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Abstract. We address the problem of 3D rotation equivariance in con-
volutional neural networks. 3D rotations have been a challenging nui-
sance in 3D classification tasks requiring higher capacity and extended
data augmentation in order to tackle it. We model 3D data with multi-
valued spherical functions and we propose a novel spherical convolutional
network that implements exact convolutions on the sphere by realizing
them in the spherical harmonic domain. Resulting filters have local sym-
metry and are localized by enforcing smooth spectra. We apply a novel
pooling on the spectral domain and our operations are independent of the
underlying spherical resolution throughout the network. We show that
networks with much lower capacity and without requiring data augmen-
tation can exhibit performance comparable to the state of the art in
standard retrieval and classification benchmarks.

1 Introduction

One of the reasons for the tremendous success of convolutional neural networks
(CNNs) is their equivariance to translations in euclidean spaces and the resulting
invariance to local deformations. Invariance with respect to other nuisances has
been traditionally addressed with data augmentation while non-euclidean inputs
like point-clouds have been approximated by euclidean representations like voxel
spaces. Only recently, equivariance has been addressed with respect to other
groups [1,2] and CNNs have been proposed for manifolds or graphs [3,4,5].

Equivariant networks retain information about group actions on the input
and on the feature maps throughout the layers of a network. Because of their
special structure, feature transformations are directly related to spatial transfor-
mations of the input. Such equivariant structures yield a lower network capacity
in terms of unknowns than alternatives like the Spatial Transformer [6] where a
canonical transformation is learnt and applied to the original input.

In this paper, we are primarily interested in analyzing 3D data for align-
ment, retrieval or classification. Volumetric and point cloud representations have
yielded translation and scale invariant approaches: Normalization of translation
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and scale can be achieved by setting the object’s origin to its center and con-
straining its extent to a fixed constant. However, 3D rotations remain a chal-
lenge to current approaches (Figure 2 illustrates how classification performance
for conventional methods suffers when arbitrary rotations are introduced).

Fig. 1: Columns: (1) input, (2) initial
spherical representation, (3-5) learned
feature maps. Activations of chair legs
illustrate rotation equivariance.
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Fig. 2: ModelNet40 classification for point
cloud [7], volumetric [8], and multi-view [9]
methods. The significant drop in accuracy
illustrates that conventional methods do
not generalize to arbitrary (SO(3)/SO(3))
and unseen orientations (z/SO(3)).

In this paper, we model 3D-data with spherical functions valued in R
n and

introduce a novel equivariant convolutional neural network with spherical in-
puts (Figure 1 illustrates the equivariance). We clarify the difference between
convolution that has spherical outputs and correlation that has outputs in the
rotation group SO(3) and we apply exact convolutions that yield zonal filters,
i.e. filters with constant values along the same latitude. Convolutions cannot be
applied with spatially-invariant impulse responses (masks), but can be exactly
computed in the spherical harmonic domain through pointwise multiplication.
To obtain localized filters, we enforce a smooth spectrum by learning weights
only on few anchor frequencies and interpolating between them, yielding, as
additional advantage, a number of weights independent of the spatial resolution.

It is natural then to apply pooling in the spectral domain. Spectral pooling
has the advantage that it retains equivariance while spatial pooling on the sphere
is only approximately equivariant. We also propose a weighted averaging pooling
where the weights are proportional to the cell area. The only reason to return to
the spatial domain is the rectifying nonlinearity, which is a pointwise operator.

We perform 3D retrieval, classification, and alignment experiments. Our aim
is to show that we can achieve near state of the art performance with a much
lower network capacity, which we achieve for the SHREC’17 [10] contest and
ModelNet40 [11] datasets.
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Our main contributions can be summarized as follows:

– We propose the first neural network based on spherical convolutions.
– We introduce pooling and parameterization of filters in the spectral domain,

with enforced spatial localization and capacity independent of the resolution.
– Our network has much lower capacity than non-spherical networks applied

on 3D data without sacrificing performance.

We start with the related work, then introduce the mathematics of group and
in particular sphere convolutions, and details of our network. Last, we perform
extensive experiments on retrieval, classification, and alignment.

2 Related work

We will start describing related work on group equivariance, in particular equiv-
ariance on the sphere, then delve into CNN representations for 3D data.

Methods for enabling equivariance in CNNs can be divided in two groups.
In the first, equivariance is obtained by constraining filter structure similarly to
Lie generator based approaches [12,13]. Worral et al. [14] use filters derived from
the complex harmonics achieving both rotational and translational equivariance.
The second group requires the use of a filter orbit which is itself equivariant to
obtain group equivariance. Cohen and Welling [1] convolve with the orbit of
a learned filter and prove the equivariance of group-convolutions and preser-
vation of rotational equivariance in the presence of rectification and pooling.
Dieleman et al. [15] process elements of the image orbit individually and use
the set of outputs for classification. Gens and Domingos [16] produce maps of
finite-multiparameter groups, Zhou et al. [17] and Marcos et al. [18] use a ro-
tational filter orbit to produce oriented feature maps and rotationally invariant
features, and Lenc and Vedaldi [19] propose a transformation layer which acts
as a group-convolution by first permuting then transforming by a linear filter.

Recently, a body of work on Graph Convolutional Networks (GCN) has
emerged. There are two threads within this space, spectral [20,21,22] and spatial
[23,24,25]. These approaches learn filters on irregular but structured graph rep-
resentations. These methods differ from ours in that we are looking to explicitly
learn equivariant and invariant representations for 3D-data modeled as spheri-
cal functions under rotation. While such properties are difficult to construct for
general manifolds, we leverage the group action of rotations on the sphere.

Most similar to our approach and developed in parallel1 is [5], which uses
spherical correlation to map spherical inputs to features on SO(3), then pro-
cessed with a series of convolutions on SO(3). The main difference is that we
use spherical convolutions, which are potentially one order of magnitude faster,
with smaller (one fewer dimension) filters and feature maps. In addition, we en-
force smoothness in the spectral domain that results in better localization of the

1 the first version of this work was submitted to CVPR on 11/15/2017, shortly after
we became aware of Cohen et al. [5] ICLR submission on 10/27/2017.
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receptive fields on the sphere and we perform pooling in two different ways, either
as a low-pass in the spectral domain or as a weighted averaging in the spatial
domain. Moreover, our method outperforms [5] in the SHREC’17 benchmark.

Spherical representations for 3D-data are not novel and have been used for
retrieval tasks before the deep learning era [26,27] because of their invariance
properties and efficient implementation of spherical correlation [28]. In 3D deep
learning, the most natural adaptation of 2D methods was to use a voxel-grid
representation of the 3D object and amend the 2D CNN framework to use col-
lections of 3D filters for cascaded processing in the place of conventional 2D
filters. Such approaches require a tremendous amount of computation to achieve
very basic voxel resolution and need a much higher capacity.

Several attempts have been made to use CNNs to produce discriminative
representations from volumetric data. 3D ShapeNets [11] and VoxNet [29] pro-
pose a fully-volumetric network with 3D convolutional layers followed by fully-
connected layers. Qi et al. [8] observe significant overfitting when attempting to
train the aforementioned end-to-end and choose to amend the technique using
subvolume classification as an auxiliary task, and also propose an alternate 3D
CNN which learns to project the volumetric representation to a 2D representa-
tion, then processed using a conventional 2D CNN architecture. Even with these
adaptations, Qi et al. [8] are challenged by overfitting and suggest augmenta-
tion in the form of orientation pooling as a remedy. Qi et al. [7] also present
an attempt to train a neural network that operates directly on point clouds.
Currently, the most successful approaches are view-based, operating in rendered
views of the 3D object [9,8,30,31]. The high performance of these methods is in
part due to the use of large pre-trained 2D CNNs (on ImageNet, for instance).

3 Preliminaries

3.1 Group Convolution

Consideration of symmetries, in particular rotational symmetries, naturally evokes
notions of the Fourier Transform. In the context of deriving rotationally invariant
representations, the Fourier Transform is particularly appealing since it exhibits
invariance to rotational deformations up to phase (a truly invariant representa-
tion can be achieved through application of the modulus operator).

To leverage this property for 3D shape analysis, it is necessary to construct
a rotationally equivariant representation of our 3D input. For a group G and
function f : E → F , f is said to be equivariant to transformations g ∈ G when

f(g ◦ x) = g′ ◦ f(x), x ∈ E (1)

where g acts on elements of E and g′ is the corresponding group action which
transforms elements of F . If E = F , g = g′. A straightforward example of an
equivariant representation is an orbit. For an object x, its orbit O(x) with respect
to the group G is defined

O(x) = {g ◦ x | ∀g ∈ G}. (2)
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Through this example it is possible to develop an intuition into the equivariance
of the group convolution; convolution can be viewed as the inner-products of
some function f with all elements of the orbit of a “flipped” filter h. Formally,
the group convolution is defined as

(f ⋆G h)(x) =

∫

g∈G

f(g ◦ η)h(g−1 ◦ x) dg, (3)

where η is typically a canonical element in the domain of f (e.g. the origin if
E = R

n, or In if E = SO(n)). The familiar convolution on the plane is a special
case of the group convolution with the group G = R

2 with addition,

(f ⋆ h)(x) =

∫

g∈R2

f(g ◦ η)h(g−1 ◦ x) dg =

∫

g∈R2

f(g)h(x− g) dg. (4)

The group convolution can be shown to be equivariant. For any α ∈ G,

((α−1 ◦ f) ⋆G h)(x) = (α−1 ◦ (f ⋆G h))(x). (5)

3.2 Spherical harmonics

Following directly the preliminaries above, we can define convolution of spherical
signal f by a spherical filter h with respect to the group of 3D rotations SO(3):

(f ⋆G h)(x) =

∫

g∈SO(3)

f(gη)h(g−1x) dg, (6)

where η is north pole on the sphere.
To implement (6), it is desirable to sample the sphere with well-distributed

and compact cells with transitivity (rotations exist which bring cells into coinci-
dence). Unfortunately, such a discretization does not exist [32]. Neither the fa-
miliar sampling by latitude and longitude nor the uniformly distributed sampling
according to Platonic solids satisfies all constraints. These issues are compounded
with the eventual goal of performing cascaded convolutions on the sphere.

To circumvent these issues, we choose to evaluate the spherical convolution
in the spectral domain. This is possible as the machinery of Fourier analysis has
extended the well-known convolution theorem to functions on the sphere: the
Spherical Fourier transform of a convolution is the pointwise product of Spherical
Fourier transforms (see [33,34] for further details). The Fourier transform and
its inverse are defined on the sphere as follows [33]:

f =
∑

0≤ℓ≤b

∑

|m|≤ℓ

f̂ ℓ
mY ℓ

m, (7) f̂ ℓ
m =

∫

S2

f(x)Y ℓ
mdx, (8)

where b is the bandwidth of f , and Y ℓ
m are the spherical harmonics of degree ℓ

and order m. We refer to (8) as the Spherical Fourier Transform (SFT), and to
(7) as its inverse (ISFT). Revisiting (6), letting y = (f ⋆G h)(x), the spherical
convolution theorem [34] gives us

ŷℓm = 2π

√

4π

2ℓ+ 1
f̂ ℓ
mĥℓ

0, (9)
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To compute the convolution of a signal f with a filter h, we first expand f and
h into their spherical harmonic basis (8), second compute the pointwise product
(9), and finally invert the spherical harmonic expansion (7).

It is important to note that this definition of spherical convolution is unique
from spherical correlation which produces an output response on SO(3). Con-
volution here can be seen as marginalizing the angle responsible for rotating the
filter about its north pole, or equivalently considering zonal filters on the sphere.

3.3 Practical considerations and optimizations

To evaluate the SFT, we use equiangular samples on the sphere according to the
sampling theorem of [34]

f̂ ℓ
m =

√
2π

2b

2b−1
∑

j=0

2b−1
∑

k=0

a
(b)
j f(θj , φk)Y ℓ

m(θj , φk), (10)

where θj = πj/2b and φk = πk/b form the sampling grid, and a
(b)
j are the

sample weights. Note that all the required operations are matrix pointwise mul-
tiplications and sums, which are differentiable and readily available in most auto-
matic differentiation frameworks. In our direct implementation, we precompute
all needed Y ℓ

m, which are stored as constants in the computational graph.

Separation of variables: We also implement a potentially faster SFT based
on separation of variables as shown in [34]. Expanding Y ℓ

m in (10), we obtain

f̂ ℓ
m =

2b−1
∑

j=0

2b−1
∑

k=0

a
(b)
j f(θj , φk)q

ℓ
mP ℓ

m(cos θj)e
−imφk

= qℓm

2b−1
∑

j=0

a
(b)
j P ℓ

m(cos θj)

2b−1
∑

k=0

f(θj , φk)e
−imφk ,

(11)

where P ℓ
m is the associated Legendre polynomial, and qℓm a normalization factor.

The inner sum can be computed using a row-wise Fast Fourier Transform and
what remains is an associated Legendre transform, which we compute directly.
The same idea is done for the ISFT. We found that this method is faster when
b ≥ 32. There are faster algorithms available [34,35], which we did not attempt.

Leveraging symmetry: For real-valued inputs, f̂ ℓ
−m = (−1)mf̂ ℓ

m (this follows

from Y ℓ
−m = (−1)mY ℓ

m). We thus need only compute half the coefficients (m >
0). Furthermore, we can rewrite the SFT and ISFT to avoid expensive complex
number support or multiplication:

f =
∑

0≤ℓ≤b

(

f̂ ℓ
0Y

ℓ
0 +

ℓ
∑

m=1

2Re(f̂ ℓ
m)Re(Y ℓ

m)− 2 Im(f̂ ℓ
m)Im(Y ℓ

m)

)

. (12)
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Fig. 3: Overview of our method. From left to right: a 3D model (1) is mapped to a
spherical function (2), which passes through a sequence of spherical convolutions,
nonlinearities and pooling, resulting in equivariant feature maps (3–9). We show
only a few channels per layer. A global weighted average pooling of the last
feature map results in a descriptor invariant to rotation (10), which can be used
for classification or retrieval. The input spherical function (2) may have multiple
channels, in this picture we show the distance to intersection representation.

4 Method

Figure 3 shows an overview of our method. We define a block as one spherical
convolutional layer, followed by optional pooling, and nonlinearity. A weighted
global average pooling is applied at the last layer to obtain an invariant descrip-
tor. This section details the architectural design choices.

4.1 Spectral filtering

In this section, we define the filter parameterization. One possible approach
would be to define a compact support around one of the poles and learn the
values for each discrete location, setting the rest to zero. The downside of this
approach is that there are no guarantees that the filter will be bandlimited.
If it is not, the SFT will be implicitly bandlimiting the signal, which causes a
discrepancy between the parameters and the actual realization of the filters.

To avoid this problem, we parameterize the filters in the spectral domain. In
order to compute the convolution of a function f and a filter h, only the SFT
coefficients of order m = 0 of h are used. In the spatial domain, this implies that
for any h, there is always a zonal filter (constant value per latitude) hz, such
that ∀y, y ∗ h = y ∗ hz. Thus, it only makes sense to learn zonal filters.

The spectral parameterization is also faster because it eliminates the need
to compute the filter SFT, since the filters are defined in the spectral domain,
which is the same domain where the convolution computed.

Non-localized filters: A first approach is to parameterize the filters by all SFT
coefficients of order m = 0. For example, given 32 × 32 inputs, the maximum
bandwidth is b = 16, so there are 16 parameters to be learned (ĥ0

0, . . . ĥ
15
0 ). A

downside is that the filters may not be local; however, locality may be learned.
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Fig. 4: Filters learned in the first layer. The filters are zonal. Left: 16 nonlocalized
filters. Right: 16 localized filters. Nonlocalized filters are parameterized by all
spectral coefficients (16, in the example). Even though locality is not enforced,
some filters learn to respond locally. Localized filters are parameterized by a few
points of the spectrum (4, in the example), the rest of the spectrum is obtained
by interpolation.

Localized filters: From Parseval’s theorem and the derivative rule from Fourier
analysis we can show that spectral smoothness corresponds to spatial decay. This
is used in the construction of graph-based neural networks [36], and also applies
to the filters spanned by the family of spherical harmonics of order zero (m = 0).

To obtain localized filters, we parameterize the spectrum with anchor points.
We fix n uniformly spaced degrees ℓi and learn the correspondent coefficients f ℓi

0 .
The coefficients for the missing degrees are then obtained by linear interpolation,
which enforces smoothness. A second advantage is that the number of parameters
per filter is independent of the input resolution. Figure 4 shows some filters
learned by our model; the right side filters are obtained imposing locality.

4.2 Pooling

The conventional spatial max pooling used in CNNs has two drawbacks in Spher-
ical CNNs: (1) need an expensive ISFT to convert back to spatial domain, and
(2) equivariance is not completely preserved, specially because of unequal cell
areas from equiangular sampling. Weighted average pooling (WAP) takes into
account the cell areas to mitigate the latter, but is still affected by the former.

We introduce the spectral pooling (SP) for Spherical CNNs. If the input
has bandwidth b, we remove all coefficients with degree larger or equal than
b/2 (effectively, a lowpass box filter). Such operation is known to cause ringing
artifacts, which can be mitigated by previous smoothing, although we did not
find any performance advantage in doing so. Note that spectral pooling was
proposed before for conventional CNNs [37].

We found that spectral pooling is significantly faster, reduces the equivariance
error, but also reduces classification accuracy. The choice between SP and WAP
is application-dependent. For example, our experiments show SP is more suitable
for shape alignment, while WAP is better for classification and retrieval. Table 5
shows the performance for each method.

4.3 Global pooling

In fully convolutional networks, it is usual to apply a global average pooling
at the last layer to obtain a descriptor vector, where each entry is the average
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of one feature map. We use the same idea; however, the equiangular spherical
sampling results in cells of different areas, so we compute a weighted average
instead, where a cell’s weight is the sine of its latitude. We denote it Weighted
Global Average Pooling (WGAP). Note that the WGAP is invariant to rotation,
therefore the descriptor is also invariant. Figure 5 shows such descriptors.

An alternative to this approach is to use the magnitude per degree of the SFT

coefficients; formally, if the last layer has bandwidth b and f̂ ℓ = [f̂ ℓ
−ℓ, f̂

ℓ
−ℓ+1, . . . , f̂

ℓ
ℓ ],

then d =
[
∥

∥

∥
f̂0
∥

∥

∥
,
∥

∥

∥
f̂1
∥

∥

∥
, . . .

∥

∥

∥
f̂ b−1

∥

∥

∥

]

is an invariant descriptor [33]. We denote this

approach as MAG-L (magnitude per degree ℓ). We found no difference in clas-
sification performance when using it (see Table 5).

Fig. 5: Our model learns descriptors that are nearly invariant to input rotations.
From top to bottom: azimutal rotations and correspondent descriptors (one per
row), arbitrary rotations and correspondent descriptors. The invariance error
is negligible for azimuthal rotations; since we use equiangular sampling, the cell
area varies with the latitude, and rotations around z preserve latitude. Arbitrary
rotations brings a small invariance error, for reasons detailed in 5.5.

4.4 Architecture

Our main architecture has two branches, one for distances and one for surface
normals. This performs better than having two input channels and slightly better
than having two separate voting networks for distance and normals. Each branch
has 8 spherical convolutional layers, and 16, 16, 32, 32, 64, 64, 128, 128 channels
per layer. Pooling and feature concatenation of one branch into the other is
performed when the number of channels increase. WGAP is performed after the
last layer, which is then projected into the number of classes.

5 Experiments

The greatest advantage of our model is inherent equivariance to SO(3); we focus
the experiments in problems that benefit from it; namely, shape classification and
retrieval in arbitrary orientations, and shape alignment.
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We chose problems related to 3D shapes due to the availability of large
datasets and published results on them; our method would also be applicable to
any kind of data that can be mapped to the sphere (e.g. panoramas).

5.1 Preliminaries

Ray-mesh intersection: 3D shapes are usually represented by mesh or voxel
grid, which need to be converted to spherical functions. Note that the conversion
function itself must be equivariant to rotations; our learned representation will
not be equivariant if the input is pre-processed by a non-equivariant function.

Given a mesh or voxel grid, we first find the bounding sphere and its center.
Given a desired resolution n, we cast n×n equiangular rays from the center, and
obtain the intersections between each ray and the mesh/voxel grid. Let djk be the
distance from the center to the farthest point of intersection, for a ray at direction
(θj , φk). The function on the sphere is given by f(θj , φk) = djk, 1 ≤ j, k ≤ n.

For mesh inputs, we also compute the angle α between the ray and the surface
normal at the intersecting face, giving a second channel f(θj , φk) = [d, sinα].

Note that this representation is suitable for star-shaped objects, defined as
objects that contain an interior point from where the whole boundary is visible.
Moreover, the center of the bounding sphere must be one of such points. In
practice, we do not check if these conditions hold – even if the representation is
ambiguous or non-invertible, it is still useful.

Training: We train using ADAM, for 48 epochs, initial learning rate of 10−3,
which is divided by 5 on epochs 32 and 40.

We make use of data augmentation for training, performing rotations, anisotropic
scaling and mirroring on the meshes, and adding jitter to the bounding sphere
center when constructing the spherical function. Note that, even though our
learned representation is equivariant to rotations, augmenting the inputs with
rotations is still beneficial due to interpolation and sampling effects.

5.2 3D object classification

This section shows classification performance on ModelNet40 [11]. Three modes
are considered: (1) trained and tested with azimuthal rotations (z/z), (2) trained
and tested with arbitrary rotations (SO(3)/SO(3)), and (3) trained with az-
imuthal and tested with arbitrary rotations (z/SO(3)).

Table 1 shows the results. All competing methods suffer a sharp drop in
performance when arbitrary rotations are present, even if they are seen during
training. Our model is more robust, but there is a noticeable drop for mode 3,
attributed to sampling effects. Since we use equiangular sampling, the cell area
varies with latitude. Rotations around z preserve latitude, so regions at same
height are sampled at same resolution during training, but not during test. We
believe this can be improved by using equal-area spherical sampling.
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We evaluate competing methods using default settings of their published
code. The volumetric [8] and point cloud based [7,38] methods cannot generalize
to unseen orientations (z/SO(3)). The multi-view [9,30] methods can be seen as a
brute force approach to equivariance; and MVCNN [9] generalizes to unseen ori-
entations up to a point. Yet, the Spherical CNN outperforms it, even with orders
of magnitude fewer parameters and faster training. Interestingly, RotationNet
[30], which holds the current state-of-the-art on ModelNet40 classification, fails
to generalize to unseen rotations, despite being multi-view based.

Equivariance to SO(3) is unneeded when only azimuthal rotations are present
(z/z); the full potential of our model is not exercised in this case.

Table 1: ModelNet40 classification accuracy per instance. Spherical CNNs are
robust to arbitrary rotations, even when not seen during training, while also
having one order of magnitude fewer parameters and faster training.

Method z/z SO3/SO3 z/SO3 params inp. size

PointNet [7] 89.2 83.6 14.7 3.5M 2048 x 3
PointNet++ [38] 89.3 85.0 28.6 1.7M 1024 x 3
VoxNet [29] 83.0 73.0 - 0.9M 303

SubVolSup [8] 88.5 82.7 36.6 17M 303

SubVolSup MO [8] 89.5 85.0 45.5 17M 20× 303

MVCNN 12x [9] 89.5 77.6 70.1 99M 12× 2242

MVCNN 80x [9] 90.2 86.0 - 2 99M 80× 2242

RotationNet 20x [30] 92.4 80.0 20.2 58.9M 20× 2242

Ours 88.9 86.9 78.6 0.5M 2× 64
2

5.3 3D object retrieval

We run retrieval experiments on ShapeNet Core55 [39], following the SHREC’17
3D shape retrieval rules [10], which includes random SO(3) perturbations.

The network is trained for classification on the 55 core classes (we do not
use the subclasses), with an extra in-batch triplet loss (from [40]) to encourage
descriptors to be close for matching categories and far for non-matching.

The invariant descriptor is used with a cosine distance for retrieval. We first
compute a threshold per class that maximizes the training set F-score. For test
set retrieval, we return elements whose distances are below their class threshold
and include all elements classified as the same class as the query. Table 2 shows
the results. Our model matches the state of the art performance (from [41]),
with significantly fewer parameters, smaller input size, and no pre-training.

2 The 80 views are not restricted to azimuthal, hence cannot be compared (acc: 81.5%).
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Table 2: SHREC’17 perturbed dataset results. We show precision, recall and
mean average precision. micro average is adjusted by category size, macro is
not. The sum of micro and macro mAP is used for ranking. We match the state
of the art even with significantly fewer parameters, smaller input resolution, and
no pre-training. Top results are bold, runner-ups italic.

micro macro total
P@N R@N mAP P@N R@N mAP score input size params

Furuya [41] 0.814 0.683 0.656 0.607 0.539 0.476 1.13 126 × 103 8.4M
Ours 0.717 0.737 0.685 0.450 0.550 0.444 1.13 2 × 64

2
0.5M

Tatsuma [42] 0.705 0.769 0.696 0.424 0.563 0.418 1.11 38 × 2242 3M
Cohen [5] 0.701 0.711 0.676 - - - - 6 × 128 2 1.4M

Zhou [31] 0.660 0.650 0.567 0.443 0.508 0.406 0.97 50 × 2242 36M

5.4 Shape alignment

Our learned equivariant feature maps can be used for shape alignment using
spherical correlation. Given two shapes from the same category (not necessar-
ily the same instance), under arbitrary orientations, we run them through the
network and collect the feature maps at some layer. We compute the corre-
lation between each pair of corresponding feature maps, and add the results.
The maximum value of the correlation function (which takes inputs on SO(3))
corresponds to the rotation that aligns both shapes [28].

Features from deeper layers are richer and carry semantic value, but are at
lower resolution. We run an experiment to determine the performance of the
shape alignment per layer, while also comparing with the spherical correlation
done at the network inputs (not learned).

Table 3: Shape alignment median
angular error in degrees. The inter-
mediate learned features are best
suitable for this task.

bed chair sofa toilet

input 91.63 111.47 12.15 21.65

conv2 85.64 21.10 14.47 14.95

conv4 12.73 14.63 10.03 11.03

conv6 16.70 18.92 15.83 17.62

We select categories from ModelNet10
that do not have rotational symmetry so that
the ground truth rotation is unique and the
angular error is measurable. These categories
are: bed, sofa, toilet, chair. Only entries from
the test set are used. Results are in Table 3,
while Figure 6 shows some examples. Results
show that the learned features are superior
to the handcrafted spherical shape representation for this task, and best per-
formance is achieved by using intermediate layers. The resolution at conv4 is
32 × 32, which corresponds to cell dimensions up to 11.25 deg, so we cannot
expect errors much lower than this.

5.5 Equivariance error analysis

Even though spherical convolutions are equivariant to SO(3) for bandlimited
inputs, and spectral pooling preserves bandlimit, there are other factors that
may introduce equivariance errors. We quantify these effects in this section.

We feed each entry in the test set and one random rotation to the network,
then apply the same rotation to the feature maps and measure the average
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Fig. 6: Shape alignment for two categories. We align shapes by running spherical
correlation of their feature maps. The semantic features learned can be used to
align shapes from the same class even with large appearance variation. 1st and
3rd rows: reference shape, followed by queries from the same category. 2nd and

4th rows: Corresponding aligned shapes. Last column shows failure cases.

relative error. Table 4 shows the results. The pointwise nonlinearity does not
preserve bandlimit, and cause equivariance errors (rows 1, 4). The mesh to sphere
map is only approximately equivariant, which can be mitigated with larger input
dimensions (input column for rows 1, 5). Error is smaller when the input is
bandlimited (rows 1, 7). Spectral pooling is exactly equivariant, while max-
pooling introduces higher frequencies and has larger error than WAP (rows 1, 2,
3). Error for an untrained model demonstrates that the equivariance is by design
and not learned (row 6). Note that the error is smaller because the learned filters
are usually high-pass, which increase the pointwise relative error. A linear model
with bandlimited inputs has zero equivariance error, as expected (row 8).

Note that even conventional planar CNNs will exhibit a degree of transla-
tional equivariance error introduced by max pooling and discretization.

Table 4: Equivariance error. Error is zero for bandlimited inputs and linear layers.
configuration error per layer

res. blim. pool linear trained input conv1 conv2 conv3 conv4 conv5 conv6

1. baseline 642 no WAP no yes 0.05 0.11 0.12 0.14 0.16 0.17 0.15
2. maxpool 642 no max no yes 0.05 0.11 0.12 0.14 0.18 0.19 0.15
3. specpool 642 no SP no yes 0.05 0.11 0.12 0.10 0.10 0.09 0.08
4. linear 642 no WAP yes yes 0.05 0.12 0.13 0.15 0.14 0.12 0.04
5. lowres 322 no WAP no yes 0.09 0.15 0.18 0.21 0.21 0.21 0.20
6. untrained 642 no WAP no no 0.05 0.09 0.07 0.07 0.11 0.07 0.04
7. blim 642 yes WAP no yes 0.00 0.10 0.11 0.11 0.15 0.14 0.04
8. blim/lin/sp 642 yes SP yes yes 0.00 0.01 0.01 0.00 0.00 0.00 0.00
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5.6 Ablation study

In this section we evaluate numerous variations of our method to determine the
sensitivity to design choices. First, we are interested in assessing the effects from
our contributions SP, WAP, WGAP, and localized filters. Second, we are inter-
ested in understanding how the network size affects performance. Results show
that the use of WAP, WGAP, and localized filters significantly improve perfor-
mance, and also that further performance improvements can be achieved with
larger networks. In summary, factors that increase bandwidth (e.g. max-pooling)
also increase equivariance error and may reduce accuracy. Global operations in
early layers (e.g. non-local filters) escape the receptive field and reduce accuracy.

Table 5: Ablation study. Spherical CNN accuracy on rotated ModelNet40. We
compare various types of pooling, filter localization and network sizes.

inp. res. pool global pool localized params details acc. [%]

64 × 64 WAP WGAP yes 0.49M best 86.9

64 × 64 WAP MAG-L yes 0.54M 86.9

64 × 64 SP WGAP yes 0.49M 85.8

64 × 64 max WGAP yes 0.49M 86.7

64 × 64 avg WGAP yes 0.49M 86.7

64 × 64 WAP avg yes 0.49M 86.4

64 × 64 WAP WGAP no 0.49M 85.9

32 × 32 WAP WGAP yes 0.39M 85.0

32 × 32 WAP WGAP yes 0.69M deeper 85.6

32 × 32 WAP WGAP yes 1.06M wider 85.5

32 × 32 WAP WGAP yes 0.12M narrower 83.8

6 Conclusion

We presented Spherical CNNs, which leverage spherical convolutions to achieve
equivariance to SO(3) perturbations. The network is applied to 3D object clas-
sification, retrieval, and alignment, but has potential applications in spherical
images such as panoramas, or any data that can be represented as a spherical
function. We show that our model can naturally handle arbitrary input orienta-
tions, requiring relatively few parameters and small input sizes.
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