/to different domains efficiently.
To the best of our knowledge, this is the first modular GAN architecture.

- We provide an efficient way to train all the modules jointly end-to-end. New
modules can be easily added to our proposed ModularGAN, and a subset of
the existing modules can also be upgraded without affecting the others.

- We demonstrate how one can successfully combine different (transformer)
modules in order to translate an image to different domains. We utilize mask
prediction, in the transformer module, to ensure that only local regions of
the feature map are transformed; leaving other regions unchanged.

- We empirically demonstrate the effectiveness of our approach on image gen-
eration (ColorMNIST dataset) and image-to-image translation (facial at-
tribute transfer) tasks. Qualitative and quantitative comparisons with state-
of-the-art GAN models illustrate improvements obtained by ModularGAN.

2 Related work

2.1 Modular Networks

Visual question answering (VQA) is a fundamentally compositional task. By ex-
plicitly modeling its underling reasoning process, Neural module networks [2]
are constructed to perform various operations, including attention, re-attention,
combination, classification, and measurement. Those modules are assembled into
all configurations necessary for different question tasks. A natural language
parser decompose questions into logical expressions and dynamically lay out
a deep network composed of reusable modules. Dynamic neural module net-
works [1] extend neural module networks by learning the network structure via
reinforcement learning, instead of direct parsing of questions. Both work use
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predefined module operations with handcrafted module architectures. More re-
cently, [12] proposes a model for visual reasoning that consists of a program gen-
erator and an execution engine. The program generator constructs an explicit
representation of the reasoning process to be performed. It is a sequence-to-
sequence model which inputs the question as a sequence of words and outputs
a program as a sequence of functions. The execution engine executes the result-
ing program to produce an answer. It is implemented using a neural module
network. In contrast to [2, 1], the modules use a generic architecture. Similar to
VQA, multi-domain image generation can also be regarded as a composition of
several two domain image translations, which forms the bases of this paper.

2.2 Image Translation

Generative Adversarial Networks (GANs) [6] are powerful generative mod-
els which have achieved impressive results in many computer vision tasks such as
image generation[21, 9], image inpainting [10], super resolution [16] and image-to-
image translation [11, 17, 22, 27, 34, 4, 29, 28]. GANs formulate generative model-
ing as a game between two competing networks: a generator network produces
synthetic data given some input noise and a discriminator network distinguishes
between the generator’s output and true data. The game between the generator
G and the discriminator D has the minmax objective. Unlike GANs which learn
a mapping from a random noise vector to an output image, conditional GANs
(cGANs) [20] learn a mapping from a random noise vector to an output image
conditioning on additional information. Pix2pix[11] is a generic image-to-image
translation algorithm using cGANs [20]. It can produce reasonable results on a
wide variety of problems. Given a training set which contains pairs of related
images, pix2pix learns how to convert an image of one type into an image of
another type, or vice versa. Cycle-consistent GANs (CycleGANs) [34] learn
the image translation without paired examples. Instead, it trains two generative
models cycle-wise between the input and output images. In addition to the adver-
sarial losses, cycle consistency loss is used to prevent the two generative models
from contradicting each other. Both Pix2Pix and CycleGANs are designed for
two-domain image translation. By inverting the mapping of a cGAN [20], i.e.,
mapping a real image into a latent space and a conditional representation, Ic-
GAN [22] can reconstruct and modify an input image of a face conditioned
on arbitrary attributes. More recently, StarGAN [5] is proposed to perform
multi-domain image translation using a single network conditioned on the tar-
get domain label. It learns the mappings among multiple domains using only a
single generator and a discriminator. Different from StarGAN, which learns all
domain transformations within a single model, we train different simple com-
posable translation networks for different attributes.

3 Modular Generative Adversarial Networks

3.1 Problem Formulation

We consider two types of multi-domain tasks: (i) image generation – which di-
rectly generates an image with certain attribute properties from a random vector
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(e.g., an image of a digit written in a certain font or style); and (ii) image trans-

lation – which takes an existing image and minimally modifies it by changing
certain attribute properties (e.g., changing the hair color or facial expression in a
portrait image). We pre-define an attribute setA = {A1, A2, · · · , An}, where n is
the number of different attributes, and each attribute Ai is a meaningful seman-
tic property inherent in an image. For example, attributes for facial images may
include hair color, gender or facial expression. Each Ai has different attribute
value(s), e.g., black/blond/brown for hair color or male/female for gender.

For the image generation task, the goal is to learn a mapping (z,a) �→ y. The
input is a pair (z,a), where z is a randomly sampled vector and a is a subset of
attributes A. Note that the number of elements in a is not fixed; more elements
would provide finer control over generated image. The output y is the target
image. For the image translation task, the goal is to learn a mapping (x,a) �→ y.
The input is a pair (x,a), where x is an image and a are the target attributes
to be present in the output image y. The number of elements in a indicates the
number of attributes of the input image that need to be altered.

In the remainder of the section, we formulate the set of modules used for
these two tasks and describe the process of composing them into networks.

3.2 Network Construction

Image Translation. We first introduce the ModularGAN that performs multi-
domain image translation. Four types of modules are used in this task: the en-
coder module (E), which encodes an input image to an intermediate feature
map; the transformer module (T), which modifies a certain attribute of the fea-
ture map; the reconstructor module (R), which reconstructs the image from an
intermediate feature map; and the discriminator module (D), which determines
whether an image is real or fake, and predicts the attributes of the input image.
More details about the modules will be given in the following section.

Fig. 2 demonstrates the overall architecture of the image translation model
in the training and test phases. In the training phase (Fig. 2, left), the encoder
module E is connected to multiple transformer modules Ti, each of which is
further connected to a reconstructor module R to generate the translated image.
There are multiple discriminator modules Di connected to the reconstructor to
distinguish the generated images from real images, and to make predictions of
corresponding attribute. All modules have the same interface, i.e., the output of
E, the input of R, and both the input and output of Ti have the same shape
and dimensionality. This enables the modules to be assembled in order to build
more complex architectures at test time, as illustrated in Fig. 2, right.

In the training phase, an input image x is first encoded by E, which gives
the intermediate representation E(x). Then different transformer modules Ti are
applied to modify E(x) according to the pre-specified attributes ai, resulting in
Ti(E(x), ai). Ti is designed to transform a specific attribute Ai into a different
attribute value1, e.g., changing the hair color from blond to brown, or changing

1 This also means that, in general, the number of transformer modules is equal to the
number of attributes.
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Fig. 2. ModularGAN Architecture: Multi-domain image translation architecture
in training (left) and test (right) phases. ModularGAN consists of four different kinds
of modules: the encoder module E, transformer module T, reconstructor module R and
discriminator D. These modules can be trained simultaneously and used to construct
different generation networks according to the generation task in the test phase.

the gender from female to male. The reconstructor module R reconstructs the
transformed feature map into an output image y = R(Ti(E(x), ai)). The dis-
criminator module D is designed to distinguish the generated image y and the
real image x. It also predicts the attributes of the image x or y.

In the test phase (Fig. 2, right), different transformer modules can be dynam-
ically combined to form a network that can sequentially manipulate any number
of attributes in arbitrary order.

Image Generation. The model architecture for the image generation task is
mostly the same to the image translation task. The only difference is that the
encoder module E is replaced with a generator module G, which generates an
intermediate feature map G(z, a0) from a random noise z and a condition vector
a0 representing auxiliary information. The condition vector a0 could determine
the overall content of the image. For example, if the goal is to generate an image
of a digit, a0 could be used to control which digit to generate, say digit 7. A
module R can similarly reconstruct an initial image x = R(G(z, a0)), which is
an image of digit 7 with any attributes. The remaining parts of the architecture
are identical to the image translation task, which transform the initial image
x using a sequence of transformer modules Ti to alter certain attributes, (e.g.,
color of the digit, stroke type or background).

3.3 Modules

Generator Module (G) generates a feature map of size C × H × W using
several transposed convolutional layers. Its input is the concatenation of a ran-
dom variable z and a condition vector a0. See supplementary materials for the
network architecture.

Encoder Module (E) encodes an input image x into an intermediate fea-
ture representation of size C × H × W using several convolutional layers. See
supplementary materials for the network architecture.
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Transformer Module (T) is the core module in our model. It transforms the
input feature representation into a new one according to input condition ai. A
transformer module receives a feature map f of size C×H ×W and a condition
vector ai of length ci. Its output is a feature map ft of size C ×H ×W . Fig. 3
illustrates the structure of a module T. The condition vector ai of length ci is
replicated to a tensor of size ci ×H ×W , which is then concatenated with the
input feature map f . Convolutional layers are first used to reduce the number of
channels from C + ci to C. Afterwards, several residual blocks are sequentially
applied, the output of which is denoted by f ′. Using the transformed feature map
f ′, additional convolution layers with the Tanh activation function are used to
generate a single-channel feature map g of size H × W . This feature map g is
further rescaled to the range (0, 1) by g′ = (1 + g)/2. The predicted g′ acts like
an alpha mask or an attention layer: it encourages the module T to transform
only the regions of the feature map that are relevant to the specific attribute
transformation. Finally, the transformed feature map f ′ and the input feature
map f are combined using the mask g′ to get the output ft = g′×f ′+(1−g′)×f .

Module T

feature
map

Replicate

ConvsConcat

Conv
Tanh

feature
map

Residual

Block

Residual

Block

mask

…

condition

Fig. 3. Transformer Module

Reconstructor Module (R) reconstructs the image from a C×H×W feature
map using several transposed convolutional layers. See supplementary materials
for the network architecture.

Discriminator Module (D) classifies an image as real or fake, and predicts
one of the attributes of the image (e.g., hair color, gender or facial image). See
supplementary materials for the network architecture.

3.4 Loss Function

We adopt a combination of several loss functions to train our model.

Adversarial Loss. We apply the adversarial loss [6] to make the generated
images look realistic. For the i-th transformer module Ti and its corresponding
discriminator module Di, the adversarial loss can be written as:

Ladvi
(E,Ti,R,Di) = Ey∼pdata(y)[logDi(y)]+ (1)

Ex∼pdata(x)[log(1−Di(R(Ti(E(x))))],

where E, Ti, R, Di are the encoder module, the i-th transformer module, the
reconstructor module and the i-th discriminator module respectively. Di aims to
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distinguish between transformed samples R(Ti(E(x))) and real samples y. All
the modules E, Ti and R try to minimize this objective against an adversary
Di that tries to maximize it, i.e. minE,Ti,R maxDi

Ladvi
(E,Ti,R,Di).

Auxiliary Classification Loss. Similar to [21] and [5], for each discriminator
module Di, besides a classifier to distinguish the real and fake images, we define
an auxiliary classifier to predict the i-th attribute of the image, e.g., hair color or
gender of the facial image. There are two components of the classification loss:
real image loss Lr

clsi
and fake image loss Lf

clsi
.

For real images x, the real image auxiliary classification loss Lr
clsi

is defined
as follows:

Lr
clsi = Ex,ci [− logDclsi(ci|x)], (2)

where Dclsi(c|x) is the probability distribution over different attribute values
predicted by Di, e.g., black, blond or brown for hair color. The discriminator
module Di tries to minimize Lr

clsi
.

The fake image auxiliary classification loss Lf
clsi

is defined similarly, using
generated images R(E(Ti(x))):

Lf
clsi

= Ex,ci [− logDclsi(ci|R(E(Ti(x))))]. (3)

The modules R, E and Ti try to minimize Lf
clsi

to generate fake images that
can be classified as the correct target attribute ci.

Cyclic Loss. Conceptually, the encoder module E and the reconstructor module
R are a pair of inverse operations. Therefore, for a real image x, R(E(x)) should
resembles x. Based on this observation, the encoder-reconstructor cyclic loss
LER
cyc is defined as follows:

LER

cyc = Ex[�R(E(x))− x�1]. (4)

Cyclic losses can be defined not only on images, but also on intermediate
feature maps. At training time, different transformer modules Ti are connected
to the encoder module E in a parallel fashion. However, at test time Ti will be
connected to each other sequentially, according to specific module composition
for the test task. Therefore it is important to have the cyclic consistency of the
feature maps so that a sequence of Ti modifies the feature map consistently.
To enforce this, we define a cyclic loss on the transformed feature map and the
encoded feature map of reconstructed output image. This cycle loss is defined as

LTi

cyc = Ex[�Ti(E(x))−E(R(Ti(E(x))))�1], (5)

where E(x) is the original feature map of the input image x, and Ti(E(x)) is the
transformed feature map. The module R(·) reconstructs the transformed feature
map to a new image with the target attribute. The module E then encodes the
generated image back to an intermediate feature map. This cyclic loss encourages
the transformer module to output a feature map similar to the one produced by
the encoder module. This allows different modules Ti to be concatenated at test
time without loss in performance.
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Full Loss. Finally, the full loss functions for D is

LD(D) = −

n�

i=1

Ladvi
+ λcls

n�

i=1

Lr
clsi , (6)

and the full loss functions for E, T, R is

LG(E,T,R) =

n�

i=1

Ladvi
+ λcls

n�

i=1

Lf
clsi

+ λcyc(L
ER

cyc +

n�

i=1

LTi

cyc), (7)

where n is the total number of controllable attributes, and λcls and λcyc are
hyper-parameters that control the importance of auxiliary classification and
cyclic losses, respectively, relative to the adversarial loss.

4 Implementation

Network Architecture. In our ModularGAN, E has two convolution layers
with stride size of two for down-sampling. G has four transposed convolution
layers with stride size of two for up-sampling. T has two convolution layers with
stride size of one and six residual block to transform the input feature map.
Another convolution layer with stride size of one is added on top of the last
residual block to predict a mask. R has two transposed convolution layers with
stride size of two for up-sampling. Five convolution layers with stride size of two
are used in D, together with two additional convolution layers to classify an
image as real or fake, and its attributes.

Training details. To stabilize the training process and to generate images of
high quality, we replace the adversarial loss in Eq. (1) with the Wasserstein
GAN [3] objective function using gradient penalty [7] defined by

Ladvi
(E,Ti,R,Di) = Ex[Di(x)]− Ex[Di(R(Ti(E(x))))] (8)

− λgpEx̂[(�▽x̂Di(x̂)�2 − 1)2],

where x̂ is sampled uniformly along a straight line between a pair of real and
generated images. For all experiments, we set λgp = 10 in Equation 8, λcls = 1
and λcyc = 10 in Equation 6 and Equation 7. We use the Adam optimizer [15]
with a batch size of 16. All networks are trained from scratch with an initial
learning rate of 0.0001. We keep the same learning rate for the first 10 epochs
and linearly decay the learning rate to 0 over the next 10 epochs.

5 Experiments

We first conduct image generation experiments on a synthesized multi-attribute
MNIST dataset. Next, we compare our method with recent work on image-to-
image facial attributes transfer. Our method shows both qualitative and quan-
titative improvements as measured by user studies and attribute classification.
Finally, we conduct an ablation study to examine the effect of mask prediction in
module T, the cyclic loss, and the order of multiple modules T on multi-domain
image transfer.
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5.1 Baselines

IcGAN first learns a mapping from a latent vector z to a real image y, G :
(z, c) �→ y, then learns the inverse mapping from a real image x to a latent
vector z and a condition representation c, E : x �→ (z, c). Finally, it reconstructs
a new image conditioned on z and a modified c′, i.e. G : (z, c′) �→ y.

CycleGAN learns two mappings G : x �→ y and F : y �→ x simultaneously, and
uses a cycle consistency loss to enforce F (G(x)) ≈ x and G(F (y)) ≈ y. We train
different models of CycleGAN for each pair of domains in our experiments.

StarGAN trains a single G to translate an input image x into an output image
y conditioned on the target domain label(s) c directly, i.e., G : (x, c) �→ y. Setting
multiple entries in c allows StarGAN to perform multi-attribute transfer.

5.2 Datasets

ColorMNIST. We construct a synthetic dataset called the ColorMNIST, based
on the MNIST Dialog Dataset [26]. Each image in ColorMNIST contains a digit
with four randomly sampled attributes, i.e., number = {x ∈ Z|0 � x � 9},
color = {red, blue, green, purple, brown}, style = {flat, stroke}, and bgcolor =
{cyan, yellow,white, silver, salmon}. We generate 50K images of size 64× 64.

CelebA. The CelebA dataset [19] contains 202,599 face images of celebrities,
with 40 binary attributes such as young, smiling, pale skin and male. We ran-
domly sampled 2,000 images as test set and use all remaining images as training
data. All images are center cropped with size 178 × 178, and resized to 128×128.
We choose three attributes with seven different attribute values for all the exper-
iments: hair color = {black, blond, brown}, gender = {male, female}, and smile
= {smile, nosmile}.

5.3 Evaluation

Classification Error. As a quantitative evaluation, we compute the classifi-
cation error of each attribute on the synthesized images using a ResNet-18 net-
work [8], which is trained to classify the attributes of an image. All methods use
the same classification network for performance evaluation. Lower classification
errors imply that the generated images have more accurate target attributes.

User Study. We also perform a user study using Amazon Mechanical Turk
(AMT) to assess the image quality for image translation tasks. Given an input
image, the Turkers were instructed to choose the best generated image based
on perceptual realism, quality of transfer in attribute(s), and preservation of a
figures original identity.

5.4 Experimental Results on ColorMNIST

Qualitative evaluation. Fig. 4 shows the digit image generation results on
ColorMNIST dataset. The generator module G and reconstructor module R
first generate the correct digit according to the number attribute as shown in the
first column. The generated digit has random color, stroke style and background
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n nc ns nb ncs ncb nsb ncsb n nc ns nb ncs ncb nsb ncsbc s b c s b

Fig. 4. Image Generation: Digits synthesis results on the ColorMNIST dataset.
Note, that (n) implies conditioning on the digit number, (c) color, (s) stroke type, and
(b) background. Columns denoted by more than one letter illustrate generation results
conditioned on multiple attributes, e.g., (ncs) – digit number, color, and stroke type.
Greayscale images illustrate mask produced internally by Ti modules, i ∈ {c, s, b}.

color. By passing the feature representation produced by G through different Ti,
the digit color, stroke style and background of the initially generated image will
change, as shown in the second to forth columns. The last four columns illustrate
multi-attribute transformation by combining different Ti. Each module Ti only
changes a specific attribute and keeps other attributes untouched (at the previous
attribute value). Note that there are scenarios where the initial image already
has the target attribute value; in such cases the transformed image is identical
to the previous one.

Visualization of Masks. In Fig. 4, we also visualize the predicted masks in
each transformer module Ti. It provides an interpretable way to understand
where the modules apply the transformations. White pixels in the mask corre-
spond to regions in the feature map that are modified by the current module;
black pixels to regions that remain unchanged throughout the module. It can
be observed that the color transformer module Tc mainly changes the interior
of the digits, so only the digits are highlighted. The stroke style transformer
module Ts correctly focuses on the borders of the digits. Finally, the masks cor-
responding to the background color transformer module Tb have larger values
in the background regions.

5.5 Experimental Results on CelebA

Qualitative evaluation. Fig. 1 and Fig. 5 show the facial attribute transfer
results on CelebA using the proposed method and the baseline methods, re-
spectively. In Fig. 5, the transfer is between a female face image with neutral
expression and black hair to a variety of combinations of attributes. The results
show that IcGAN has the least satisfying performance. Although the generated
images have the desired attributes, the facial identity is not well preserved. The
generated images also do not have sharp details, caused by the information lost
during the process of encoding the input image into a low-dimensional latent vec-
tor and decoding it back. The images generated by CycleGAN are better than
IcGAN, but there are some visible artifacts. By using the cycle consistence loss,
CycleGAN preserves the facial identity of the input image and only changes spe-
cific regions of the face. StarGAN generates better results than CycleGAN, since
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Fig. 6. Mask Visualization: Visualization of masks when performing attribute trans-
fer. We sum the different masks when multiple modules T are used.

it is trained on the whole dataset and implicitly leverages images from all at-
tribute domains. Our method generates better results than the baseline methods
(e.g., see Smile or multi-attribute transfer in the last column). It uses multiple
transformer modules to change different attributes, and each transformer mod-
ule learns a specific mapping from one domain to another. This is different from
StarGAN, which learns all the transformations in one single model.

Visualization of Masks. To better understand what happens when Modu-
larGAN translates an image, we visualize the mask of each transformer module
in Fig. 6. When multiple Ti are used, we add different predicted masks. It can be
seen from the visualization that when changing the hair color, the transformer
module only focuses on the hair region of the image. By modifying the mouth
area of the feature maps, the facial expression can be changed from neutral to
smile. To change the gender, regions around cheeks, chin and nose are used.
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Table 1. AMT User Study: Higher values are better and indicating preference.

Method H S G HS HG SG HSG

IcGAN 3.48 2.63 8.70 4.35 8.70 13.91 15.65

CycleGAN 17.39 16.67 29.57 18.26 20.00 17.39 9.57

StarGAN 30.43 36.84 32.17 31.30 27.83 27.83 27.83

Ours 48.70 43.86 29.57 46.09 43.48 40.87 46.96

Table 2. Classification Error: Lower is better, indicating fewer attribute errors.

Method H S G HS HG SG HSG

IcGAN 7.82 10.43 20.86 22.17 20.00 23.91 23.18

CycleGAN 4.34 10.43 13.26 13.67 10.43 17.82 21.01

StarGAN 3.47 4.56 4.21 4.65 6.95 5.52 7.63

Ours 3.86 4.21 2.61 4.03 6.51 4.04 6.09

Quantitative evaluation. We train a model that classifies the hair color, facial
expression and gender on the CelebA dataset using a ResNet-18 architecture [8].
The training/test set are the same as that in other experiments. The trained
model classifies the hair color, gender and smile with accuracy of 96.5%, 97.9%
and 98.3% respectively. We then apply this trained model on transformed images
produced by different methods on the test set. As can be seen in Table 2, our
model achieves a comparable classification error to StarGAN on the hair color
task, and the lowest classification errors on all other tasks. This indicates that
our model produces realistic facial images with desired attributes. Table 1 shows
the results of the AMT experiments. Our model obtains the majority of votes
for best transferring attributes in all the cases except gender. We observe that
our gender transfer model better preserves original hair, which is desirable from
the model’s point of view, but sometimes perceived negatively by the Turkers.

5.6 Ablation Study

To analyze the effect of the mask prediction, the cyclic loss and the order of mod-
ules Ti when transferring multiple attributes, we conduct ablation experiments
by removing the mask prediction, removing the cyclic loss and randomizing the
order of Ti.

Effect of Mask. Fig. 7 shows that, without mask prediction, the model can
still manipulate the images but tends to perform worse on gender, smile and
multi-attribute transfer. Without the mask, T module not only needs to learn
how to translate the feature map, but also needs to learn how to keep parts of
the original feature map intact. As a result, without mask it becomes difficult
to compose modules, as illustrated by higher classification errors in Table 3.

Effect of Cyclic Loss. Removing the cyclic loss does not affect the results
of single-attribute manipulation, as shown in Fig. 7. However, when combining
multiple transformer modules, the model can no loner generate images with
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Fig. 7. Ablation: Images generated using different variants of our method. From top
to bottom: ModularGAN w/o mask prediction in T, ModularGAN w/o cyclic loss,
ModularGAN with random order of Ti when performing multi-attribute transfer.

Table 3. Ablation Results: Classification error for ModularGAN variants (see text).

Method H S G HS HG SG HSG

Ours w/o mask 4.01 4.65 3.58 30.85 34.67 36.61 56.08

Ours w/o cyclic loss 3.93 4.48 2.87 25.34 28.82 30.96 52.87

Ours random order 3.86 4.21 2.61 4.37 5.98 4.13 6.23

Ours 3.86 4.21 2.61 4.03 6.51 4.04 6.09

desired attributes. This is also quantitatively verified in Table 3: the performance
of multi-attribute transfer drops dramatically without the cyclic loss.

Effect of Module Order We test our model by applyingTi modules in random
order when performing multi-attribute transformations (as compared to fixed
ordering - Ours). The results reported in Table 3 indicate that our model is
unaffected by the order of transformer modules, which is a desired property.

6 Conclusion

In this paper, we proposed a novel modular multi-domain generative adversarial
network architecture, which consists of several reusable and composable modules.
Different modules can be jointly trained end-to-end efficiently. By utilizing the
mask prediction within module T and the cyclic loss, different (transformer)
modules can be combined in order to successfully translate the image to different
domains. Currently, different modules are connected sequentially in test phase.
Exploring different structure of modules for more complicated tasks will be one
of our future work directions.
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