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Abstract. This paper presents an approach for grounding phrases in
images which jointly learns multiple text-conditioned embeddings in a
single end-to-end model. In order to differentiate text phrases into seman-
tically distinct subspaces, we propose a concept weight branch that auto-
matically assigns phrases to embeddings, whereas prior works predefine
such assignments. Our proposed solution simplifies the representation
requirements for individual embeddings and allows the underrepresented
concepts to take advantage of the shared representations before feed-
ing them into concept-specific layers. Comprehensive experiments verify
the effectiveness of our approach across three phrase grounding datasets,
Flickr30K Entities, Referlt Game, and Visual Genome, where we obtain
a (resp.) 4%, 3%, and 4% improvement in grounding performance over
a strong region-phrase embedding baseline®.

Keywords: Natural language grounding, phrase localization, embed-
ding methods, conditional models

1 Introduction

Phrase grounding attempts to localize a given natural language phrase in an
image. This constituent task has applications to image captioning [6, 12,14, 19,
34], image retrieval [9,26], and visual question answering [1,29, 7]. Research on
phrase grounding has been spurred by the release of several datasets, some of
which primarily contain relatively short phrases [15,18], while others contain
longer queries, including entire sentences that can provide rich context [25,22].
The difference in query length compounds the already challenging problem of
generalizing to any (including never before seen) natural language input. Despite
this, much of the recent attention has focused on learning a single embedding
model between image regions and phrases [7, 22,10, 28, 31, 32, 35, 21].

In this paper, we propose a Conditional Image-Text Embedding (CITE) net-
work that jointly learns different embeddings for subsets of phrases (Figure 1).
This enables our model to train separate embeddings for phrases that share a
concept. Each conditional embedding can learn a representation specific to a
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Fig. 1. Our CITE model separates phrases into different groups and learns conditional
embeddings for these groups in a single end-to-end model. Assignments of phrases to
embeddings can either be pre-defined (e.g. by separating phrases into distinct concepts
like people or clothing), or can be jointly learned with the embeddings using the concept
weight branch. Similarly colored blocks refer to layers of the same type, with purple
blocks representing fully connected layers. Best viewed in color

subset of phrases while also taking advantage of weights that are shared across
phrases. This is especially important for smaller groups of phrases that would
be prone to overfitting if we were to train separate embeddings for them. In con-
trast to similar approaches that manually determine how to group concepts [20,
24, 30], we use a concept weight branch, trained jointly with the rest of the net-
work, to do a soft assignment of phrases to learned embeddings automatically.
The concept weight branch can be thought of producing a unique embedding
for each region-phrase pair based on a phrase-specific linear combination of indi-
vidual conditional embeddings. By training multiple embeddings our model also
reduces variance akin to an ensemble of networks, but with far fewer parameters
and lower computational cost.

Our idea of conditional embeddings was directly inspired by the conditional
similarity networks of Veit et al. [30], although that work does not deal with
cross-modal data and does not attempt to automatically assign different input
items to different similarity subspaces. An earlier precursor of the idea of condi-
tional similarity metrics can be found in [2]. Our work is also similar in spirit to
Zhang et al. [37], who produced a linear classifier used to discriminate between
image regions based on the textual input.

Our primary focus is on improving methods of associating individual im-
age regions with individual phrases. Orthogonal to this goal, other works have
focused on performing global inference for multiple phrases in a sentence and
multiple regions in an image. Wang et al. [33] modeled the pronoun relationships
between phrases and forced each phrase prediction associated with a caption to
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be assigned to a different region. Chen et al. [3] also took into account the predic-
tions made by other phrases when localizing phrases and incorporated bounding
box regression to improve their region proposals. In their follow-up work [4],
they introduced a region proposal network for phrases effectively reproducing
the full Faster RCNN detection pipeline [27]. Yu et al. [36] took into account the
visual similarity of objects in a single image when providing context for their
predictions. Plummer et al. [24] performed global inference using a wide range
of image-language constraints derived from attributes, verbs, prepositions, and
pronouns. Yeh et al. [35] used a word prior in combination with segmentation
masks, geometric features, and detection scores to select a region from all pos-
sible bounding boxes in an image. Many of these modifications could be used in
combination with our approach to further improve performance.
The contributions of our paper are summarized below:

— By conditioning the embedding used by our model on the input phrase we
simplify the representation requirements for each embedding, leading to a
more generalizable model.

— We introduce a concept weight branch which enables our embedding assign-
ments to be learned jointly with the image-text model.

— We introduce several improvements to the Similarity Network of Wang et
al. [32] boosting the baseline model’s localization performance by 3.5% over
the original paper.

— We perform extensive experiments over three datasets, Flickr30K Entities [25],
Referlt Game [15], and Visual Genome [18], where we report a (resp.) 4%,
3% and 4% improvement in phrase grounding performance over the baseline.

We begin Section 2.1 by describing the image-text Similarity Network [32]
that we use as our baseline model. Section 2.2 describes our text-conditioned
embedding model. Section 2.3 discusses three methods of assigning phrases to
the trained embeddings. Lastly, Section 3 contains detailed experimental results
and analysis of our proposed approach.

2 Owur Approach

2.1 Image-Text Similarity Network

Given an image and a phrase, our goal is to select the most likely location of
the phrase from a set of region proposals. To accomplish this, we build upon
the image-text similarity network introduced in Wang et al. [32]. The image
and text branches of this network each have two fully connected layers with
batch normalization [11] and ReLUs. The final outputs of these branches are
L2 normalized before performing an element-wise product between the image
and text representations. This representation is then fed into a triplet of fully
connected layers using batch normalization and ReLUs. This is analogous to
using the CITE model in Figure 1 with a single conditional embedding.
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The training objective for this network is a logistic regression loss computed
over phrases P, the image regions R, and labels Y. The label y;; for the ith
input phrase and jth region is +1 where they match and —1 otherwise. Since
this is a supervised learning approach, matching pairs of phrases and regions
need to be provided in the annotations of each dataset. After producing some
score x;; measuring the affinity between the image region and text features using
our network, the loss is given by

Loim(P,R,Y) = " log(1 + exp (—yi;ij)). (1)
j
In this formulation, it is easy to consider multiple regions for a given phrase as
positive examples and to use a variable number of region proposals per image.
This is in contrast to competing methods which score regions with softmax with
a cross entropy loss over a set number of proposals per image (e.g. [7,28, 3]).

Sampling phrase-region training pairs. Following Wang et al. [32], we con-
sider any regions with at least 0.6 intersection over union (IOU) with the ground
truth box for a given phrase as a positive example. Negative examples are ran-
domly sampled from regions of the same image with less than 0.3 IOU with the
ground truth box. We select twice the number of negative regions as we have pos-
itive regions for a phrase. If too few negative regions occur for an image-phrase
pair, then the negative example threshold is raised to 0.4 IOU.

Features. We represent phrases using the HGLMM fisher vector encoding [17] of
word2vec [23] PCA reduced down to 6,000 dimensions. We generate region pro-
posals using Edge Boxes [38]. Similarly to most state-of-the-art methods on our
target datasets, we represent image regions using a Fast RCNN network [8] fine-
tuned on the union of PASCAL 2007 and 2012 trainval sets [5]. The only excep-
tion is the experiment reported in Table 1(d), where we fine-tune the Fast RCNN
parameters (corresponding to the VGG16 box in Figure 1) on the Flickr30K En-
tities dataset.

Spatial location. Following [28,3,4,36], we experiment with concatenating
bounding box location features to our region representation. This way our model
can learn to bias predictions for phrases based on their location (e.g. that sky
typically occurs in the top part of an image). For Flickr30K Entities we en-
code this spatial information as defined in [3,4] for this dataset. For an image
of height H and width W and a box with height h and width w is encoded as
[Zomin/W, Ymin/ H, Tmaz /W, Ymaz/H, wh/W H]. For a fair comparison to prior
work [28,3,4], experiments on the Referlt Game dataset encode the spatial
information as an 8-dimensional feature vector [Zmin, Ymins Tmaz, Ymazs Teenters
Yeenter, W, h]. For Visual Genome we adopt the same method of encoding spatial
location as used for the Referlt Game dataset.

2.2 Conditional Image-Text Network

Inspired by Veit et al. [30], we modify the image-text similarity model of the
previous section to learn a set of conditional or concept embedding layers de-
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noted C1,...Ck in Figure 1. These are K parallel fully connected layers each
with output dimensionality M. The outputs of these layers, in the form of a
matrix of size M x K, are fed into the embedding fusion layer, together with
a K-dimensional concept weight vector U, which can be produced by several
methods, as discussed in Section 2.3. The fusion layer simply performs a matrix-
vector product, i.e., F' = CU. This is followed by another fully connected layer
representing the final classifier (i.e., the layer’s output dimension is 1).

2.3 Embedding Assignment

This section describes three possible methods for producing the concept weight
vector U for combining the conditional embeddings as introduced in Section 2.2.

Coarse categories. The Flickr30K Entities dataset comes with hand-constructed
dictionaries that group phrases into eight coarse categories: people, clothing, body
parts, animals, vehicles, instruments, scene, other. We use these dictionaries to
map phrases to binary concept vectors representing their group membership.
This is analogous to the approach of Veit et al. [30], which defines the concepts
based on meta-data labels. Both the remaining approaches base their assign-
ments on the training data rather than a hand-defined category label.

Nearest cluster center. A simple method of creating concept weights is to
perform K-means clustering on the text features of the queries in the test set.
Each cluster center becomes its own concept to learn. The concept weights U
are then encoded as one-hot cluster membership vectors which we found to work
better than alternatives such as similarity of a sample to each cluster center.

Concept weight branch. Creating a predefined set of concepts to learn, either
using dictionaries or K-means clustering, produces concepts that don’t neces-
sarily have anything to do with the difficulty or ease in localizing the phrases
within them. An alternative is to let the model decide which concepts to learn.
With this in mind, we feed the raw text features into a separate branch of the
network consisting of two fully connected layers with batch normalization and a
ReLU between them, followed by a softmax layer to ensure the output sums to 1
(denoted as the concept weight branch in Figure 1). The output of the softmax is
then used as the concept weights U. This can be seen as analogous to using soft
attention [34] on the text features to select concepts for the final representation
of a phrase. We use L1 regularization on the output of the last fully connected
layer before being fed into the softmax to promote sparsity in our assignments.
The training objective for our full CITE model then becomes

Leorre = Lsim (P, R,)Y ) + M|, (2)

where ¢ are the inputs to the softmax layer and A is a parameter controlling the
importance of the regularization term. Note that we do not enforce diversity of
assignments between different phrases, so it is possible that all phrases attend
to a single embedding. However, we do not see this actually occur in practice.
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We also tried to use entropy minimization rather then L1 regularization for our
concept weight branch as well as hard attention instead of soft attention, but
found all worked similarly in our experiments.

3 Experiments

3.1 Datasets and Protocols

We evaluate the performance of our phrase-region grounding model on three
datasets: Flickr30K Entities [25], Referlt Game [15], and Visual Genome [18].
The metric we report is the proportion of correctly localized phrases in the test
set. Consistent with prior work, a 0.5 IOU between the best-predicted box for a
phrase and its ground truth is required for a phrase to be considered successfully
localized. Similarly to [32,24,4], for phrases associated with multiple bounding
boxes, the phrase is represented as the union of its boxes.

Training procedure. We begin training our models with Adam [16]. After ev-
ery epoch, we evaluate our model on the validation set. After it hasn’t improved
performance for 5 epochs, we fine-tune our model with stochastic gradient de-
scent at 1/10th the learning rate and the same stopping criteria. We report test
set performance for the model that performed best on the validation set.

Comparative evaluation. In addition to comparing to previously published
numbers of state-of-the-art approaches on each dataset, we systematically eval-
uate the following baselines and variants of our model:

— Similarity Network. Our first baseline is given by our own implementation
of the model from Wang et al. [32], trained using the procedure described
above. Phrases are pre-processed using stop word removal rather than part-
of-speech filtering as done in the original paper. This change, together with
a more careful tuning of the training settings, leads to a 2.5% improvement
in performance over the reported results in [32]. The model is further en-
hanced by using the spatial location features (Section 2.1), resulting in a
total improvement of 3.5%.

— Individual Coarse Category Similarity Networks. We train multiple
Similarity Networks on different subsets of the data created according to the
coarse category assignments as described in Section 2.3.

— Individual K-means Similarity Networks. We train multiple Similarity
Networks on different subsets of the data created according to the nearest
cluster center assignments as described in Section 2.3.

— CITE, Coarse Categories. No concept weight branch. Phrases are as-
signed according to their coarse category.

— CITE, Random. No concept weight branch. Phrases are randomly assigned
to an embedding. At test time, phrases seen during training keep their as-
signments, while new phrases are randomly assigned.

— CITE, K-means. No concept weight branch. Phrases are matched to em-
beddings using nearest cluster center assignments.

— CITE, Learned. Our full model with the concept weight branch used to
automatically produce concept weights as described in Section 2.3.
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Table 1. Phrase localization performance on the Flickr30k Entities test set. (a) State-
of-the-art results when predicting a single phrase at a time taken from published
works. (b,c) Our baselines and variants using PASCAL-tuned features. (d) Results
using Flickr30k-tuned features

| Method [Accuracy‘
(a) Single Phrase Methods (PASCAL-tuned Features)®
NonlinearSP [31] 43.89
GroundeR [28] 47.81
MCB [7] 48.69
RtP [25] 50.89
Similarity Network [32] 51.05
IGOP [35] 53.97
SPC [24] 55.49
MCB + Reg + Spatial [3] 51.01
MNN + Reg + Spatial [3] 55.99
(b) Our Implementation
Similarity Network 53.45
Similarity Network + Spatial 54.52
(c) Conditional Models + Spatial
Individual Coarse Category Similarity Networks, K = 8 55.32
Individual K-means Similarity Networks, K =8 54.95
CITE, Coarse Categories, K = 8 55.42
CITE, Random, K = 16 57.58
CITE, K-means, K = 16 57.89
CITE, Learned, K =4 58.69
CITE, Learned, K = 4, 500 Edge Boxes 59.27
(d) Flickr30K-tuned Features + Spatial
PGN + QRN [4] 60.21
CITE, Learned, K = 4, 500 Edge Boxes 61.89

3.2 Flickr30K Entities

We use the same splits as Plummer et al. [25], which separates the images into
29,783 for training, 1,000 for testing, and 1,000 for validation. Models are trained
with a batch size of 200 (128 if necessary to fit into GPU memory) and learning
rate of 5e-5. We set A = 5e-5 in Eq. (2). We use the top 200 Edge Box proposals
per image and embedding dimension M = 256 unless stated otherwise.

Grounding Results. Table 1 compares overall localization accuracies for a
number of methods. The numbers for our Similarity Network baseline are re-
ported in Table 1(b), and as stated above, they are better than the published
numbers from [32]. Table 1(c) reports results for variants of conditional embed-
ding models. From the first two lines, we can see that learning embeddings from

2 Performance on this task can be further improved by taking into account the predic-
tions made for other phrases in the same sentence [24, 33, 3, 4], with the best result
using Pascal-tuned features of 57.53% achieved by Chen et al. [3] and 65.14% using
Flickr30K-tuned features [4].
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subsets of the data without any shared weights leads to only a small improvement
(< 1%) over the Similarity Network baseline. The third line of Table 1(c) reports
that separating phrases by manually defined high-level concepts only leads to a
1% improvement even when weights are shared across embeddings. This is likely
due, in part, to the significant imbalance between different coarse categories, as
a uniform random assignment shown in the fourth line of Table 1(c) lead to a 3%
improvement. The fifth line of Table 1(c) demonstrates that grouping phrases
based on their text features better reflects the needs of the data, resulting in just
over 3% improvement over the baseline, only slightly better than random assign-
ments. An additional improvement is reported in the eighth line of Table 1(c)
by incorporating our concept weight branch, enabling our model to both deter-
mine what concepts are important to learn and how to assign phrases to them.
We see in the last line of Table 1(c) that going from 200 to 500 bounding box
proposals provides a small boost in localization accuracy. This results in our
best performance using PASCAL-tuned features which is 3% better than the
prior work reported in Table 1(a) and 4.5% better than the Similarity Network.
We also note that the time to test an image-phrase pair is almost unaffected
using our approach (the CITE, Learned, K=4 model performs inference on 200
Edge Boxes at 0.182 seconds per pair using a NVIDIA Titan X GPU with our
implementation) compared with the baseline Similarity Network (0.171 seconds
per pair). Finally, Table 1(d) gives results for models whose visual features were
fine-tuned for localization on the Flickr30K Entities dataset. Our model still
obtains a 1.5% improvement over the approach of Chen et al. [4], which used
bounding box regression as well as a region proposal network. In principle, we
could also incorporate these techniques to further improve the model.

Table 2 breaks down localization accuracy by coarse category. Of particular
note are our results on the challenging body part category, which are typically
small and represent only 3.5% of the phrases in the test set, improving over the
next best model as well as the Similarity Network trained on just body part
phrases by 10% when using Flickr30K-tuned features. We also see a substantial
improvement in the wvehicles and other categories, seeing a 5-9% improvement
over the previous state-of-the-art. The only category where we perform worse
are phrases referring to scenes, which commonly cover the majority (or entire)
image. Here, incorporating a bias towards selecting larger proposals, as in [25,
24], can lead to significant improvements.

Parameter Selection. In addition to reporting the localization performance,
we also provide some insight into the effect of different parameter choices and
what information our model is capturing. In Figure 2 we show how the number
K of learned embeddings affects performance. Using our concept weight branch
consistently outperforms K-means cluster assignments. Table 3 shows how the
embedding dimensionality M affects performance. Here we see that reducing
the output dimension from 256 to 64 (i.e., by 1/4th) leads to a minor (1%)
decrease in performance. This result is particularly noteworthy as the CITE
network with K = 4, M = 64 has 4 million parameters compared the 14 million
the baseline Similarity Network has with M = 256 while still maintaining a
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Table 2. Comparison of phrase grounding performance over coarse categories on the
Flickr30K Entities dataset. Our models were tested with 500 Edge Box proposals

Cloth-| Body |Anim-| Vehi- |Instru-

ing |Parts| als | cles |ments Scene| Other

People

PASCAL-tuned Features

GroundeR [28] 61.00 | 38.12110.33|62.55 | 68.75 | 36.42 | 58.18|29.08
RtP [25] 64.73 | 46.88 |17.21|65.83 |68.75 | 37.65 [51.39|31.77
IGOP [35] 68.71 |56.83|19.50| 70.07 | 73.75 | 39.50 | 60.38 | 32.45
MCB + Reg + Spatial [3] 62.75 | 43.67 | 14.91| 65.44 | 65.25 | 24.74 |64.10| 34.62
MNN + Reg + Spatial [3] 67.38 | 47.57120.11|73.75|72.44 | 29.34 |63.68|37.88

CITE, Learned, K = 4 + Spatial|73.20| 52.34 |30.59|76.25|75.75|48.15 | 55.64 |42.83

Flickr30K-tuned Features

PGN + QRN + Spatial [4] 75.05 | 55.90 [20.27| 73.36 | 68.95 | 45.68 (65.27|38.80
CITE, Learned, K = 4 + Spatial| 75.95|58.50|30.78|77.03(79.25|48.15 | 58.78 |43.24

Simirity Network —— Similarity Network
—e—K-means —e—K-means

Val Set Performance Learned Test Set Performance Learned
Random 59 Random

Number of Embeddings Number of Embeddings

Fig. 2. Effect of the number of learned embeddings (K) on Flickr30K Entities local-
ization accuracy using PASCAL-tuned features

3% improvement in performance. We also experimented with different ways of
altering the Similarity Network to have the same number of parameters to ours
at similar points (e.g. increasing the last fully connected layer to be K times
larger or adding K additional layers), but found they performed comparably
to the baseline Similarity Network (i.e. their performance was about 4% worse
than our approach). In addition to experiments on how many layers to use and
the size of each layer, we also explored the effect the number of Edge Boxes has
on performance in Table 4. In contrast to some prior work which performed best
using 200 candidates (e.g. [25,24]), our model’s increased discriminate power
enables us to still be able to obtain a benefit from using up to 500 proposals.

Concept Weight Branch Examination. To analyze what our model is learn-
ing, Figure 3 shows the means and standard deviations of the weights over the
different embeddings broken down by coarse categories. Interestingly, people end
up being split between two embeddings. We find that people phrases tend to be
split by plural vs. singular. Table 5 gives a closer look at the conditional em-
beddings by listing the ten phrases with the highest weight for each embedding.
While most phrases give the first embedding little weight, it appears to provide
the most benefit for finding very specific references to people rather than generic
terms (e.g. little curly hair girl instead of girl itself). These patterns generally
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Table 3. Localization accuracy with different embedding sizes using the CITE,
Learned, K = 4 model on Flickr30K Entities with PASCAL-tuned features. Embedding
size refers to M, the output dimensionality of layers P1 and the conditional embeddings
in Figure 1. The remaining fully connected layers’ output dimensions (excluding those
that are part of the VGG16 network) are four times the embedding size

Embedding Size (M) 64 | 128 | 256 | 512
Validation Set Accuracy|56.32|57.51|57.53|57.42
Test Set Accuracy 57.77|58.48/58.69|58.64

Table 4. Localization accuracy with different numbers of proposals using the CITE,
Learned, K = 4 model on Flickr30K Entities with PASCAL-tuned features

#Edge Box Proposals | 100 | 200 | 500 | 1000
Validation Set Accuracy|49.61|57.53|58.48|57.87
Test Set Accuracy 51.32(58.69(59.27|58.63

hold through multiple runs of the model, indicating they are important concepts
to learn for the task.

Qualitative Results. Figure 4 gives a look into areas where our model could
be improved. Of the phrases that occur at least 100 times in the test set, the
lowest performing phrases are street and people at (resp.) 60% and 64% accu-
racy. The highest performing of these common phrases is man at 81% accuracy,
which also happens to be the most common phrase with 1065 instances in the
test set. In the top-left example of Figure 4, the word people, which is not cor-
rectly localized, refers to partially visible background pedestrians. Analyzing the
saliency of a phrase in the context of the whole caption may lead to treating these
phrases differently. Global inference constraints, for example, a requirement that
predictions for a man and a woman must be different, would be useful for the
top-center example. Performing pronoun resolution, as attempted in [24], would
help in the top-right example. In the test set, the pronoun one is correctly lo-
calized around 36% of the time, whereas the blond woman is correctly localized
81% of the time. Having an understanding of relationships between entities may
help in cases such as the bottom-left example of Figure 4, where the extent of
the table could be refined by knowing that the groceries are “on” it. Our model
also performs relatively poorly on phrases referring to classic “stuff” categories,
as shown in the bottom-center and bottom-right examples. The water and street
phrases in these examples are only partly localized. Using pixel-level predictions
may help to recover the full extent of these types of phrases since the parts of
the images they refer to are relatively homogeneous.

3.3 Referlt Game

We use the same splits as Hu et al. [10], which consist of 10,000 images combined
for training and validation with the remaining 10,000 images for testing. Models



Conditional Image-Text Embedding Networks 11

1 12

0.4
0.2
, A
\\"“?\ﬁ & @9@ -,&Qa &
&

o o
o b

Embedding Weight Mean
Embedding Weight STD
o
@

o I
. = o N = = N
& & & N
& S & & & & o & @ & &
o & & & S £ S &F & & S
& & < o F o & & £ & Ew
Q &f B 4 K o5 & o8 &Q < & & o &

&
A8
&

&
o &

&

mEmbeddingl WEmbedding2 mEmbedding3  mEmbedding 4 wEmbeddingl mEmbedding? mEmbedding3 = Embedding4

Fig. 3. The mean weight for each embedding (left) along with the standard deviation
of those weights (right) broken down by coarse category for the Flickr30K Entities
dataset using Flickr30K-tuned features

Table 5. The ten phrases with the highest weight per embedding on the Flickr30K
Entities dataset using Flickr30K-tuned features

Embedding 1|[soldiers (0.08), male nun (0.07), rather angry looking woman
(0.07), skinny dark complected boy (0.07), little curly hair girl
(0.07), middle eastern woman (0.07), first man’s leg (0.07), statue
athletic man (0.07), referee (0.07), woman drink wine (0.07)
Embedding 2||red scooter (0.97), blue clothes (0.97), yellow bike (0.97), red bike
(0.97), red buckets (0.97), yellow backpack (0.97), street window
shops (0.97), red blue buckets (0.97), red backpack (0.97), purple
red backpack (0.97)

Embedding 3|/two people (0.94), two men (0.93), two young kids (0.93), two kids
(0.93), two white-haired women (0.93), two women (0.93), group
three boys (0.93), two young people (0.93), three people (0.92),
crowd people (0.92)

Embedding 4||blond-haired woman (0.91), dark-skinned woman (0.91), gray-
haired man (0.91), one-armed man (0.91), dark-haired man (0.91),
red-haired man (0.91), boy young man (0.91), man (0.91), well-
dressed man (0.91), dark-skinned man (0.91)

are trained with a batch size of 128, learning rate of 5e-4, and A = 5e-4 in Eq. (2).
We generate 500 Edge Box proposals per image.

Results. Table 6 reports the localization accuracy across the Referlt Game test
set. The first line of Table 6(b) shows that our model using the nearest cluster
center assignments results in a 2.5% improvement over the baseline Similarity
Network. Using our concept weight branch in order to learn assignments yields
an additional small improvement.

We note that we do not outperform the approach of Yeh et al. [35] on this
dataset. This can likely be attributed to the failures of Edge Boxes to produce
adequate proposals on the Referlt Game dataset. Oracle performance using the
top 500 proposals is 93% on Flickr30K Entities, while it is only 86% on this
dataset. As a result, the specialized bounding box methods used by Yeh et al. as
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Two blond females in public,

A man with and a woman with
as walking on a grass field. out fliers and the other holding

A woman painting on handing

people walk by her.

A woman puts on the A lady by er is grasping a black A bicyclist with rides down
table. pot. a suburban street.

Fig. 4. Examples demonstrating some common failure cases on the Flickr30K Entities
dataset. See Section 3.2 for discussion
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Fig. 5. Effect of the number K of embeddings on localization accuracy on the Referlt
Game dataset

well as Chen et al. [3] may play a larger role here. Our model would also likely
benefit from these improved bounding boxes.

As with the Flickr30K Entities dataset, we show the effect of the number K
of embeddings on localization performance in Figure 5. While the concept weight
branch provides a small performance improvement across many different choices
of K, when K = 2 the clustering assignments actually perform a little better.
However, this behavior is atypical in our experiments across all three datasets,
and may simply be due to the small size of the Referlt Game training data, as
it has far fewer ground truth phrase-region pairs to train our models with.

3.4 Visual Genome

We use the same splits as Zhang et al. [37], consisting of 77,398 images for
training and 5,000 each for testing and validation. Models are trained with a
learning rate of 5e-5, and A = 5e-4 in Eq. (2). We generate 500 Edge Box
proposals per image, and use a batch size of 128.
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Table 6. Localization performance on the Referlt Game test set. (a) Published results
and our Similarity Network baseline. (b) Our best-performing conditional models

l Method [Accuracy‘
(a) State-of-the-art
SCRC [10] 17.93
GroundeR + Spatial [28] 26.93
MCB + Reg + Spatial [3] 26.54
CGRE [21] 31.85
MNN + Reg + Spatial [3] 32.21
IGOP [35] 34.70
Similarity Network + Spatial 31.26
(b) Conditional Models + Spatial
CITE, K-Means, K = 2 34.01
CITE, Learned, K = 12 34.13

Results. Table 7 reports the localization accuracy across the Visual Genome
dataset. Table 7(a) lists published numbers from several recent methods. The
current state of the art performance belongs to Zhang et al. [37], who fine-
tuned visual features on this dataset and created a cleaner set during training
by pruning ambiguous phrases. We did not perform either fine-tuning or phrase
pruning, so the most comparable reference number for our methods is their 17.5%
accuracy without these steps.

The baseline accuracies for our Similarity Network with and without spatial
features are given in the last two lines of Table 7(a). We can see that including the
spatial features gives only a small improvement. This is likely due to the denser
annotations in this dataset as compared to Flickr30K Entities. For example,
a phrase like a man in Flickr30K Entities would typically refer to a relatively
large region towards the center since background instances are commonly not
mentioned in an image-level caption. However, entities in Visual Genome include
both foreground and background instances.

In the first line of Table 7(b), we see our K-means model is 3.5% better than
the Similarity Network baseline, and over 6% better than the 17.5% accuracy
of [37]. According to the second line of Table 7(b), using the concept weight
branch obtains a further improvement. In fact, our full model with pre-trained
PASCAL features has better performance than [37] with fine-tuned features.

As with the other two datasets, Figure 6 reports performance as a function of
the number of learned embeddings. Echoing most of the earlier results, we see a
consistent improvement for the learned embeddings over the K-means ones. The
large size of this dataset (> 250,000 instances in the test set) helps to reinforce
the significance of our results.

4 Conclusion

This paper introduced a method of learning a set of conditional embeddings
and phrase-to-embedding assignments in a single end-to-end network. The ef-
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Table 7. Phrase localization performance on Visual Genome. (a) Published results and
our Similarity Network baselines. APP refers to ambiguous phrase pruning (see [37]
for details). (b) Our best-performing conditional models

l Method ‘Accuracy‘
(a) State-of-the-art
Densecap [13] 10.1
SCRC [10] 11.0
DBNet [37] 17.5
DBNet (with APP) [37] 21.2
DBNet (with APP, V. Genome-tuned Features) [37]| 23.7
Similarity Network 19.76
Similarity Network + Spatial 20.08
(b) Conditional Models + Spatial
CITE, K-Means, K = 12 23.67
CITE, Learned, K = 12 24.43
Val Set Performance ___E;’ir%n;;”e‘“‘:’k Test Set Performance _'_Eiii;”““”

Number of Embeddings Number of Embeddings

Fig. 6. Effect of the number of learned embeddings on performance on the Visual
Genome with models trained on 1/3 of the available training data

fectiveness of our approach was demonstrated on three popular and challenging
phrase-to-region grounding datasets. In future work, our model could be further
improved by including a term to enforce that distinct concepts are being learned
by each embedding.

Our experiments focused on localizing individual phrases to a fixed set of
category-independent region proposals. As such, our absolute accuracies could
be further improved by incorporating a number of orthogonal techniques used in
competing work. By jointly predicting multiple phrases in an image our model
could take advantage of relationships between multiple entities (e.g. [24, 33, 3, 4]).
Including bounding box regression and a region proposal network as done in [3, 4]
would also likely lead to a better model. In fact, tying the regression parameters
to a specific concept embedding may further improve performance since it would
simplify our prediction task as a result of needing to learn parameters for just
the phrases assigned to that embedding.
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