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Abstract. Deep Neural Networks (DNNs) have been widely applied in
various recognition tasks. However, recently DNNs have been shown to
be vulnerable against adversarial examples, which can mislead DNNs to
make arbitrary incorrect predictions. While adversarial examples are well
studied in classification tasks, other learning problems may have differ-
ent properties. For instance, semantic segmentation requires additional
components such as dilated convolutions and multiscale processing. In
this paper, we aim to characterize adversarial examples based on spatial
context information in semantic segmentation. We observe that spatial
consistency information can be potentially leveraged to detect adversar-
ial examples robustly even when a strong adaptive attacker has access
to the model and detection strategies. We also show that adversarial
examples based on attacks considered within the paper barely transfer
among models, even though transferability is common in classification.
Our observations shed new light on developing adversarial attacks and
defenses to better understand the vulnerabilities of DNNs.

Keywords: Semantic segmentation, adversarial example, spatial con-
sistency

1 Introduction

Deep Neural Networks (DNNs) have been shown to be highly expressive and have
achieved state-of-the-art performance on a wide range of tasks, such as speech
recognition [20], image classification [24], natural language understanding [54],
and robotics [32]. However, recent studies have found that DNNs are vulnerable
to adversarial examples [38,17,31,47,45,40,9,8,7]. Such examples are intentionally
perturbed inputs with small magnitude adversarial perturbation added, which
can induce the network to make arbitrary incorrect predictions at test time,
even when the examples are generated against different models [27,5,33,46]. The
fact that the adversarial perturbation required to fool a model is often small
and (in the case of images) imperceptible to human observers makes detecting
such examples very challenging. This undesirable property of deep networks has
become a major security concern in real-world applications of DNNs, such as self-
driving cars and identity recognition systems [16,37]. Furthermore, both white-
box and black-box attacks have been performed against DNNs successfully when



2 Xiao et al.

an attacker is given full or zero knowledge about the target systems [2,17,45].
Among black-box attacks, transferability is widely used for generating attacks
against real-world systems which do not allow white-box access. Transferability
refers to the property of adversarial examples in classification tasks where one
adversarial example generated against a local model can mislead another unseen
model without any modification [33].

Given these intriguing properties of adversarial examples, various analyses
for understanding adversarial examples have been proposed [29,30,43,42], and
potential defense/detection techniques have also been discussed mainly for the
image classification problem [13,21,30]. For instance, image pre-processing [14],
adding another type of random noise to the inputs [48], and adversarial retrain-
ing [17] have been proposed for defending/detecting adversarial examples when
classifying images. However, researchers [4,19] have shown that these defense or
detection methods are easily attacked again by attackers with or even without
knowledge of the defender’s strategy. Such observations bring up concerns about
safety problems within diverse machine learning based systems.

In order to better understand adversarial examples against different tasks,
in this paper we aim to analyze adversarial examples in the semantic segmenta-
tion task instead of classification. We hypothesize that adversarial examples in
different tasks may contain unique properties that provide in-depth understand-
ing for such examples and encourage potential defensive mechanisms. Different
from image classification, in semantic segmentation, each pixel will be given a
prediction label which is based on its surrounding information [12]. Such spatial
context information plays a more important role for segmentation algorithms,
such as [50,55,26,23]. Whether adversarial perturbation would break such spatial
context is unknown to the community. In this paper we propose and conduct
image spatial consistency analysis, which randomly selects overlapping patches
from a given image and checks how consistent the segmentation results are for
the overlapping regions. Our pipeline of spatial consistency analysis for adver-
sarial/benign instances is shown in Figure 1. We find that in segmentation task,
adversarial perturbation can be weakened for separately selected patches, and
therefore adversarial and benign images will show very different behaviors in
terms of the spatial consistency information. Moreover, since such spatial con-
sistency is highly random, it is hard for adversaries to take such constraints into
account when performing adaptive attacks. This renders the system less brittle
even facing the sophisticated adversaries, who have full knowledge about the
model as well as the detection/defense method applied..

We use image scale transformation to perform detection of adversarial exam-
ples as a baseline, which has been used for detection in classification tasks [39].
We show that by randomly scaling the images, adversarial perturbation can be
destroyed and therefore adversarial examples can be detected. However, when
the attacker knows the detection strategy (adaptive attacker), even without the
exact knowledge about the scaling rate, attacker can still perform adaptive at-
tacks against the detection mechanism, which is similar with the findings in clas-
sification tasks [4]. On the other hand, we show that by incorporating spatial
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consistency check, existing semantic segmentation networks can detect adversar-
ial examples (average AUC 100%), which are generated by the state-of-the-art
attacks considered in this paper, regardless of whether the adversary knows
the detection method. Here, we allow the adversaries to have full access to the
model and any detection method applied to analyze the robustness of the model
against adaptive attacks. We additionally analyze the defense in a black-box
setting, which is more practical in real-world systems.

In this paper, our goal is to further understand adversarial attacks by con-
ducting spatial consistency analysis in the semantic segmentation task, and we
make the following contributions:

1. We propose the spatial consistency analysis for benign/adversarial images
and conduct large scale experiments on two state-of-the-art attack strategies
against both DRN and DLA segmentation models with diverse adversarial
targets on different dataset, including Cityscapes and real-world autonomous
driving video dataset.

2. We are the first to analyze spatial information for adversarial examples in
segmentation models. We show that spatial consistency information can be
potentially leveraged to distinguish adversarial examples. We also show that
spatial consistency check mechanism induce a high degree of randomness and
therefore is robust against adaptive adversaries. We evaluate image scaling
and spatial consistency, and show that spatial consistency outperform stan-
dard scaling based method.

3. In addition, we empirically show that adversarial examples generated by the
attack methods considered in our studies barely transfer among models, even
when these models are of the same architecture with different initialization,
different from the transferability phenomena in classification tasks.

mIOU

mIOU
mIOU

Random Patch Selection Spatial Consistency

Fig. 1: Spatial consistency analysis for adversarial and benign instances in se-
mantic segmentation.
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2 Related work

Semantic Segmentation has received long lasting attention in the computer
vision community [25]. Recent advances in deep learning [24] also show that
deep convolutional networks can achieve much better results than traditional
methods [28]. Yu et al. [50] proposed using dilated convolutions to build high-
resolution feature maps for semantic segmentation. They can improve the per-
formance significantly compared to upsampling approaches [28,34,1]. Most of the
recent state-of-the-art approaches are based on dilated convolutions [51,55,44]
and residual networks [18]. Therefore, in this work, we choose dilated residual
networks (DRN) [51] and deep layer aggregation (DLA) [52] as our target models
for attacking and defense.

Adversarial Examples for Semantic Segmentation have been studied recently
in addition to adversarial examples in image classification. Xie et al. proposed
a gradient based algorithm to attack pixels within the whole image iteratively
until most of the pixels have been misclassified into the target class [49], which
is called dense adversary generation (DAG). Later an optimization based at-
tack algorithm has been studied by introducing a surrogate loss function called
Houdini in the objective function [10]. The Houdini loss function is made up of
two parts. The first part represents the stochastic margin between the score of
actual and predicted targets, which reflects the confidence of model prediction.
The second part is the task loss, which is independent with the model and corre-
sponds to the actual task. The task loss enables Houdini algorithm to generate
adversarial examples in different tasks, including image segmentation, human
pose estimation, and speech recognition.

Various detection and defense methods have also been studied against ad-
versarial examples in image classification. For instance, adversarial training [17]
and its variations [41,30] have been proposed and demonstrated to be effective in
classification task, which is hard to adapt for the segmentation task. Currently
no defense or detection methods have been studied in image segmentation.

(a) Cityscapes (b) BDD

Fig. 2: Samples of benign and adversarial examples generated by Houdini on
Cityscapes [11] (targeting on Kitty/Pure) and BDD100K [53] (targeting on
Kitty/Scene). We select DRN as our target model here. Within each subfigure,
the first column shows benign images and corresponding segmentation results,
and the second and third columns show adversarial examples with different ad-
versarial targets.
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3 Spatial Consistency Based Method

In this section, we will explore the effects that spatial context information has
on benign and adversarial examples in segmentation models. We conduct dif-
ferent experiments based on various models and datasets, and due to the space
limitation, we will use a small set of examples to demonstrate our discoveries
and relegate other examples to the supplementary materials. Figure 2 shows
the benign and adversarial examples targeting diverse adversarial targets: “Hello
Kitty” (Kitty) and random pure color (Pure) on Cityscapes; and “Hello Kitty”
(Kitty) and a real scene without any cars (Scene) on BDD video dataset, re-
spectively. In the rest of the paper, we will use the format “attack method |
target” to label each adversarial example. Here we consider both DAG [49] and
Houdini [10] attack methods.

(a) Benign example (b) Heatmap of benign image

(c) DAG | Kitty (d) DAG | Pure (e) Houdini | Kitty (f) Houdini | Pure

Fig. 3: Heatmap of per-pixel self-entropy on Cityscapes dataset against DRN
model. (a) and (b) show a benign image and its corresponding per-pixel self-
entropy heatmap. (c)-(f) show the heatmaps of the adversarial examples gener-
ated by DAG and Houdini attacks targeting “Hello Kitty” (Kitty) and random
pure color (Pure).

3.1 Spatial Context Analysis

To quantitatively analyze the contribution of spatial context information to the
segmentation task, we first evaluate the entropy of prediction based on different
spatial context. For each pixel m within an image, we randomly select K patches
{P1, P2, ..., PK} which contain m. Afterwards, within each patch Pi, the pixel m
will be assigned with a confidence vector based on Softmax prediction, so pixel
m will correspond to K vectors in total. We discretize each vector to a one-hot
vector and sum up these K one-hot vectors to obtain vector Vm. Each component
Vm[j] of the vector represents the number of times pixel m is predicted to be
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Fig. 4: Examples of spatial consistency based method on adversarial examples
generated by DAG and Houdini attacks targeting on Kitty and Pure. First col-
umn shows the original image and corresponding segmentation results. Column
P1 and P2 show two randomly selected patches, while column O1 and O2 repre-
sent the segmentation results of the overlapping regions from these two patches,
respectively. The mIOU between O1 and O2 are reported. It is clear that the
segmentation results of the overlapping regions from two random patches are
very different for adversarial images (low mIOU), but relatively consistent for
benign instance (high mIOU).

class j. We then normalize Vm by dividing K. Finally, for each pixel m, we
calculate its self-entropy

H(m) = −
∑

j

Vm[j] logVm[j]

and therefore calculate the self entropy for each vector. We utilize such en-
tropy information of each pixel to convey the consistency of different surround-
ing patches and plot this information in the heatmaps in Figure 3. It is clear
that for benign instances, the boundaries of original objects have higher entropy,
indicating that these are places harder to predict and can gain more information
by considering different surrounding spatial context information.

3.2 Patch Based Spatial Consistency

The fact that surrounding spatial context information shows different spatial
consistency behaviors for benign and adversarial examples motivates us to per-
form the spatial consistency check hoping to potentially tell these two data
distributions apart.

First, we introduce how to generate overlapping spatial contexts by select-
ing random patches and then validate the spatial consistency information. Let
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s be the patch size and w, h be the width and height of an image X. We de-
fine the first and second patch based on the coordinates of their top-left and
bottom-right vertices (u1, u2, u3, u4), (v1, v2, v3, v4), where Let (du1,v1

, du2,v2) be
displacement between the top-left coordinate of the first and second patch:
du1,v1 = v1 − u1, du2,v2 = v2 − u2. To guarantee that there is enough over-
lap, we require (du1,v1

and du2,v2) to be in the range (blow, bupper). Here we
randomly select the two patches, aiming to capture diverse enough surrounding
spatial context, including information both near and far from the target pixel.
The patch selection algorithm (getOverlapPatches) is shown in supple-
mentary materials.

Next we show how to apply the spatial consistency based method to a
given input and therefore recognize adversarial examples. The detailed algo-
rithm is shown in Algorithm 1. Here K denotes the number of overlapping
regions for which we will check the spatial consistency. We use the mean In-
tersection Over Union (mIOU) between the overlapping regions O1, O2 from
two patches P1, P2 to measure their spatial consistency. The mIOU is defined
as 1

ncls

∑
i nii/(

∑
j nij +

∑
j nji − nii), where nij denotes the number of pixels

predicted to be class i in O1 and class j in O2, and ncls is the number of the
unique classes appearing in both O1 and O2. getmIOU is a function that com-
putes the mIOU given patches P1, P2 along with their overlapping regions O1

and O2 shown in supplementary materials.

Algorithm 1: Spatial Consistency Check Algorithm

input: Input image X;
number of overlapping regions K;
patch size s;
segmentation model f ;
bound blow, bupper;

output: Spatial consistency threshold c;

Initialization : cs←[], w ← x.width, h← x.height;
1 for k ← 0 to K do

2 (u1, u2, u3, u4), (v1, v2, v3, v4)← getOverlapPatches(s, w, h, blow, bupper);
3 P1 = X[u1 : u3, u2 : u4], P2 = X[v1 : v3, v3 : v4];

/* get prediction result of two random patches from f */;
4 pred1 ← argmaxc fc(P1), pred

2 ← argmaxc fc(P2);
/* get prediction of the overlap area between two patches */;

5 p1 ← {pred
1
i,j |∀(i, j) ∈ pred1, i > v1 − u1, j > v2 − u2};

6 p2 ← {pred
2
i,j |∀(i, j) ∈ pred2, i < s− (v1 − u1), j < s− (v2 − u2)};

/* get consistency value (mIOU) from two patches */;

7 cs
+
← getmIOU(p1, p2);

8 end

9 c←Mean(cs);
Return: c
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4 Scale Consistency Analysis

We have discussed how spatial consistency can be utilized to potentially charac-
terize adversarial examples in segmentation task. In this section, we will discuss
another baseline method: image scale transformation, which is another natural
factor considered in semantic segmentation [22,28]. Here we focus on image blur
operation by applying Gaussian blur to given images [6], which is studied for
detecting adversarial examples in image classification [39]. Similarly, we will an-
alyze the effects of image scaling on benign/adversarial samples. Since spatial
context information is important for segmentation task, scaling or performing
segmentation on small patches may damage the global information and there-
fore affect the final prediction. Here we aim to provide quantitative results to
understand and explore how image scale transformation would affect adversarial
perturbation.

4.1 Scale Consistency Property

Scale theory is commonly applied in image segmentation task [35], and therefore
we train scale resilient models to obtain robust ones, which we perform attacks
against. On these scale resilient models, we first analyze how image scaling affect
segmentation results for benign/adversarial samples. We applied the DAG [49]
and Houdili [10] attacks against the DRN and DLA models with different adver-
sarial targets. The images and corresponding segmentation results before and
after scaling are shown in Figure 5. We apply Gaussian kernel with different
standard deviations (std) to scale both benign and adversarial instances. It is
clear that when we apply Gaussian blurring with higher std (3 and 5), adversarial
perturbation is harmed and the segmentation results are not longer adversarial
targets for scale transformed adversarial examples as shown in Figure 5 (a)-(e).

5 Experimental Results

In this section, we conduct comprehensive large scale experiments to evaluate the
image spatial and scale consistency information for benign and adversarial ex-
amples generated by different attack methods. We will also show that the spatial
consistency based detection method is robust against sophisticated adversaries
with knowledge about defenders, while scale transformation method is not.

5.1 Implementation Details

Datasets. We apply both Cityscapes [11] and BDD100K [53] in our evaluation.
We show results on the validation set of both datasets, which contains 500 high
resolution images with a combined 19 categories of segmentation labels. These
two datasets are both outdoor datasets containing instance-level annotations,
which would raise real-wold safety concerns if they were attacked. Comparing
with other datasets such as Pascal VOC [15] and CamVid [3], these two dataset
are more challenging due to the relatively high resolution and diverse scenes
within each image.
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(a) Benign example

(b) DAG | Kitty (c) DAG | Pure

(d) Houdini | Kitty (e) Houdini | Pure

Fig. 5: Examples of images and corresponding segmentation results before/after
image scaling on Cityscapes against DRN model. For each subfigure, the first col-
umn shows benign/adversarial image, while the later columns represent images
after scaling by applying Gaussian kernel with std as 0.5, 3, and 5, respectively.
(a) shows benign images before/after image scaling and the corresponding seg-
mentation results; (b)-(e) present similar results for adversarial images generated
by DAG and Houdini attacks targeting on Kitty and Pure.

Semantic Segmentation Models. We apply Dilated residual networks (DRN) [51]
and Deep Layer Aggregation (DLA) [52] as our target models. More specifically,
we select DRN-D-22 and DLA-34. For both models, we use 512 crop size and 2
random scale during training to obtain scale resilient models for both the BDD
and Cityscapes datasets. The mIOU of these two models on pristine training
data are shown in Table 1. More result on different models can be found in
supplementary materials.

Adversarial Examples We generate adversarial examples based on two state-of-
the-art attack methods: DAG [49] and Houdini [10] using our own implemen-
tation of the methods. We select a complex image, Hello Kitty (Kitty), with
different background colors and a random pure color (Pure) as our targets on
Cityscapes dataset. Furthermore, in order to increase the diversity, we also se-
lect a real-world driving scene (Scene) without any cars from the BDD training
dataset as another malicious target on BDD. Such attacks potentially show that
every image taken in the real world can be attacked to the same scene without
any car showing on the road, which raises great security concerns for future au-
tonomous driving systems. Furthermore, we also add three additional adversarial
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targets, including “ECCV 2018”, “Remapping”, and “Color strip” in supplemen-
tary materials to increase the diversity of adversarial targets.

We generate 500 adversarial examples for Cityscapes and BDD100K datasets
against both DRN and DLA segmentation models targeting on various malicious
targets (More results can be found in supplementary materials).

5.2 Spatial Consistency Analysis

To evaluate the spatial consistency analysis quantitatively for segmentation task,
we leverage it to build up a simple detector to demonstrate its property. Here
we perform patch based spatial consistency analysis, and we select patch size
and region bound as s = 512, blow = 32, bupper = 64. We select the number
of overlapping regions as K ∈ {1, 5, 10, 50}. Here we first select some benign
instances, and calculate the normalize mIOU of overlapping regions from two
random patches. We record the lower bound of theses mIOU as the threshold of
the detection method. Note that when reporting detection rate in the rest of the
paper, we will use the threshold learned from a set of benign training data; while
we also report Area Under Curve (AUC) of Receiver Operating Characteristic
Curve (ROC) curve of a detection method to evaluate its overall performance.
Therefore, given an image, for each overlapping region of two random patches,
we will calculate the normalize mIOU and compare with the threshold calcu-
lated before. If it is larger, the image is recognized as benign; vice versa. This
process is illustrated in Algorithm 1. We report the detection results in terms of
AUC in Table 1 for adversarial examples generated in various settings as men-
tioned above. We observed that such simple detection method based on spatial
consistency information can achieve AUC as nearly 100% for adversarial exam-
ples that we studied here. In addition, we also select s with a random number
between 384 to 512 (too small patch size will affect the segmentation accuracy
even on benign instances, so we tend not to choose small patches on the purpose
of control variable) and show the result in supplementary materials. We observe
that random patch sizes achieve similar detection result.

5.3 Image Scale Analysis

As a baseline, we also utilize image scale information to perform as a simple
detection method and compare it with the spatial consistency based method. We
apply Gaussian kernel to perform the image scaling based detection, and select
stddetect ∈ {0.5, 3, 5} as the standard deviation of Gaussian kernel. We compute
the normalize mIOU between the original and scalled images. Similarly, the
detection results of corresponding AUC are shown in Table 1. It is demonstrated
that detection method based on image scale information can achieve similarly
high AUC compared with spatial consistency based method.

5.4 Adaptive Attack Evaluation

Regarding the above detection analysis, it is important to evaluate adaptive

attacks, where adversaries have knowledge of the detection strategy.
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Method Model mIOU
Detection Detection Adap

DAG Houdini DAG Houdini
Pure Kitty Pure Kitty Pure Kitty Pure Kitty

Scale
(std)

0.5
DRN

(16.4M) 66.7
100% 95% 100% 99% 100% 67% 100% 78%

3.0 100% 100% 100% 100% 100% 0% 97% 0%
5.0 100% 100% 100% 100% 100% 0% 71% 0%

0.5
DLA

(18.1M) 74.5
100% 98% 100% 100% 100% 75% 100% 81%

3.0 100% 100% 100% 100% 100% 24% 100% 34%
5.0 100% 100% 100% 100% 97% 0% 95% 0%

Spatial

(K)

1
DRN

(16.4M) 66.7

91% 91% 94% 92% 98% 94% 92% 94%
5 100% 100% 100% 100% 100% 100% 100% 100%
10 100% 100% 100% 100% 100% 100% 100% 100%
50 100% 100% 100% 100% 100% 100% 100% 100%

1
DLA

(18.1M) 74.5

96% 98% 97% 97% 99% 99% 100% 100%
5 100% 100% 100% 100% 100% 100% 100% 100%
10 100% 100% 100% 100% 100% 100% 100% 100%
50 100% 100% 100% 100% 100% 100% 100% 100%

Table 1: Detection results (AUC) of image spatial (Spatial) and scale consistency

(Scale) based methods on Cityscapes dataset. The number in parentheses of the Model

shows the number of parameters for the target mode, and mIOU shows the performance

of segmentation model on pristine data. We color all the AUC less than 80% with red.

As Carlini & Wagner suggest [4], we conduct attacks with full access to the
detection model to evaluate the adaptive adversary based on Kerckhoffs principle
[36]. To perform adaptive attack against the image scaling detection mechanism,
instead of attacking the original model, we add another convolutional layer after
the input layer of the target model similarly with [4]. We select std ∈ {0.5, 3, 5} to
apply adaptive attack, which is the same with the detection model. To guarantee
that the attack methods will converge, when performing the adaptive attacks,
we select 0.06 for the upper bound for adversarial perturbation, in terms of L2

distance (pixel values are in range [0,1]), since larger than that the perturbation
is already very visible. The detection results against such adaptive attacks are
shown in Table 1 on Cityscapes (We omit the results on BDD to supplementary
materials). Results on adaptive attack show that the image scale based detection
method is easily to be attacked (AUC of detection drops dramatically), which
draws similar conclusions as in classification task [4]. We show the qualitative
results in Figure 6 (a), and it is obvious that even under large std of Gaus-
sian kernel, the adversarial example can still be fooled into the malicious target
(Kitty).

Next, we will apply adaptive attack against the spatial consistency based
method. Due to the randomness of the approach, we propose to develop a strong
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(a) Image scaling (b) Convergence analysis (c) spatial consistency

Fig. 6: Performance of adaptive attack. (a) shows adversarial image and corre-
sponding segmentation result for adaptive attack against image scaling. The first
two rows show benign images and the corresponding segmentation results; the
last two rows show the adaptive adversarial images and corresponding segmen-
tation results under different std of Gaussian kernel (0.5, 3, 5 for column 2-4).
(b) and (c) show the performance of adaptive attack against spatial consistency
based method with different K. (b) presents mIOU of overlapping regions for
benign and adversarial images during along different iterations. (c) shows mIOU
for overlapping regions of benign and adversarial instances at iteration 200.

adaptive adversary that we can think of by randomly select K patches (the same
value of K used by defender). Then the adversary will try to attack both the
whole image and the selected K patches to the corresponding part of malicious
target. The detailed attack algorithm is shown in the supplementry materials.
The corresponding detection results of the spatial consistency based method
against such adaptive attacks on Cityscapes are shown in Table 1. It is interesting
to see that even against such strong adaptive attacks, the spatial consistency
based method can still achieve nearly 100% detection results. We hypothesize
that it is because of the high dimension randomness induced by the spatial
consistency based method since the search space for patches and the overlapping
regions is pretty high. Figure 6 (b) analyzes the convergence of such adaptive
attack against spatial consistency based method. From figure 6 (b) and (c),
we can see that with different K, the selected overlapping regions still remain
inconsistent with high probability.

Since the spatial consistency based method can induce large randomness, we
generate a confusion matrix of detection results for adversaries and detection
method choosing various K as shown in Figure 7. It is clear that for different
malicious targets and attack methods, choosing K = 50 is already sufficient to
detect sophisticated attacks. In addition, based on our empirical observation,
attacking with higher K increases the computation complexity of adversaries
dramatically.

5.5 Transferability Analysis

Given the common properties of adversarial examples for both classifier and
segmentation tasks, next we will analyze whether transferability of adversarial
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(a) Kitty (b) Pure

Fig. 7: Detection performance of spatial consistency based method against adap-
tive attack with different K on Cityscapes with DRN model. X-axis indicates
the number of patches selected to perform the adaptive attack (0 means regular
attack). Y-axis indicates the number of overlapping regions selected for during
detection.

(a) DAG (b) Houdini

Fig. 8: Transferability analysis: cell (i, j) shows the normalized mIoU value or
pixel-wise attack success rate of adversarial examples generated against model
j and evaluate on model i. Model A,B,C are DRN (DRN-D-22) with different
initialization. We select “Hello Kitty” as target

examples exists in segmentation models considering they are particularly sensi-
tive to spatial and scale information. Transferability is demonstrated to be one
of the most interesting properties of adversarial examples in classification task,
where adversarial examples generated against one model is able to mislead the
other model, even if the two models are of different architectures. Given this
property, transferability has become the foundation of a lot of black-box attacks
in classification task. Here we aim to analyze whether adversarial examples in
segmentation task still retain high transferability. First, we train three DRN
models with the same architecture (DRN-D-22) but different initialization and
generate adversarial images with the same target.

Each adversarial image has at least 96% pixel-wise attack success rate against
the original model. We evaluate both the DAG and Houdini attacks and eval-
uate the transferability using normalized mIoU excluding pixels with the same
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label for the ground truth adversarial target. We show the transferability evalu-
ation among different models in the confusion matrices in Figure 81. We observe
that the transferability rarely appears in the segmentation task. More results on
different network architectures and data sets are in the supplementary materials.

As comparison with classification task, for each network architecture we train
a classifier on it and evaluate the transferability results as shown in supplemen-
tary materials. As a control experiments, we observe that classifiers with the
same architecture still have high transferability aligned with existing findings,
which shows that the low transferability is indeed due to the natural of segmen-
tation instead of certain network architectures.

This observation here is quite interesting, which indicates that black-box
attacks against segmentation models may be more challenging. Furthermore, the
reason for such low transferability in segmentation is possibly because adversarial
perturbation added to one image could have focused on a certain region, while
such spatial context information is captured differently among different models.
We plan to analyze the actual reason for low transferability in segmentation in
the future work.

6 Conclusions

Adversarial examples have been heavily studied recently, pointing out vulnera-
bilities of deep neural networks and raising a lot of security concerns. However,
most of such studies are focusing on image classification problems, and in this
paper we aim to explore the spatial context information used in semantic segmen-
tation task to better understand adversarial examples in segmentation scenarios.
We propose to apply spatial consistency information analysis to recognize adver-
sarial examples in segmentation, which has not been considered in either image
classification or segmentation as a potential detection mechanism. We show that
such spatial consistency information is different for adversarial and benign in-
stances and can be potentially leveraged to detect adversarial examples even
when facing strong adaptive attackers. These observations open a wide door
for future research to explore diverse properties of adversarial examples under
various scenarios and develop new attacks to understand the vulnerabilities of
DNNs.
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1 Since the prediction of certain classes presents low IoU value due to imperfect seg-
mentation, we eliminate K classes with the lowest IoU values to avoid side effects.
In our experiments, we set K to be 13.



Characterizing Adversarial Examples Based on Spatial Consistency 15

References

1. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: A deep convolutional
encoder-decoder architecture for image segmentation. IEEE transactions on pat-
tern analysis and machine intelligence 39(12), 2481–2495 (2017)

2. Bhagoji, A.N., He, W., Li, B., Song, D.: Exploring the space of black-box attacks
on deep neural networks. arXiv preprint arXiv:1712.09491 (2017)

3. Brostow, G.J., Shotton, J., Fauqueur, J., Cipolla, R.: Segmentation and recognition
using structure from motion point clouds. In: ECCV ’08 Proceedings of the 10th
European Conference on Computer Vision: Part I. pp. 44–57 (2008)

4. Carlini, N., Wagner, D.: Adversarial examples are not easily detected: Bypassing
ten detection methods. In: Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security. pp. 3–14. ACM (2017)

5. Carlini, N., Wagner, D.A.: Towards evaluating the robustness of neural networks.
In: 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA,
May 22-26, 2017. pp. 39–57 (2017). https://doi.org/10.1109/SP.2017.49, https:
//doi.org/10.1109/SP.2017.49

6. Chan, T.F., Wong, C.K.: Total variation blind deconvolution. IEEE transactions
on Image Processing 7(3), 370–375 (1998)

7. Chen, H., Zhang, H., Chen, P.Y., Yi, J., Hsieh, C.J.: Attacking visual language
grounding with adversarial examples: A case study on neural image captioning.
In: Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). vol. 1, pp. 2587–2597 (2018)

8. Chen, P.Y., Sharma, Y., Zhang, H., Yi, J., Hsieh, C.J.: Ead: elastic-net attacks to
deep neural networks via adversarial examples. arXiv preprint arXiv:1709.04114
(2017)

9. Chen, P.Y., Zhang, H., Sharma, Y., Yi, J., Hsieh, C.J.: Zoo: Zeroth order optimiza-
tion based black-box attacks to deep neural networks without training substitute
models. In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and
Security. pp. 15–26. ACM (2017)

10. Cisse, M., Adi, Y., Neverova, N., Keshet, J.: Houdini: Fooling deep structured
prediction models. arXiv preprint arXiv:1707.05373 (2017)

11. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene
understanding. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 3213–3223 (2016)

12. Cui, W., Wang, Y., Fan, Y., Feng, Y., Lei, T.: Localized fcm clustering with spatial
information for medical image segmentation and bias field estimation. Journal of
Biomedical Imaging 2013, 13 (2013)

13. Das, N., Shanbhogue, M., Chen, S.T., Hohman, F., Chen, L., Kounavis, M.E.,
Chau, D.H.: Keeping the bad guys out: Protecting and vaccinating deep learning
with jpeg compression. arXiv preprint arXiv:1705.02900 (2017)

14. Dziugaite, G.K., Ghahramani, Z., Roy, D.M.: A study of the effect of jpg compres-
sion on adversarial images. arXiv preprint arXiv:1608.00853 (2016)

15. Everingham, M., Eslami, S.M.A., Van Gool, L., Williams, C.K.I., Winn, J., Zisser-
man, A.: The pascal visual object classes challenge: A retrospective. International
Journal of Computer Vision 111(1), 98–136 (Jan 2015)

16. Evtimov, I., Eykholt, K., Fernandes, E., Kohno, T., Li, B., Prakash, A., Rahmati,
A., Song, D.: Robust physical-world attacks on machine learning models. arXiv
preprint arXiv:1707.08945 (2017)

https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/SP.2017.49


16 Xiao et al.

17. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572 (2014)

18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

19. He, W., Wei, J., Chen, X., Carlini, N., Song, D.: Adversarial example defense: En-
sembles of weak defenses are not strong. In: 11th USENIX Workshop on Offensive
Technologies (WOOT 17). USENIX Association, Vancouver, BC (2017), https:
//www.usenix.org/conference/woot17/workshop-program/presentation/he

20. Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.r., Jaitly, N., Senior, A.,
Vanhoucke, V., Nguyen, P., Sainath, T.N., et al.: Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research groups. IEEE
Signal processing magazine 29(6), 82–97 (2012)

21. Hosseini, H., Chen, Y., Kannan, S., Zhang, B., Poovendran, R.: Blocking trans-
ferability of adversarial examples in black-box learning systems. arXiv preprint
arXiv:1703.04318 (2017)

22. Johnson, B., Xie, Z.: Unsupervised image segmentation evaluation and refinement
using a multi-scale approach. ISPRS Journal of Photogrammetry and Remote Sens-
ing 66(4), 473–483 (2011)

23. Krähenbühl, P., Koltun, V.: Efficient inference in fully connected crfs with gaussian
edge potentials. In: Advances in neural information processing systems. pp. 109–
117 (2011)

24. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems.
pp. 1097–1105 (2012)

25. Leung, T., Malik, J.: Representing and recognizing the visual appearance of ma-
terials using three-dimensional textons. International journal of computer vision
43(1), 29–44 (2001)

26. Lin, G., Shen, C., Van Den Hengel, A., Reid, I.: Efficient piecewise training of
deep structured models for semantic segmentation. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 3194–3203 (2016)

27. Liu, Y., Chen, X., Liu, C., Song, D.: Delving into transferable adversarial examples
and black-box attacks. arXiv preprint arXiv:1611.02770 (2016)

28. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 3431–3440 (2015)

29. Ma, X., Li, B., Wang, Y., Erfani, S.M., Wijewickrema, S., Houle, M.E.,
Schoenebeck, G., Song, D., Bailey, J.: Characterizing adversarial subspaces using
local intrinsic dimensionality. arXiv preprint arXiv:1801.02613 (2018)

30. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

31. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images. In: Computer Vision and Pattern
Recognition (CVPR), 2015 IEEE Conference on. pp. 427–436. IEEE (2015)

32. Noda, K., Arie, H., Suga, Y., Ogata, T.: Multimodal integration learning of robot
behavior using deep neural networks. Robotics and Autonomous Systems 62(6),
721–736 (2014)

33. Papernot, N., McDaniel, P., Goodfellow, I.: Transferability in machine learning:
from phenomena to black-box attacks using adversarial samples. arXiv preprint
arXiv:1605.07277 (2016)

https://www.usenix.org/conference/woot17/workshop-program/presentation/he
https://www.usenix.org/conference/woot17/workshop-program/presentation/he


Characterizing Adversarial Examples Based on Spatial Consistency 17

34. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedi-
cal image segmentation. In: International Conference on Medical image computing
and computer-assisted intervention. pp. 234–241. Springer (2015)

35. Saha, P.K., Udupa, J.K., Odhner, D.: Scale-based fuzzy connected image segmenta-
tion: theory, algorithms, and validation. Computer Vision and Image Understand-
ing 77(2), 145–174 (2000)

36. Shannon, C.E.: Communication theory of secrecy systems. Bell Labs Technical
Journal 28(4), 656–715 (1949)

37. Sharif, M., Bhagavatula, S., Bauer, L., Reiter, M.K.: Accessorize to a crime: Real
and stealthy attacks on state-of-the-art face recognition. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security. pp.
1528–1540. ACM (2016)

38. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fer-
gus, R.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199
(2013)

39. Tabacof, P., Valle, E.: Exploring the space of adversarial images. In: Neural Net-
works (IJCNN), 2016 International Joint Conference on. pp. 426–433. IEEE (2016)

40. Tong, L., Li, B., Hajaj, C., Xiao, C., Vorobeychik, Y.: Hardening classifiers against
evasion: the good, the bad, and the ugly. CoRR, abs/1708.08327 (2017)

41. Tramèr, F., Kurakin, A., Papernot, N., Boneh, D., McDaniel, P.: Ensemble adver-
sarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204 (2017)

42. Weng, T.W., Zhang, H., Chen, H., Song, Z., Hsieh, C.J., Boning, D., Dhillon,
I.S., Daniel, L.: Towards fast computation of certified robustness for relu networks.
arXiv preprint arXiv:1804.09699 (2018)

43. Weng, T.W., Zhang, H., Chen, P.Y., Yi, J., Su, D., Gao, Y., Hsieh, C.J., Daniel,
L.: Evaluating the robustness of neural networks: An extreme value theory ap-
proach. In: International Conference on Learning Representations (2018), https:
//openreview.net/forum?id=BkUHlMZ0b

44. Wu, Z., Shen, C., Hengel, A.v.d.: Wider or deeper: Revisiting the resnet model for
visual recognition. arXiv preprint arXiv:1611.10080 (2016)

45. Xiao, C., Li, B., yan Zhu, J., He, W., Liu, M., Song, D.: Generating ad-
versarial examples with adversarial networks. In: Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI-18. pp.
3905–3911. International Joint Conferences on Artificial Intelligence Organization
(7 2018). https://doi.org/10.24963/ijcai.2018/543, https://doi.org/10.24963/

ijcai.2018/543

46. Xiao, C., Sarabi, A., Liu, Y., Li, B., Liu, M., Dumitras, T.: From patching delays
to infection symptoms: Using risk profiles for an early discovery of vulnerabili-
ties exploited in the wild. In: 27th USENIX Security Symposium (USENIX Secu-
rity 18). USENIX Association, Baltimore, MD (2018), https://www.usenix.org/
conference/usenixsecurity18/presentation/xiao

47. Xiao, C., Zhu, J.Y., Li, B., He, W., Liu, M., Song, D.: Spatially transformed adver-
sarial examples. In: International Conference on Learning Representations (2018),
https://openreview.net/forum?id=HyydRMZC-

48. Xie, C., Wang, J., Zhang, Z., Ren, Z., Yuille, A.: Mitigating adversarial effects
through randomization. In: International Conference on Learning Representations
(2018)

49. Xie, C., Wang, J., Zhang, Z., Zhou, Y., Xie, L., Yuille, A.: Adversarial examples
for semantic segmentation and object detection. In: International Conference on
Computer Vision. IEEE (2017)

https://openreview.net/forum?id=BkUHlMZ0b
https://openreview.net/forum?id=BkUHlMZ0b
https://doi.org/10.24963/ijcai.2018/543
https://doi.org/10.24963/ijcai.2018/543
https://doi.org/10.24963/ijcai.2018/543
https://www.usenix.org/conference/usenixsecurity18/presentation/xiao
https://www.usenix.org/conference/usenixsecurity18/presentation/xiao
https://openreview.net/forum?id=HyydRMZC-


18 Xiao et al.

50. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In:
International Conference on Learning Representations (ICLR) (2016)

51. Yu, F., Koltun, V., Funkhouser, T.: Dilated residual networks. In: Computer Vision
and Pattern Recognition (CVPR) (2017)

52. Yu, F., Wang, D., Darrell, T.: Deep layer aggregation. arXiv preprint
arXiv:1707.06484 (2017)

53. Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: Bdd100k:
A diverse driving video database with scalable annotation tooling. arXiv preprint
arXiv:1805.04687 (2018)

54. Zeng, D., Liu, K., Lai, S., Zhou, G., Zhao, J.: Relation classification via convolu-
tional deep neural network. In: Proceedings of COLING 2014, the 25th Interna-
tional Conference on Computational Linguistics: Technical Papers. pp. 2335–2344
(2014)

55. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In:
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). pp. 2881–2890
(2017)


