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Abstract. Occlusions present a great challenge for pedestrian detection
in practical applications. In this paper, we propose a novel approach to
simultaneous pedestrian detection and occlusion estimation by regressing
two bounding boxes to localize the full body as well as the visible part of
a pedestrian respectively. For this purpose, we learn a deep convolutional
neural network (CNN) consisting of two branches, one for full body es-
timation and the other for visible part estimation. The two branches are
treated differently during training such that they are learned to produce
complementary outputs which can be further fused to improve detection
performance. The full body estimation branch is trained to regress full
body regions for positive pedestrian proposals, while the visible part esti-
mation branch is trained to regress visible part regions for both positive
and negative pedestrian proposals. The visible part region of a negative
pedestrian proposal is forced to shrink to its center. In addition, we in-
troduce a new criterion for selecting positive training examples, which
contributes largely to heavily occluded pedestrian detection. We validate
the effectiveness of the proposed bi-box regression approach on the Cal-
tech and CityPersons datasets. Experimental results show that our ap-
proach achieves promising performance for detecting both non-occluded
and occluded pedestrians, especially heavily occluded ones.
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1 Introduction

Pedestrian detection has a wide range of applications including autonomous driv-
ing, robotics and video surveillance. Many efforts have been made to improve its
performance in recent years [3, 8, 17, 6, 33, 40, 5, 39, 41, 37, 34, 4]. Although rea-
sonably good performance has been achieved on some benchmark datasets for
detecting non-occluded or slightly occluded pedestrians, the performance for de-
tecting heavily occluded pedestrians is still far from being satisfactory. Take the
Caltech dataset [9] for example. One of the top-performing approaches, SDS-
RCNN [4], achieves a miss rate of about 7.4% at 0.1 false positives per image
(FPPI) for non-occluded or slightly occluded pedestrian detection, but its miss
rate increases dramatically to about 58.5% at 0.1 FPPI for heavily occluded
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Fig. 1. Detection examples of our approach. The red and blue boxes on each detec-
tion represent the estimated full body and visible part respectively. For a pedestrian
detection, its visible part is estimated normally as shown in columns 1 and 2. For a
non-pedestrian detection, its visible part is estimated to be the center of its correspond-
ing pedestrian proposal as shown in column 3. Since the red box of each detection is
obtained by adding estimated offsets to its corresponding pedestrian proposal, the blue
box of a non-pedestrian detection is often not exactly at the center of the red box.

pedestrian detection (See Fig. 6). Occlusions occur frequently in real-world ap-
plications. For example, pedestrians on a street are often occluded by other
objects like cars and they may also occlude each other when walking closely.
Therefore, it is important for a pedestrian detection approach to robustly detect
partially occluded pedestrians.

Recently, part detectors are commonly used to handle occlusions for pedes-
trian detection [22, 21, 25, 23, 31, 43, 44]. One drawback of these approaches is
that parts are manually designed and therefore may not be optimal. In [22, 21,
25, 31, 43], part detectors are learned separately and then integrated to handle
occlusions. For these approaches, the computational cost for testing the part de-
tectors grows linearly with the number of part detectors. A deep convolutional
neural network (CNN) is designed to jointly learn and integrate part detec-
tors [23]. However, this approach does not use part annotations for learning the
part detectors, which may limit its performance. In [44], a multi-label learning
approach is proposed to learn part detectors jointly so as to improve the perfor-
mance for heavily occluded pedestrian detection and reduce the computational
cost of applying the part detectors, but for non-occluded or slightly occluded
pedestrian detection, it does not perform as well as state-of-the-art approaches.
In addition, for a pedestrian, all these approaches only output one bounding box
which specifies the full body region of the pedestrian but does not explicitly es-
timate which part of the pedestrian is visible or occluded. Occlusion estimation
is not well explored in the pedestrian detection literature, but it is critical for
applications like robotics which often requires occlusion reasoning to perform
interactive tasks.

In this paper, we propose a novel approach to simultaneous pedestrian de-
tection and occlusion estimation by regressing two bounding boxes for full body
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and visible part estimation respectively. Deep CNNs [10, 34, 4] have achieved
promising performance for non-occluded or slightly occluded pedestrian detec-
tion, but their performance for heavily occluded pedestrian detection is far from
being satisfactory. This motivates us to explore how to learn a deep CNN for ac-
curately detecting both non-occluded and occluded pedestrians. We thus adapt
the Fast R-CNN framework [16, 34, 4] to learn a deep CNN for simultaneous
pedestrian classification, full body estimation and visible part estimation. Our
deep CNN consists of two branches, one for full body estimation and the other
for visible part estimation. Each branch performs classification and bounding
box regression for pedestrian proposals. We treat the two branches differently
during training such that they produce complementary outputs which can be
further fused to boost detection performance. The full body estimation branch
is trained to regress full body regions only for positive pedestrian proposals as in
the original Fast R-CNN framework, while the visible part estimation branch is
trained to regress visible part regions for both positive and negative pedestrian
proposals. The visible part region of a negative pedestrian proposal is forced to
shrink to its center. Figure 1 shows some detection examples of our approach. For
training a deep CNN, positive pedestrian proposals are usually selected based on
their overlaps with full body annotations [39, 5, 20, 37, 41, 34, 4], which would in-
clude poorly aligned pedestrian proposals for heavily occluded pedestrians (See
Fig. 4(b)). To address this issue, we introduce a new criterion which exploits both
full body and visible part annotations for selecting positive pedestrian proposals
to improve detection performance on heavily occluded pedestrians.

The proposed bi-box regression approach has two advantages: (1) It can
provide occlusion estimation by regressing the visible part of a pedestrian; (2)
It exploits both full body and visible part regions of pedestrians to improve
the performance of pedestrian detection. We demonstrate the effectiveness of
our approach on the Caltech [9] and CityPersons [41] datasets. Experimental
results show that our approach has comparable performance to the state-of-the-
art for detecting non-occluded pedestrians and achieves the best performance
for detecting occluded pedestrians, especially heavily occluded ones.

The contributions of this paper are three-fold: (1) A bi-box regression ap-
proach is proposed to achieve simultaneous pedestrian detection and occlusion
estimation by learning a deep CNN consisting of two branches, one for full body
estimation and the other for visible part estimation; (2) A training strategy is
proposed to improve the complementarity between the two branches such that
their outputs can be fused to improve pedestrian detection performance; (3) A
new criterion is introduced to select better positive pedestrian proposals, con-
tributing to a large performance gain for heavily occluded pedestrian detection.

2 Related Work

Recently, deep CNNs have been widely adopted for pedestrian detection [6, 5, 17,
1, 23, 31, 32, 38, 39, 10, 37, 20, 41, 34, 4] and achieved state-of-the-art performance
[10, 34, 4]. In [38, 39], a set of decision trees are learned by boosting to form
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a pedestrian detector using features from deep CNNs. A complexity-aware cas-
caded pedestrian detector [6] is learned by taking into account the computational
cost and discriminative power of different types of features (including CNN fea-
tures) to achieve a trade-off between detection accuracy and speed. A cascade
of deep CNNs are proposed in [1] to achieve real-time pedestrian detection by
first using tiny deep CNNs to reject a large number of negative proposals and
then using large deep CNNs to classify remaining proposals. In [31, 23], a set of
part detectors are learned and integrated to handle occlusions. A deep CNN is
learned to jointly optimize pedestrian detection and other semantic tasks to im-
prove pedestrian detection performance [32]. In [5, 37, 20, 41, 34, 4], Fast R-CNN
[16] or Faster R-CNN [27] is adapted for pedestrian detection. In this paper, we
explore how to learn a deep CNN to improve performance for detecting partially
occluded pedestrians.

Many efforts have been made to handle occlusions for pedestrian detection.
A common framework for occlusion handling is learning and integrating a set
of part detectors to handle a variety of occlusions [36, 28, 12, 11, 22, 21, 25, 23,
43, 31, 44]. The parts used in these approaches are usually manually designed,
which may not be optimal. For approaches (e.g. [21, 31, 43]) which use a large
number of part detectors, the computational cost of applying the learned part
detector could be a bottleneck for real-time pedestrian detection. In [23], part
detectors are learned and integrated with a deep CNN, which can greatly reduce
the detection time. However, the part detectors in this approach are learned in
a weakly supervised way, which may limit its performance. In [44], a multi-label
learning approach is proposed to both improve the reliability of part detectors
and reduce the computational cost of applying part detectors. Different part de-
tector integration approaches are explored and compared in [43]. Different from
these approaches, we learn a deep CNN without using parts to handle various
occlusions. There are also some other approaches to occlusion handling. In [18],
an implicit shape model is adopted to generate a set of pedestrian proposals
which are further refined by exploiting local and global cues. The approach in
[35] models a pedestrian as a rectangular template of blocks and performs oc-
clusion reasoning by estimating the visibility statuses of these blocks. Several
approaches [24, 30, 26] are specially designed to handle occlusion situations in
which multiple pedestrians occlude each other. A deformable part model [13]
and its variants [15, 2, 42] can also be used for handling occlusions.

3 Proposed Approach

Given an image, we want to detect pedestrians in it and at the same time esti-
mate the visible part of each pedestrian. Specifically, our approach produces for
each pedestrian two bounding boxes which specify its full body and visible part
regions respectively. Considering promising performance achieved by deep CNNs
for pedestrian detection [39, 5, 20, 37, 41, 34, 4], we adapt the Fast R-CNN frame-
work [16] for our purpose. Figure 2 shows the overview of the proposed bi-box
regression approach. A set of region proposals which possibly contain pedestri-
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Fig. 2. Overview of our bi-box regression approach.

ans are generated for an input image by a proposal generation approach (e.g.
[39, 4]). These pedestrian proposals are then fed to a deep CNN which performs
classification, full body estimation and visible part estimation for each proposal.

3.1 Network Structure

We adapt a commonly used deep CNN, VGG-16 [29], to achieve simultaneous
pedestrian detection and occlusion estimation. Figure 3 shows the structure of
our deep CNN. We keep convolution layers 1 through 4 in VGG-16 unchanged. It
is reported in [39, 5] that a feature map with higher resolution generally improves
detection performance. As in [39, 5], we remove the last max pooling layer and
convolution layer 5 from VGG-16. A deconvolution layer (Deconv5), which is
implemented by bilinear interpolation, is added on top of Conv4-3 to increase
the resolution of the feature map from Conv4-3. Following Deconv5 is a ROI
pooling layer on top of which are two branches, one for full body estimation and
the other for visible part estimation. Each branch performs classification and
bounding box regression as in Fast R-CNN [16].

3.2 Pedestrian Detection

For detection, an image and a set of pedestrian proposals are fed to the deep
CNN for classification, full body estimation and visible part estimation. Let
P = (P x, P y, Pw, P h) be a pedestrian proposal, where P x and P y specify the
coordinates of the center of P in the image, and Pw and P h are the width and
height of P respectively. For the pedestrian proposal P , the full body estimation
branch outputs two probabilities p1 = (p01, p

1
1) (from the Softmax1 layer) and four

offsets f = (fx, fy, fw, fh) (from the FC11 layer). The visible part estimation
branch also outputs two probabilities p2 = (p02, p

1
2) (from the Softmax2 layer)

and four offsets v = (vx, vy, vw, vh) (from the FC13 layer). p11 and p01 = 1 − p11
represent the probabilities of P containing and not containing a pedestrian,
respectively. p02 and p12 are similarly defined. fx and fy specify the scale-invariant
translations from the center of P to that of the estimated full body region, while
fw and fh specify the log-space translations from the width and height of P
to those of the estimated full body region respectively. vx, vy, vw and vh are
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Fig. 3. Network architecture. The number in each fully connected (FC) layer is its
output dimensionality. Softmax1 and Softmax2 perform the same task, pedestrian clas-
sification. FC11 is for full body estimation and FC13 is for visible part estimation.

similarly defined for visible part estimation. We define f and v following [16].
With f and v, we can compute the full body and visible part regions for the
pedestrian proposal P (See [16] for more details).

We consider three ways to score a pedestrian proposal P . Let s1 = (s01, s
1
1)

and s2 = (s02, s
1
2) be the raw scores from FC10 and FC12 respectively. The first

way scores P with p11 =
exp(s1

1
)

exp(s1
1
)+exp(s0

1
)
and the second way scores P with p12 =

exp(s1
2
)

exp(s1
2
)+exp(s0

2
)
. The third way fuses the raw scores from the two branches with a

softmax operation p̂1 =
exp(s1

1
+s1

2
)

exp(s1
1
+s1

2
)+exp(s0

1
+s0

2
)
. It can be proved that p̂1 − p11 > 0

if p12 > 0.5, i.e. s12 > s02. When two branches agree on a positive example,
i.e. p11 > 0.5 and p12 > 0.5, the fused score p̂1 becomes stronger, i.e. p̂1 > p11 and
p̂1 > p12. When one branch gives a low score (p11 < 0.5) to the positive example,
the other branch can increase its detection score if it gives a high score (p12 > 0.5).
This guides us to increase the complementarity between the two branches so to
improve detections robustness as described in next section.

3.3 Network Training

To train our deep CNN, each pedestrian example is annotated with two bounding
boxes which specify its full body and visible part regions respectively. Figure 4(a)
shows an example of pedestrian annotation. Besides these annotated pedestrian
examples, we also collect some pedestrian proposals for training. To achieve
this, we match pedestrian proposals in a training image to annotated pedestrian
examples in the same image. LetQ = (F̄ , V̄ ) be an annotated pedestrian example
in an image, where F̄ = (F̄ x, F̄ y, F̄w, F̄ h) and V̄ = (V̄ x, V̄ y, V̄ w, V̄ h) are the full
body and visible part regions respectively. A pedestrian proposal P is matched
to Q if it aligns well with Q. Specifically, P and Q form a pair if they satisfy

IOU(P, F̄ ) ≥ α and C(P, V̄ ) ≥ β, (1)
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(a) (b)

Fig. 4. Pedestrian annotation and positive pedestrian proposal selection. (a) The green
and yellow bounding boxes specify the full body and visible part of a pedestrian ex-
ample respectively. (b) The red bounding box is a good pedestrian proposal and the
blue bounding box is a bad pedestrian proposal.

where IOU(P, F̄ ) is the intersection over union of the two regions P and F̄ :

IOU(P, F̄ ) =
Area(P ∩ F̄ )

Area(P ∪ F̄ )
, (2)

and C(P, V̄ ) is the proportion of the area of V̄ covered by P :

C(P, V̄ ) =
Area(P ∩ V̄ )

Area(V̄ )
. (3)

In Fig. 4(b), the pedestrian proposal (red bounding box) is matched to the
annotated pedestrian example (green bounding box) with α = 0.5 and β = 0.5,
while the pedestrian proposal (blue bounding box) is not matched due to its
poor alignment with the annotated pedestrian example.

Denote by I the image where P is generated. For each matched pair (P,Q), we
construct a positive training example X+ = (I, P, c, f̄ , v̄), where c = 1 indicating
P contains a pedestrian, and f̄ = (f̄x, f̄y, f̄w, f̄h) and v̄ = (v̄x, v̄y, v̄w, v̄h) are
regression targets for full body and visible part estimation respectively. As in
[14, 16], we define f̄ as

f̄x =
F̄ x − P x

Pw
, f̄y =

F̄ y − P y

P h
,

f̄w = log(
F̄w

Pw
), f̄h = log(

F̄ h

P h
).

(4)
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Similarly, v̄ is defined as

v̄x =
V̄ x − P x

Pw
, v̄y =

V̄ y − P y

P h
,

v̄w = log(
V̄ w

Pw
), v̄h = log(

V̄ h

P h
).

(5)

We consider P as a negative pedestrian proposal if IOU(P, F̄ ) < 0.5 for all
annotated pedestrian examples Q in the same image. There are two types of
negative pedestrian proposals: background proposals which have no visible part
region and poorly aligned proposals (0 < IOU(P, F̄ ) < 0.5). To better distinguish
negative pedestrian proposals from positive ones, we choose to shrink the visible
part regions of negative pedestrian proposals to their centers. Specifically, for
each negative pedestrian proposal P , we construct a negative example X− =
(I, P, c, f̄ , v̄), where c = 0 indicating P does not contain a pedestrian, f̄ =
(0, 0, 0, 0) and v̄ = (0, 0, a, a) with a < 0. Since the height and width of the
visible part region are both 0, i.e. V̄ w = 0 and V̄ h = 0, we have v̄w = −∞ and
v̄h = −∞ according to the definition of v̄ in Eq. (5). Ideally, a should be set
to −∞. In experiments, we find that if a is too small, it can cause numerical
instability. Thus, we set a = −3 which is sufficient for the visible part region of
a negative pedestrian proposal to shrink to a small region (∼ 1

400 of the proposal
region) at its center.

Let D = {Xi = (Ii, Pi, ci, f̄i, v̄i)|1 ≤ i ≤ N} be a set of training examples.
Denote by W the model parameters of the deep CNN. Let p1i, p2i, fi, and vi
be the outputs of the network for the training example Xi. We learn the model
parameters W by minimizing the following multi-task training loss:

L(W,D) = LC1(W,D) + λFLF(W,D) + λC2LC2(W,D) + λVLV(W,D), (6)

where LC1 and LF are the classification loss and bounding box regression loss
respectively for the full body estimation branch, and LC2 and LV are the clas-
sification loss and bounding box regression loss respectively for the visible part
estimation branch. LC1 is a multinomial logistic loss defined by

LC1(W,D) =
1

N

N
∑

i=1

− log(p∗1i), (7)

where p∗1i = p01i if ci = 0 and p∗1i = p11i otherwise. Similarly, LC2 is defined by

LC2(W,D) =
1

N

N
∑

i=1

− log(p∗2i), (8)

where p∗2i = p02i if ci = 0 and p∗2i = p12i otherwise. For LF and LV, we use the
smooth L1 loss proposed for bounding box regression in Fast R-CNN [16]. The
bounding box regression loss LF is defined by

LF(W,D) =
1

N

N
∑

i=1

ci
∑

∗∈{x,y,w,h}

SmoothL1(f̄
∗
i − f∗

i ), (9)
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where for s ∈ R

SmoothL1(s) =

{

0.5s2 if |s| < 1;
|s| − 0.5 otherwise.

(10)

Similarly, LV is defined by

LV(W,D) =
1

N

N
∑

i=1

∑

∗∈{x,y,w,h}

SmoothL1(v̄
∗
i − v∗i ). (11)

The difference between LF and LV is that negative examples are not con-
sidered in LF since ci = 0 for these examples in Eq. (9), while both positive
and negative examples are taken into account in LV. During training, the vis-
ible part regions of negative examples are forced to shrink to their centers. In
this way, the visible part estimation branch and the full body estimation branch
are learned to produce complementary outputs which can be fused to improve
detection performance. If the visible part estimation branch is trained to only
regress visible parts for positive pedestrian proposals, the training of this branch
would be dominated by pedestrian examples which are non-occluded or slightly
occluded. For these pedestrian proposals, their ground-truth visible part and
full body regions overlap largely. As a result, the estimated visible part region
of a negative pedestrian proposal is often close to its estimated full body re-
gion and the difference between the two branches after training would not be
as large as the case in which the visible part regions of negative examples are
forced to shrink to their centers. As shown in our experiments, forcing the visi-
ble part regions of negative examples to shrink to their centers achieves a larger
performance gain than not doing this when the two branches are fused.

We adopt stochastic gradient descent to minimize the multi-task training loss
L in Eq. (6). We initialize layers Conv1-1 to Conv4-3 from a VGG-16 model pre-
trained on ImageNet [7]. The other layers are randomly initialized by sampling
weights from Gaussian distributions. In our experiments, we set λF = λC2 =
λV = 1. Each training mini-batch consists of 120 pedestrian proposals collected
from one training image. The ratio of positive examples to negative examples in
a training mini-batch is set to 1

6 .

3.4 Discussion

Our bi-box regression approach is closely related to Fast R-CNN [16, 39, 4]. The
major difference between our approach and Fast R-CNN is that the deep CNN
used in our approach has the additional visible part estimation branch. This
branch brings two advantages. First, it can provide occlusion estimation for a
pedestrian by regressing its visible part. Second, it can be properly trained to be
complementary to the full body estimation branch such that their outputs can be
further fused to improve detection performance. This is achieved by training the
visible part estimation branch to regress visible part regions for positive pedes-
trian proposals normally but force the visible part regions of negative pedestrian
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proposals to shrink to their centers. To train the visible part estimation branch,
we introduce visible part annotations. Also, we exploit both visible part and
full body annotations to select better positive pedestrian proposals. Typically,
Fast R-CNN selects a pedestrian proposal P as a positive training example if it
has large overlap with the full body region of a annotated pedestrian example
Q = (F̄ , V̄ ), i.e. IOU(P, F̄ ) ≥ α. This is a weak criterion for selecting positive
pedestrian proposals for partially occluded pedestrian examples as illustrated in
Fig. 4(b). For α = 0.5, the blue bounding box which poorly aligns with the groud-
truth pedestrian example is also selected as a positive training example. With
visible part annotations, we can use the stronger criterion defined in Eq. (1).
According to this criterion, the blue bounding box would be rejected since it
does not cover a large portion of the visible part region.

4 Experiments

We evaluate our approach on two pedestrian detection benchmark datasets: Cal-
tech [9] and CityPersons [41]. Both datasets provide full body and visible part
annotations which are required for training our deep CNN.

4.1 Experiments on Caltech

The Caltech dataset [9] contains 11 sets of videos. The first six video sets S0-
S5 are used for training and the remaining five video sets S6-S10 are used for
testing. In this dataset, around 2,300 unique pedestrians are annotated and
over 70% unique pedestrians are occluded in at least one frame. We evaluate
our approach on three subsets: Reasonable, Partial and Heavy. The Reasonable
subset is widely used for evaluating pedestrian detection approaches. In this
subset, only pedestrian examples at least 50 pixels tall and not occluded more
than 35% are used for evaluation. In the Partial and Heavy subsets, pedestrians
used for evaluation are also at least 50 pixels tall but have different ranges of
occlusions. The occlusion range for the Partial subset is 1-35 percent, while the
occlusion range for the Heavy subset is 36-80 percent. The Heavy subset is most
difficult among the three subsets. For each subset, the detection performance
is summarized by a log-average miss rate which is calculated by averaging miss
rates at 9 false positives per image (FPPI) points evenly spaced between 10−2

and 100 in log space.

Implementation Details We sample training images at an interval of 3 frames
from the training video sets S0-S5 as in [17, 39, 41, 34, 44, 4]. Ground-truth pedes-
trian examples which are at least 50 pixels tall and are occluded less than 70%
are selected for training as in [44]. For pedestrian proposal generation, we train a
region proposal network [4] on the training set. ∼1000 pedestrian proposals per
image are collected for training and ∼400 pedestrian proposals per image are
collected for testing. We train the deep CNN in Fig. 3 with stochastic gradient
decent which iterates 120,000 times. The learning rate is set to 0.0005 initially
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Table 1. Results of Fast R-CNN with varying β. Numbers are log-average miss rates.

β = 0.1 β = 0.3 β = 0.5 β = 0.7 β = 0.9

Reasonable 10.6 10.5 10.1 9.9 10.2

Partial 19.1 18.1 17.2 18.5 19.2

Heavy 48.9 48.4 46.1 48.1 50.6

Table 2. Results of different approaches on the Caltech dataset. Numbers refer to
log-average miss rates.

FRCN FRCN+ VPE FBE PDOE- PDOE PDOE+RPN

Reasonable 10.3 10.1 9.8 10.0 9.7 9.4 7.6

Partial 19.1 17.2 17.5 17.7 16.4 14.6 13.3

Heavy 49.4 46.1 45.5 45.3 45.1 43.9 44.4

and decreases by a factor of 0.1 every 60,000 iterations. Since Fast R-CNN is the
most relevant baseline for our approach, we also implement Fast R-CNN using
the full body estimation branch of our deep CNN.

Influence of Positive Pedestrian Proposals We first analyze the influence
of positive pedestrian proposals on Fast R-CNN. We conduct a group of exper-
iments in which Fast R-CNN uses the criterion defined in Eq. (1) with α set
to 0.5 and β set to 0.1, 0.3, 0.5, 0.7 and 0.9 respectively. The results on the
Reasonable, Partial and Heavy subsets are shown in Table 1. We can see that
Fast R-CNN works reasonably well with β = 0.5. When α is fixed, β controls
the quality and number of positive pedestrian proposals for training. When β is
small, more poorly aligned pedestrian proposals are included. A large β excludes
poorly aligned pedestrian proposals but reduces the number of positive training
examples. From the results in Table 1, we can see that both the quality and
number of positive pedestrian proposals are important for Fast R-CNN. β = 0.5
achieves a good trade-off between the two factors. In the remaining experiments,
we use α = 0.5 and β = 0.5 unless otherwise mentioned.

Ablation Study Table 2 shows the results of different approaches on the Cal-
tech dataset. FRCN is a standard implementation of Fast R-CNN using the full
body estimation branch with α = 0.5 and β = 0 for positive pedestrian proposal
selection. FRCN+ uses the same network as FRCN but sets α = 0.5 and β = 0.5.
We can see that FRCN+ performs better than FRCN on all the three subsets
since it uses a sufficient number of better positive pedestrian proposals for train-
ing. VPE, FBE and PDOE are three approaches which use the same deep CNN
learned by the proposed approach, but score pedestrian proposals in different
ways as described in Section 3.2. They score a pedestrian proposal by the visible
part estimation branch (VPE), by the full body estimation branch (FBE) and by
combining the outputs from both branches (PDOE) respectively. FRCN+, VPE
and FBE have similar performances since they uses the same network structure.
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PDOE outperforms VPE and FBE on all the three subsets, which shows that the
full body and visible part estimation branches complement each other to achieve
better pedestrian classification. To demonstrate the effectiveness of forcing the
estimated visible parts of negative pedestrian proposals to shrink to their cen-
ters, we implement a baseline PDOE- in which negative examples are ignored
in the training loss LV in Eq. (11). Although PDOE- also outperforms VPE
and FBE, the performance gain achieved by PDOE- is not as significant as that
achieved by PDOE. It is pointed out in [4] that the output from a region proposal
network can be fused with the output from a detection network to further im-
prove detection performance. As in [4], we further fuse the outputs from the two

networks to score a pedestrian proposal P by p̄1 =
exp(s1

1
+s1

2
+s1

3
)

exp(s1
1
+s1

2
+s1

3
)+exp(s0

1
+s0

2
+s0

3
)
,

where s1 = (s01, s
1
1) and s2 = (s02, s

1
2) are raw scores from the pedestrian detection

network and s3 = (s03, s
1
3) are raw scores from the region proposal network. We

call this approach PDOE+RPN. PDOE+RPN further improves the performance
over PDOE on the Reasonable and Partial subsets.

Comparison with Occlusion Handling Approaches To demonstrate the
effectiveness of our approach for occlusion handling, we compare it with two most
competitive occlusion handling approaches on the Caltech dataset, DeepParts
[31] and JL-TopS [44]. Both approaches use part detectors to handle occlusions.
Figure 5 shows the results of our approach and the two approaches on the Cal-
tech dataset. Our approach, PDOE, outperforms the two approaches on all the
three subsets. Particularly, PDOE outperforms JL-TopS by 0.6%, 2.0% and 5.3%
on the Reasonable, Partial and Heavy subsets respectively. The performance im-
provement on the Heavy subset is significant, which demonstrates that our deep
CNN has the potential to handle occlusions reasonably well. PDOE+RPN out-
performs JL-TopS on the three subsets with performance improvements of 2.4%,
3.3% and 4.8% respectively. Besides performance improvement over DeepParts
and JL-TopS, our approach is able to perform occlusion estimation by regressing
visible part regions for pedestrians.

Comparison with State-of-the-art Results In Figure 6, we compare our ap-
proach with some state-of-the-art approaches including DeepParts [31], CompACT-
Deep [6], SA-FastRCNN [19], MS-CNN [5], RPN+BF [39], F-DNN [10], F-
DNN+SS [10], PCN [34], JL-TopS [44], SDS-RCNN [4]. Our approach PDOE+RPN
performs slightly worse (0.2%) than SDS-RCNN on the Reasonable subset, but
outperforms it by 1.6% and 14.1% on the Partial and Heavy subsets, respectively.
The performance gain on the Heavy subset is significant. PCN and F-DNN+SS
are two competitive approaches which work fairly well for detecting both non-
occluded and occluded pedestrians. Our approach works better than the two
approaches on all the three subsets. Note that as our approach, all F-DNN+SS,
PCN and SDS-RCNN integrate two or more networks for pedestrian classifi-
cation. For heavily occluded pedestrian detection, our approach outperforms
JL-TopS by 4.8% on the Heavy subset.
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Fig. 5. Comparison of our approach with two competitive occlusion handling ap-
proaches on the Caltech dataset. Numbers in legends refer to log-average miss rates.
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Fig. 6. Comparison of our approach and state-of-the-art approaches on the Caltech
dataset. Numbers in legends refer to log-average miss rates.

4.2 Experiments on CityPersons

The CityPersons dataset [41] is a recently released pedestrian detection dataset
which is diverse in terms of the numbers of countries, cities and seasons it covers.
The dataset has a higher pedestrian density than Caltech. This dataset is split
into three sets, Train, Val and Test which contain 2975, 500 and 1575 images
respectively. Persons in this dataset are classified into six categories: ignored
region, pedestrian, rider, group of people, sitting person and other. Results are
reported for four setups: Reasonable, Small, Heavy and All. In the Reasonable
setup, pedestrian examples which are at least 50 pixels tall and are not occluded
more than 35% are used for evaluation. In the Small setup, the height and
visibility ranges of pedestrian examples are [50, 75] and [0.65, 1] respectively. In
the Heavy setup, the height and visibility ranges of pedestrian examples are [50,
∞] and [0.2, 0.65] respectively. In the All setup, the height and visibility ranges
of pedestrian examples are [20, ∞] and [0.2, 1] respectively. As for the Caltech
dataset, detection performance is summarized by the log-average miss rate.

Implementation Details We use the Train set for training and the Val set for
testing. As in [41], we only use pedestrian examples to collect positive pedestrian
proposals and ignore other person examples. Specifically, ground-truth pedes-
trian examples which are at least 50 pixels tall and are occluded less than 70%
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Table 3. Results of different approaches on the CityPersons dataset. Numbers refer to
log-average miss rates.

FasterRCNN FRCN FRCN+ VPE FBE PDOE- PDOE PDOE+RPN

Reasonable 12.81 12.93 12.62 13.01 12.51 12.14 11.53 11.24

Small - 50.12 49.81 50.02 49.65 49.16 47.84 47.35

Heavy - 48.91 47.30 47.54 47.61 46.94 44.91 44.15

All - 46.70 46.20 46.03 45.95 44.90 43.89 43.41

are used for training. We also train a region proposal network on the Train set
to generate ∼1000 pedestrian proposals per image for training and ∼400 pedes-
trian proposals per image for testing. Stochastic gradient descent iterates 90,000
times and the learning rate is set to 0.001 initially and decreases by a factor of
0.1 every 45,000 iterations.

Results Table 3 shows the results of different approaches on the CityPersons
dataset. Our implementation of Fast R-CNN, FRCN, performs slightly worse
than FasterRCNN [41] in the Reasonable setup. With better positive pedes-
trian proposals for training, FRCN+ outperforms FRCN in all the four setups.
FRCN+, VPE and FBE have comparable log-average miss rates due to the same
network structure they use. PDOE outperforms both VPE and FBE since the
full body estimation branch and visible part estimation branch produce com-
plementary scores which can be further fused to boost detection performance.
Compared with PDOE, the performance of the downgraded version of our ap-
proach, PDOE-, decreases by 0.61%, 1.32%, 2.03% and 1.01% in the Reasonable,
Small, Heavy and All setups respectively. PDOE outperforms the baseline FRCN
by 1.4%, 2.28%, 4% and 2.81% in the four setups respectively. Fusing the de-
tection network and region proposal network, PDOE+RPN achieves the best
performance.

5 Conclusion

In this paper, we propose an approach to simultaneous pedestrian detection and
occlusion estimation by regressing two bounding boxes to localize the full body
and visible part of a pedestrian respectively. To achieve this, we learn a deep
CNN consisting of two branches, one for full body estimation and the other
for visible part estimation. The two branches are properly learned and further
fused to improve detection performance. We also introduce a new criterion for
positive pedestrian proposal selection, which contributes to a large performance
gain for heavily occluded pedestrian detection. The effectiveness of the proposed
bi-box regression approach is validated on the Caltech and CityPersons datasets.
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