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Abstract. Autonomous vehicles require knowledge of the surrounding
road layout, which can be predicted by state-of-the-art CNNs. This work
addresses the current lack of data for determining lane instances, which
are needed for various driving manoeuvres. The main issue is the time-
consuming manual labelling process, typically applied per image. We
notice that driving the car is itself a form of annotation. Therefore, we
propose a semi-automated method that allows for efficient labelling of
image sequences by utilising an estimated road plane in 3D based on
where the car has driven and projecting labels from this plane into all
images of the sequence. The average labelling time per image is reduced
to 5 seconds and only an inexpensive dash-cam is required for data cap-
ture. We are releasing a dataset of 24,000 images and additionally show
experimental semantic segmentation and instance segmentation results.

Keywords: dataset · urban driving · road · lane · instance segmentation
· semi-automated annotation · partial labels

1 Introduction

Autonomous vehicles have the potential to revolutionise urban transport. Mobil-
ity will be safer, always available, more reliable and provided at a lower cost. Yet
we are still at the beginning of implementing fully autonomous systems, with
many unsolved challenges remaining [1]. One important problem is giving the
autonomous system knowledge about surrounding space: a self-driving car needs
to know the road layout around it in order to make informed driving decisions.
In this work, we address the problem of detecting driving lane instances from
a camera mounted on a vehicle. Separate, space-confined lane instance regions
are needed to perform various challenging driving manoeuvres, including lane
changing, overtaking and junction crossing.

Typical state-of-the-art CNN models need large amounts of labelled data
to detect lane instances reliably (e.g. [2,3,4]). However, few labelled datasets are
publicly available, mainly due to the time consuming annotation process; it takes
from several minutes up to more than one hour per image [5,6,7] to annotate
images completely for semantic segmentation tasks. In this work, we introduce
a new video dataset for road segmentation, ego lane segmentation and lane
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instance segmentation in urban environments. We propose a semi-automated
annotation process, that reduces the average time per image to the order of
seconds. This speed-up is achieved by (1) noticing that driving the car is itself
a form of annotation and that cars mostly travel along lanes, (2) propagating
manual label adjustments from a single view to all images of the sequence and
(3) accepting non-labelled parts in ambiguous situations.

Previous lane detection work has focused on detecting the components of
lane boundaries, and then applying clustering to identify the boundary as a
whole [8,9,10,2]. More recent methods use CNN based segmentation [2,4], and
RNNs [11] for detecting lane boundaries. However, visible lane boundaries can
be interrupted by occlusion or worn markings, and by themselves are not asso-
ciated with a specific lane instance. Hence, we target lane instance labels in our
dataset, which provide a consistent definition of the lane surface (from which
lane boundaries can be derived). Some work focuses on the road markings [12],
which are usually present at the border of lanes. However, additional steps are
needed to determine the area per lane. Much of the work has only been evaluated
on proprietary datasets and only few public datasets are available [13]. Various
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Fig. 1. Example image from our dataset (top left), including annotations for road
(top right), ego-lane (bottom left) and lane instance (bottom right). Road and lanes
below vehicles are annotated despite being occluded. Non-coloured parts have not been
annotated, i.e. the class is not known.

datasets include road area as a detection task, in addition to many other se-
mantic segmentation classes [14,5,15,16,6,7,17]. Some datasets also includes the
ego-lane [18], which is useful for lane following tasks. Few datasets provide lane
instances [19,20], which are needed for more sophisticated driving manoeuvres.
Aly et. al. [19] provide a relatively limited annotation of 4 single coordinates per
lane border. TuSimple [20] offer a large number of sequences, but for highway
driving only. Tab. 1 provides an overview of the publicly available datasets. Our
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average annotation time per image is much lower. However, our provided classes
are different, since we focus on lane instances (and thus ignore other semantic
segmentation classes like vehicle, building, person, etc.). Furthermore, our data
provides road surface annotations in dense traffic scenarios despite occlusions,
i.e. we provide the road label below the vehicles (see Fig. 1). This is different from
typical semantic segmentation labels, which provide a label for the occluding ob-
ject instead [14,5,15,16,6,7]. Another approach to efficiently obtain labels is to
create a virtual world where everything is known a-priori [21,22,23]. However,
current methods do not reach the fidelity of real images.

Table 1. Comparison of the available datasets. Label time per image
is only shown if provided by the authors. Many datasets are not only
targeting the road layout, and thus the labelling includes more classes.

#labeled img. road ego lane label time
Name Year frames #videos seq. area lane instances per img.

Caltech Lanes [19] 2008 1,224 4 X X
b - X -

CamVid [14,5] 2008 701 4 X X - - 20 min
Yotta [15] 2012 86 1 X X - - -
Daimler USD [16] 2013 500 - - X

c - - -
KITTI-Road [18] 2013 600 - - X X - -
NYC3DCars [17] 2013 1,287 - - X - - -
Cityscapes [6] (fine) 2016 5,000 - X

a
X - - 90 min

Cityscapes [6] (coarse) 2016 20,000 - X
a

X - - 7 min
Mapillary Vistas [7] 2017 20,000 - - X - - 94 min

TuSimple [20] 2017 3,626 3,626 X
a

X
b

X X
d -

Our Lanes 2018 23,980 402 X X X X 5 sec

a
Only single images are annotated, but additional (non-annotated) image
sequences are provided.

b
Road area is implicitly annotated by the given lanes.

c
Annotated ground instead of road, i.e. it includes non-drivable area.

d
Limited to three instances: ego-lane and left/right of ego-lane.

Some previous work has aimed at creating semi-automated object detections
in autonomous driving scenarios. [24,17] use structure-from-motion (SFM) to es-
timate the scene geometry and dynamic objects. [25] proposes to annotate lanes
in the birds-eye view and then back-project and interpolate the lane boundaries
into the sequence of original camera images. [26] uses alignment with Open-
StreetMap to generate ground-truth for the road. [27] allows for bounding box
annotations of Lidar point-clouds in 3D for road and other static scene com-
ponents. These annotations are then back-projected to each camera image as
semantic labels and they report a similar annotation speed-up as ours: 13.5 sec
per image. [28] propose to detect and project the future driven path in images,
without the focus of lane annotations. This means the path is not adapted to
lane widths and crosses over lanes and junctions. Both [27,28] require an expen-
sive sensor suite, which includes calibrated cameras and Lidar. In contrast, our
method is applicable to data from a GPS enabled dash-cam. The overall contri-
butions of this work include: (1) The release of a new dataset for lane instance
and road segmentation, (2) A semi-automated annotation method for lane in-
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stances in 3D, requiring only inexpensive dash-cam equipment, (3) Road surface
annotations in dense traffic scenarios despite occlusion, and (4) Experimental
results for road, ego-lane and lane instance segmentation using a CNN.

2 Video Collection

Videos and associated GPS data were captured with a standard Nextbase 402G
dashcam recording at a resolution of 1920x1080 at 30 frames per second and
compressed with the H.264 standard. The camera was mounted on the inside of
the car windscreen, roughly along the centre line of the vehicle and approximately
aligned with the axis of motion. Fig. 1 (top left) shows an example image from
our collected data. In order to remove parts where the car moves very slowly or
stands still (which is common in urban environments), we only include frames
that are at least 1m apart according to the GPS. Finally, we split the recorded
data into sequences of 200m in length, since smaller sequences are easier to
handle (e.g. no need for key-frame bundle adjustment, and faster loading times).

3 Video Annotation

The initial annotation step is automated and provides an estimate of the road
surface in 3D space, along with an estimate for the ego-lane (see Sec. 3.1). Then
the estimates are corrected manually and further annotations are added in the
road surface space. The labels are then projected into the 2D camera views,
allowing the annotation of all images in the sequence at once (see Sec. 3.2).

3.1 Automated Ego-lane Estimation in 3D

Given a dash-cam video sequence of N frames from a camera with unknown
intrinsic and extrinsic parameters, the goal is to determine the road surface in
3D and project an estimate of the ego-lane onto this surface. To this end, we first
apply OpenSfM [29], a structure from motion algorithm, to obtain the 3D camera
locations ci and poses Ri for each frame i ∈ {1, ..., N} in a global coordinate
system, as well as the camera projective transform P (·), which includes the
estimated focal length and distortion parameters (Ri ∈ R

3×3 are 3D rotation
matrices). OpenSfM reconstructions are not perfect, and failure cases are filtered
during the manual annotation process.

We assume that the road is a 2D manifold embedded in the 3D world. The
local curvature of the road is low, and thus the orientation of the vehicle wheels
provide a good estimate of the local surface gradient. The camera is fixed within
the vehicle with a static translation and rotation from the current road plane
(i.e. we assume the vehicle body follows the road plane and neglect suspension
movement). Thus the ground point gi on the road below the camera at frame i

is calculated as gi = ci + hRin, where h is the height of the camera above the
road and n is the surface normal of the road relative to the camera (see Fig. 2,

left). The left and right ego-lane borders bleft
i ,b

right
i can then be derived as
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Fig. 2. Estimation of the lane border points b
left
i ,b

right
i at frame i. ci is the camera

position at frame i (obtained via SfM), gi is point on the road below the camera, h is
the height of the camera above the road, f is the forward direction, n is the normal
vector of the road plane, r is the horizontal vector across the lane (f , n and r are
relative to the camera orientation) and w

left
i , w

right
i are the distances to the left and

right ego-lane borders.

b
left
i = gi + w

left
i Rir

b
right
i = gi + w

right
i Rir

(1)

where r is the vector within the road plane, that is perpendicular to the driving
direction and w

left
i , w

right
i are the offsets to the left and right ego-lane borders.

See Fig. 2 (right) for an illustration. We make the simplifying assumption that
the road surface is flat perpendicular to the direction of the car motion (but we
don’t assume that the road is flat generally - if our ego path travels over hills,
this is captured in our ego path).

Given a frame i, we can project all future lane borders bj (bj ∈ {bleft
j ,b

right
j }

and j > i) into the local pixel coordinate system via

b̂j = P
(

R−1
i (bj − ci)

)

(2)

where P () is the camera perspective transform obtained via OpenSfM [29], that
projects a 3D point in camera coordinates to a 2D pixel location in the image.
Then the lane annotations can be drawn as polygons of neighbouring future
frames, i.e. with the corner points b̂left

j , b̂
right
j , b̂

right
j+1 , b̂

left
j+1. This makes implic-

itly the assumption that the lane is piece-wise straight and flat between captured
images. In the following part, we describe how to get the quantities h, n, r, wleft

i

and w
right
i . Note that h, n and r only need to be estimated once for all sequences

with the same camera position.
The camera height above the road h is easy to measure manually. However,

in case this cannot be done (e.g. for dash-cam videos downloaded from the web)
it is also possible to obtain the height of the camera using the estimated mesh
of the road surface obtained from OpenSfM. A rough estimate for h is sufficient,
since it is corrected via manual annotation, see the following section.

In order to estimate the road normal n, we use the fact that when the car
moves around a turn, the vectors representing it’s motion m will all lie in the
road plane, and thus taking the cross product of them will result in the road
normal, see Fig. 3. Let mi,j be the normalised motion vector between frames
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i and j, i.e. mi,j =
cj−ci

‖cj−ci‖
. The estimated road normal at frame i (in camera

coordinates) is ni = R−1
i (mi−1,i ⊗mi,i+1), where ⊗ denotes the cross-product

(see Fig. 3). The quality of this estimate depends highly on the degree of our
previous assumptions being correct. To get a more reliable estimate, we average
all ni across the journey, and weight them implicitly by the magnitude of the
cross product:

n =
1

∑N−2
i=2 ‖ni‖

N−2
∑

i=2

ni (3)

We can only estimate the normal during turns, and thus this weighting scheme

Fig. 3. Estimation of the road normal ni and forward direction fi at a single frame i.
The final estimate is an aggregate over all frames.

emphasises tight turns and ignores straight parts of the journey. r is perpendic-
ular to the forward direction f and within the road plane, thus

r = f ⊗ n (4)

The only quantity left is f , which can be derived by using the fact that mi−1,i+1

is approximately parallel to the tangent at ci, if the rate of turn is low. Thus we
can estimate the forward point at frame i via fi = R−1

i mi−1,i+1, see Fig. 3. As
for the normal, we average all fi over the journey to get a more reliable estimate:

f =
1

∑

i ai

N−2
∑

i=2

aifi (5)

ai = max(m⊤
i−1,imi,i+1, 0) (6)

In this case, we weight the movements according the inner product ai in order to
up-weight parts with a low rate of turn, while the max assures forward movement.

w
left
i and w

right
i are crucial quantities to get the correct alignment of the

annotated lane borders with the visible boundary, however automatic detection
is non-trivial. Therefore we assume initially that the ego-lane has a fixed width w

and the car has travelled exactly in the centre, i.e. wleft
i = 1

2w and w
right
i = − 1

2w

are both constant for all frames. Later (see the following section), we relax this
assumption and get an improved estimate through manual annotation.

In practice, we select a sequence with a lot of turns within the road plane
to estimate n and a straight sequence to estimate f . Then the same values
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are re-used for all sequences with the same static camera position. We only
annotate the first part of the sequence, up until 100m from the end. We do this
to avoid partial annotations on the final frames of a sequence which result from
too few lane border points remaining ahead of a given frame. A summary of
the automated ego-lane annotation procedure is provided in Algorithm 1 and
a visualisation of the automated border point estimation is shown in Fig. 4 (in
blue).

Algorithm 1 Automated ego-lane estimation

1: Measure height of the camera above road h

2: Apply OpenSFM to get ci,Ri

3: Estimate road normal n according Eq. (3)
4: Estimate forward direction f according Eq. (5)
5: Derive vector across road r according Eq. (4)
6: Set wleft

i = 1

2
w and w

right
i = − 1

2
w, where w is the default lane width

7: Derive border points bleft
i ,b

right
i according Eq. (1)

8: for each frame i do

9: Get all future border points b̂left
j , b̂

right
j , j > i according Eq. (2)

10: Draw polygons with edges b̂left
j , b̂

right
j , b̂

right
j+1 , b̂

left
j+1

3.2 Manual corrections and additional annotations

Manual annotations serve three goals: (1) exclude erroneous OpenSfM recon-
structions (2) to improve the automated estimate for the ego-lane, (3) annotate
additional lanes left and right of the ego-lane and (4) annotate non-road areas.

OpenSfM failures happened a few times, but they are easy to spot by the
annotator and subsequently excluded from the dataset. In order to improve the
ego-lane positions, the annotators are provided with a convenient interface to
edit h, wleft

i and w
right
i . Note that these quantities are only scalars (in contrast

to 3D points), and are thus easily adjusted via keyboard input. We provide a live
rendered view at a particular frame (see Fig. 5, left), and immediate feedback
is provided after changes. Also, it is easy to move forward or backward in the
sequence. For improving the ego-lane, the annotators have the options to:

1. Adjust h (applies to the whole sequence)

2. Adjust all wleft
i or all wright

i (applies to the whole sequence)

3. Adjust all wleft
j or all wright

j from the current frame i on, j > i (applies to
all future frames, relative to the current view)

In order to keep the interface complexity low, only one scalar is edited at a
time. We observed that during a typical drive, the car is moving parallel to the
ego-lane most of the time. Also, lanes have a constant width most of the time. If
both holds, then it is sufficient to use (2) to edit the lane borders for the whole
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Fig. 4. Visualisation of the lane estimates, seen from above. The automated estimate
is shown in blue, while the manual correction is shown in red. A manually annotated
additional lane is shown in green. Initially, all wleft

i and w
right
i are set to a constant

value, and thus the estimate is parallel the driven path, which only approximately
follows the true lane borders (in blue). Then the annotators can correct w

left
i and

w
right
i for each frame, which moves the border points along r (shown as dotted black

line) until they align with the true border (shown in red). Furthermore, annotators can
add additional (non-ego) lanes and adjust their width w

non−ego
i .

sequence. Only in the case that the car deviates from the parallel path, or the
lane width changes, the annotator needs option (3).

New lanes can be placed adjacent to current ones by a simple button click.
This generates a new sequence of bnon−ego

i , either on the left or right of the
current lanes (see 4). As for the ego-lane, the annotator can adjust the cor-
responding w

non−ego
i . Equivalently, a non-road surface can be added next to

current lanes, in the same way as if it were a lane, i.e. by getting its own set
of bnon−ego

i and w
non−ego
i . In addition to that, a fixed part on top of the image

can be annotated with non-road, as the road is usually found in the lower part
of the image (except for very hilly regions or extreme camera angles).

Fig. 5 (left) shows the interface used by the annotators. In the centre of the
image, the ego-path can be seen projected into this frame. In the bottom-left,
the annotator is provided with controls to manipulate rendered lanes (narrow,
widen, move to the left or right, move the boundaries of the lane etc.) and add
new lanes. In the top right of the screen (not visible), the annotator is provided
with the means to adjust the camera height, to match the reconstruction to
the road surface, and the crop height, to exclude the vehicles dash or bonnet.
All annotations are performed in the estimated 3D road plane, but immediate
feedback is provided via projection in the 2D camera view. The annotator can
easily skip forward and backward in the sequence to determine if the labels align
with the image, and correct them if needed. An example of a corrected sequence
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list of currently rendered lanes with controls

rendering controls to project changes into

all frames in the sequence

Upper part of the image, annotated as non-road

Additional Lane 1 Ego-lane Additional Lane 2

Additional Lane 3

Lane borders

Lane centers

Non-road

Fig. 5. Annotator interface with the automated initial ego-lane estimate, given by the
future driven path (left) and after manual corrections and additional lane annotations
(right). The red text and lines are overlaid descriptions, all other colours are part of
the interface.

is shown in Fig. 4 (in red). Fig. 1 shows an example of the rendered annotations
and the supplementary material contains an example video.

4 Dataset Statistics and Split

The full annotated set includes 402 sequences, 23, 979 images in total, and thus
on average 60 images per sequence. Tab. 3b shows a breakdown of the included
annotation types. In total, there were 47,497 lane instances annotated, i.e. 118.2
per sequence. Instance IDs are consistent across a sequence, i.e. consecutive
frames will use the same instance ID for the same lane. Furthermore, the anno-
tators have been instructed to categorise each sequence according the scene type:
urban, highway or rural. The breakdown of the sequences is shown in Tab. 3a.
We plan to update the dataset with new sequences, once they become available.

We split the data into two sets, for training and testing. The train set com-
prises 360 sequences and a total of 21, 355 frames, while the test set includes
42 sequences and 2, 624 frames. The test set was selected to include the same
urban/motorway/rural distribution as the train set. The frames of the training
set are made available1 with both images and annotations while only the images
are provided for the testing set.

Furthermore, we have measured the average annotation time per scene type,
and find that there is a large variation, with an urban scene taking roughly 3
times longer than a highway or countryside scene of similar length (see Tab. 3).
This is due to the varying complexity in terms of the road layout, which is caused
by various factors: the frequency of junctions and side roads, overall complexity
of lane structure and additional features such as traffic islands and cycle lanes
that are typically not found outside of an urban setting.

1 online at https://five.ai/datasets

https://five.ai/datasets
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Table 2. Dataset breakdown according scene type (a) and annotation coverage (b).
Coverage of scene types and instances is measured as percentage of the total number
of sequences, while the coverage of annotations is measured as percentage of the total
number of pixels.

Scene type

Urban 58.61%
Highway 10.56%
Rural 30.83%

(a)

Annotation type

annotation density 77.53%
non-road 62.13%
road 15.40%
ego-lane 8.84%

mean/median/min/max

#instances (per sequence) 2.2/2/1/6

(b)

Table 3. Average annotation time
in seconds.

Scene type Urban Highway Rural

Per sequence 361 100 140
Per image 5 2 2

Table 4. Agreement of the annotators

Task IoU std

Road vs non-road 97.2 ± 1.5
Ego vs road vs non-road 94.3 ± 3.4

AP@50 AP

Lane instance segmentation 99.0 84.4

The annotation quality is measured through agreement between the two an-
notators on 12 randomly selected sequences. 84.3% of the pixels have been given
a label by at least 1 annotator, with 67.3% of these being given an annota-
tion by both annotators; i.e. 56.8% of all pixels were given an annotation by
both annotators. We measure the agreement on these overlapping labels via
Intersection-over-Union (IoU) and agreement of instances using Average Preci-
sion (AP) and AP@50 (average precision with instance IoU greater than 50%).
The results are shown in Tab. 4. The standard deviation is calculated over the
12 sequences.

5 Experiments

To demonstrate the results achievable using our annotations we present evalua-
tion procedures, models and results for two example tasks: semantic segmenta-
tion of the road and ego-lane, as well as lane instance segmentation.
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5.1 Road and Ego-Lane Segmentation

The labels and data described in 3.2 directly allow for two segmentation tasks:
Road/Non-Road detection (ROAD) and Ego/Non-Ego/Non-Road lane detec-
tion (EGO). For our baseline we used the well studied SegNet [30] architecture,
trained independently for both the EGO and ROAD experiments. In addition to
an evaluation on our data, we provide ROAD and EGO cross-database results
for CityScapes (fine), Mapillary and KITTI Lanes. We have selected a simple
baseline model and thus the overall results are lower than those reported for
models tailored to the respective datasets, as can be seen in the leaderboards
of CityScapes, Mapillary and KITTI. Thus our results should not be seen as an
upper performance limit. Nevertheless, we deem them a good indicator on how
models generalise across datasets.

For each dataset, we use 10% of training sequences for validation. During
training, we pre-process each input image by resizing it to have a height of 330px
and extracting a random crop of 320× 320px. We use the ADAM optimiser [31]
with a learning rate of 0.001 which we decay to 0.0005 after 25, 000 steps and
then to 0.0001 after 50, 000 steps. We trained for 100, 000 training steps, and
select the model with the best validation loss. Our mini batch size was 2 and
the optimisation was performed on a per pixel cross entropy loss.

We train one separate model per dataset and per task. This leads to 4 models
for ROAD, trained on our data, CityScapes (fine), Mapillary and KITTI Lanes.
EGO labels are only available for the UM portion of KITTI Lanes and our data,
hence we train 2 models for EGO.

For each model we report the IoU, and additionally the F1 score as it is the
default for KITTI. We measure each model on held out data from every dataset.
For CityScapes and Mapillary the held out sets are their respective pre-defined
validation sets, for our dataset the held out set is our test set (as defined in
Sec. 3.2). The exception to this scheme is KITTI Lanes which is very small
and has no available annotated held out set. Therefore we use the entire set for
training the KITTI model, and the same set for the evaluation of other models.
We report the average IoU and F1 across classes for each task. Note that we
cropped the car hood and ornament from the CityScapes data, since it is not
present in other datasets (otherwise the results drop significantly). It should also
be noted that the results are not directly comparable to the intended evaluation
of CityScapes, Mapillary or KITTI Lanes due to the different treatment of the
road occluded by vehicles.

The ROAD results are shown in Tab. 5 and the EGO results in Tab. 6. First,
we note that IoU and F1 follow the same trend, while F1 is a bit larger in
absolute values. We see a clear trend between the datasets. Firstly, the highest
IoUs are achieved when training and testing subsets are from the same data.
This points to an overall generalisation issue; no dataset (including our own)
achieves the same performance on other data. The model trained on KITTI
shows the worst cross-dataset average. This is not surprising, since it is also the
smallest set (it contains only 289 images for the ROAD task and 95 images for
the EGO task). Cityscapes does better, but there is still a bigger gap to ours
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and Mapillary, probably due to lower diversity. Mapillary is similar to ours in
size and achieves almost the same performance. The slightly lower results could
be due to its different viewpoints, since it contains images taken from non-road
perspectives, e.g. side-walks.

Table 5. Results for the ROAD task, measured by IoU and F1 score. Off-diagonal
results are from cross-dataset experiments. The column determines which set the model
was trained on, and the row determines the source of the evaluation set. The reported
column average includes only cross-dataset experiments.

IoU
Trained On
Ours Mapillary CityScapes KITTI

T
es
te
d
O
n Our Test Set 95.0 85.4 73.2 71.0

Mapillary Val 82.9 90.0 79.6 69.6
CityScapes Val 85.2 85.2 90.0 60.4
KITTI Train 83.8 72.6 74.6 -

Cross-dataset Average 84.0 81.1 75.8 67.0

F1
Trained On
Ours Mapillary CityScapes KITTI

T
es
te
d
O
n Our Test Set 97.4 91.9 83.7 81.6

Mapillary Val 90.4 94.7 88.3 81.0
CityScapes Val 91.9 91.9 94.7 74.0
KITTI Train 90.9 83.5 84.8 -

Cross-dataset Average 91.1 89.1 85.6 75.8

Table 6. Results for the EGO task, measured by IoU and
F1 score.

Train Test IoU F1

Ours Ours 88.5 93.7
Ours KITTI 61.2 72.6
KITTI Ours 39.2 48.3

Table 7. Results
for lane instance
segmentation

Metric Score

AP 0.250
AP@50 0.507

5.2 Lane Instance Segmentation

The annotation of multiple distinct lanes per image, the number of which is
variable across images and potentially sequences, naturally suggests an instance
segmentation task for our dataset. Though it has been postulated that “Stuff”
is uncountable and therefore doesn’t have instances [32,33], we present this lane
instance segmentation task as a counter example. Indeed it would seem many
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stuff-like classes (parking spaces, lanes in a swimming pool, fields in satellite
imagery) can have meaningful delineations and therefore instances applied.

Providing a useful baseline for this lane instance segmentation task presents
its own challenges. The current state of the art for instance segmentation on
Cityscapes is MaskRCNN [34]. This approach is based on the RCNN object de-
tector and is therefore optimised for the detection of compact objects which fit
inside broadly non overlapping bounding boxes, traditionally called “Things”. In
the case of lanes detected in the perspective view, a bounding box for any given
lane greatly overlaps neighbouring lanes, making the task potentially challeng-
ing for standard bounding boxes. This becomes more apparent when the road
undergoes even a slight curve in which case the bounding boxes are almost on
top of one another even though the instance pixels are quite disjoint. Recently,
a few works have explored an alternative approach to RCNN based algorithms
which use pixel embeddings to perform instance segmentation [35,36,37,38]; we
provide a baseline for our dataset using pixel embeddings.

Specifically we train a model based on [35]. We follow their approach of learn-
ing per pixel embeddings whose value is optimised such that pixels within the
same training instance are given similar embeddings, while the mean embedding
of separate instances are simultaneously pushed apart. A cost function which
learns such pixel embeddings can be written down exactly and is presented in
Eq. 1-4 of [35], we use the same hyper parameters reported in that work, and
thus use an 8-dimensional embedding space. We impose this loss as an extra
output of a ROAD SegNet model trained along side the segmentation task from
scratch.

At run time we follow a variant of the approach proposed by [35], predicting
an embedding per pixel. We use our prediction of road to filter away pixels which
are not likely to be lanes. We then uniformly sample pixels in the road area and
cluster their embeddings using the Mean Shift [39] algorithm, identifying the
centres of our detected lane instances. Finally, all pixels in the road area are
assigned to their closest lane instance embedding using the euclidean distance
to the pixel’s own embedding; pixels assigned to the same centroid are in the
same instance.

For evaluation, we use the Average Precision (AP) measures calculated as
described for the MS-COCO [40] instance segmentation task. Specifically: we
calculate the AP across images and across IoU thresholds of detected lanes (pixels
assigned to embedding cluster centroids) and ground truth lanes. True and false
positives are counted in the following way: (1) A detection is a true positive

when it overlaps a ground truth instance with an IoU above some threshold
and (2) a detection is a false positive when it does not sufficiently overlap
any ground truth instance. Using these definitions we report average precision
at 50% IoU and an average AP across multiple thresholds from 50% to 95%
in increments of 5%. Tab. 7 shows the instance segmentation baseline results.
Qualitatively, the lane instances are well separated, as can be seen in Fig. 6.
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Fig. 6. An example image from our test set (top left) including predictions for the
ROAD (top right), EGO (bottom left) and instance (bottom right) tasks. The colours
of the ROAD and EGO models match those in Figure 1. The predicted instances are
represented by red, green and blue.

6 Conclusions

We have created a dataset for road detection and lane instance segmentation in
urban environments, using only un-calibrated low-cost equipment. Moreover, we
have done this using an efficient annotation procedure that minimises manual
work. The initial experiments presented show promising generalisation results
across datasets. Despite this step towards autonomous driving systems, our data
has various limitations: (1) Annotations of many other object classes of the static
road layout are not included, like buildings, traffic signs and traffic lights. (2) All
annotated lanes are parallel to the future driven path, thus currently lane splits
and perpendicular lanes (e.g. at junctions) have been excluded. (3) Positions
of dynamic objects, like vehicles, pedestrians and cyclists, are not included. In
future work, those limitations could be addressed by adding further annotations
of different objects in 3D, inspired by [27]. Non-parallel lanes could be handled
by extending our annotator tool to allow for variable angles for the lanes in
the road plane. Also, a pre-trained segmentation model could be used to better
initialise the annotations. Furthermore, the position of dynamic objects could be
estimated by including additional sensor modalities, like stereo vision or LIDAR.
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