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Abstract. Robust object skeleton detection requires to explore rich rep-
resentative visual features and effective feature fusion strategies. In this
paper, we first re-visit the implementation of HED, the essential princi-
ple of which can be ideally described with a linear reconstruction model.
Hinted by this, we formalize a Linear Span framework, and propose Lin-
ear Span Network (LSN) which introduces Linear Span Units (LSUs)
to minimizes the reconstruction error. LSN further utilizes subspace lin-
ear span besides the feature linear span to increase the independence of
convolutional features and the efficiency of feature integration, which en-
hances the capability of fitting complex ground-truth. As a result, LSN
can effectively suppress the cluttered backgrounds and reconstruct object
skeletons. Experimental results validate the state-of-the-art performance
of the proposed LSN.

Keywords: Linear Span Framework, Linear Span Unit, Linear Span
Network, Skeleton Detection

1 Introduction

Skeleton is one of the most representative visual properties, which describes ob-
jects with compact but informative curves. Such curves constitute a continuous
decomposition of object shapes [13], providing valuable cues for both object
representation and recognition. Object skeletons can be converted into descrip-
tive features and spatial constraints, which enforce human pose estimation [22],
semantic segmentation [20], and object localization [8].

Researchers have been exploiting the representative CNNs for skeleton de-
tection and extraction [5, 24, 18, 17] for years. State-of-the-art approaches root
in effective multi-layer feature fusion, with the motivation that low-level features
focus on detailed structures while high-level features are rich in semantics [5]. As
a pioneer work, the holistically-nested edge detection (HED) [24] is computed
as a pixel-wise classification problem, without considering the complementary
among multi-layer features. Other state-of-the-art approaches, e.g., fusing scale-
associated deep side-outputs (FSDS) [18, 17] and side-output residual network
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Fig. 1. A comparison of holistically-nested edge detection (HED) network [24] and
linear span network (LSN). HED uses convolutional features without considering their
complementary. The union of the output spaces of HED is small, denoted as the pink
area. As an improved solution, LSN spans a large output space.

(SRN) [5] investigates the multi-layer association problem. FSDS requires inten-
sive annotations of the scales for each skeleton point, while SRN struggles to
pursuits the complementary between adjacent layers without complete mathe-
matical explanation. The problem of how to principally explore and fuse more
representative features remains to be further elaborated.

Through the analysis, it is revealed that HED treats the skeleton detection
as a pixel-wise classification problem with the side-output from convolutional
network. Mathematically, this architecture can be equalized with a linear recon-
struction model, by treating the convolutional feature maps as linear bases and
the 1×1 convolutional kernel values as weights. Under the guidance of the linear
span theory [6], we formalize a linear span framework for object skeleton detec-
tion. With this framework, the output spaces of HED could have intersections
since it fails to optimize the subspace constrained by each other, Fig. 1. To ease
this problem, we design Linear Span Unit (LSU) according to this framework,
which will be utilized to modify convolutional network. The obtained network
is named as Linear Span Network (LSN), which consists feature linear span,
resolution alignment, and subspace linear span. This architecture will increase
the independence of convolutional features and the efficiency of feature integra-
tion, which is shown as the smaller intersections and the larger union set, Fig. 1.
Consequently, the capability of fitting complex ground-truth could be enhanced.
By stacking multiple LSUs in a deep-to-shallow manner, LSN captures both rich
object context and high-resolution details to suppress the cluttered backgrounds
and reconstruct object skeletons. The contributions of the paper include:

– A linear span framework that reveals the essential nature of object skeleton
detection problem, and proposes that the potential performance gain could
be achieved with both the increased independence of spanning sets and the
enlarged spanned output space.
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– A Linear Span Network (LSN) can evolve toward the optimized architecture
for object skeleton detection under the guidance of linear span framework.

2 Related work

Early skeleton extraction methods treat skeleton detection as morphological op-
erations [12, 25, 14, 9, 7, 23, 11]. One hypothesis is that object skeletons are the
subsets of lines connecting center points of super-pixels [9]. Such line subsets
could be explored from super-pixels using a sequence of deformable discs to ex-
tract the skeleton path [7]. In [23], The consistence and smoothness of skeleton
are modeled with spatial filters, e.g., a particle filter, which links local skeleton
segments into continuous curves. Recently, learning based methods are utilized
for skeleton detection. It is solved with a multiple instance learning approach
[21], which picks up a true skeleton pixel from a bag of pixels. The structured
random forest is employed to capture diversity of skeleton patterns [20], which
can be also modeled with a subspace multiple instance learning method [15].

With the rise of deep learning, researchers have recently formulated skeleton
detection as image-to-mask classification problem by using learned weights to
fuse the multi-layer convolutional features in an end-to-end manner. HED [24]
learns a pixel-wise classifier to produce edges, which can be also used for skeleton
detection. Fusing scale-associated deep side-outputs (FSDS) [18] learns multi-
scale skeleton representation given scale-associated ground-truth. Side-output
residual network (SRN) [5] leverages the output residual units to fit the errors
between the object symmetry/skeleton ground-truth and the side-outputs of
multiple convolutional layers.

The problem about how to fuse multi-layer convolutional features to gener-
ate an output mask, e.g., object skeleton, has been extensively explored. Nev-
ertheless, existing approaches barely investigate the problem about the linear
independence of multi-layer features, which limits their representative capacity.
Our approach targets at exploring this problem from the perspective of linear
span theory by feature linear span of multi-layer features and subspace linear
span of the spanned subspaces.

3 Problem Formulation

3.1 Re-thinking HED

In this paper, we re-visit the implementation of HED, and reveal that HED as
well as its variations can be all formulated by the linear span theory [6].

HED utilizes fully convolutional network with deep supervision for edge de-
tection, which is one of the typical low-level image-to-mask task. Denoting the
convolutional feature as C withmmaps and the classifier as w, HED is computed
as a pixel-wise classification problem, as

ŷj =

m
∑

k=1

wk · ck,j , j = 1, 2, · · · , |Ŷ |, (1)
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Fig. 2. Schematic of linear span with a set of dependent vectors (a) and independent
vectors (b).

where ck,j is the feature value of the j-th pixel on the k-th convolutional map

and ŷj is the classified label of the j-th pixel in the output image Ŷ .
Not surprisingly, this can be equalized as a linear reconstruction problem, as

Y =

m
∑

k=1

λkvk, (2)

where λk is linear reconstruction weight and vk is the k-th feature map in C.
We treat each side-output of HED as a feature vector in the linear spanned

subspace Vi = span(vi1, v
i
2, · · · , v

i
m), in which i is the index of convolutional

stages. Then HED forces each subspace Vi to approximate the ground-truth space
Y. We use three convolutional layers as an example, which generate subspaces V1,
V2, and V3. Then the relationship between the subspaces and the ground-truth
space can be illustrated as lines in a 3-dimension space in Fig. 2(a).

As HED does not optimize the subspaces constrained by each other, it fails
to explore the complementary of each subspace to make them decorrelated. The
reconstructions can be formulated as







V1 ≈ Y
V2 ≈ Y
V3 ≈ Y

. (3)

When v1, v2, and v3 are linearly dependent, they only have the capability to
reconstruct vectors in a plane. That is to say, when the point Y is out of the
plane, the reconstruction error is hardly eliminated, Fig. 2(a).

Obviously, if v1, v2, and v3 are linearly independent, i.e., not in the same
plane, Fig. 2(b), the reconstruction could be significantly eased. To achieve this
target, we can iteratively formulate the reconstruction as







V1 ≈ Y
V1 + V2 ≈ Y
V1 + V2 + V3 ≈ Y

. (4)
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It s observed that V2 is refined with the constraint of V1. And V3 is optimized
in the similar way, which aims for vector decorrelation. The sum of subspaces,
i.e., V1 + V2 is denoted with the dark blue plane, and V1 + V2 + V3 is denoted
with the light blue sphere, Fig. 2(b).

Now, it is very straightforward to generalize Eq. (4) to

l
∑

k=1

Vk ≈ Y, l = 1, 2, · · · , n. (5)

One of the variations of HED, i.e., SRN, which can be understand as a special
case of Eq. (5) with

∑l

k=l−1 Vk ≈ Y, has already shown the effectiveness.

3.2 Linear Span View

Based on the discussion of last section, we can now strictly formulate a mathe-
matical framework based on linear span theory [6], which can be utilized to guide
the design of Linear Span Network (LSN) toward the optimized architecture.

In linear algebra, linear span is defined as a procedure to construct a linear
space by a set of vectors or a set of subspaces.

Definition 1. Y is a linear space over R. The set {v1, v2, ..., vm} ⊂ Y is a
spanning set for Y if every y in Y can be expressed as a linear combination of
v1, v2, ..., vm, as

y =

m
∑

k=1

λkvk, λ1, ..., λm ∈ R, (6)

and Y = span({v1, v2, ..., vm}).
Theorem 1. Let v1, v2, ..., vm be vectors in Y. Then {v1, v2, ..., vm} spans

Y if and only if, for the matrix F = [v1v2...vm], the linear system Fλ = y is
consistent for every y in Y.

Remark 1. According to Theorem 1, if the linear system is consistent
for almost every vector in a linear space, the space can be approximated by the
linear spanned space. This theorem uncovers the principle of LSN, which pursues
a linear system as mentioned above setting up for as many as ground-truth.

Definition 2. A finite set of vectors, which span Y and are linearly inde-
pendent, is called a basis for Y.

Theorem 2. Every linearly independent set of vectors {v1, v2, ..., vm} in a
finite dimensional linear space Y can be completed to a basis of Y.

Theorem 3. Every subspace U has a complement in Y, that is, another
subspace V such that vector y in Y can be decomposed uniquely as

y = u+ v, u in U, v in V. (7)

Definition 3. Y is said to be the sum of its subspaces V1, ..., Vm if every y

in Y can be expressed as

y = v1 + ...+ vm, vj in Vj . (8)
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Remark 2. We call the spanning of feature maps to a subspace as feature
linear span, and the sum of subspaces as subspace linear span. From Theorem 2

and Theorem 3, it is declared that the union of the spanning sets of subspaces
is the spanning set of the sum of the subspaces. That is to say, in the subspace
linear span we can merge the spanning sets of subspaces step by step to construct
a larger space.

Theorem 4. Supposing Y is a finite dimensional linear space, U and V are
two subspaces of Y such that Y = U + V , and W is the intersection of U and
V , i.e., W = U ∩ V . Then

dimY = dimU + dimV − dimW. (9)

Remark 3. From Theorem 4, the smaller the dimension of the intersection
of two subspaces is, the bigger the dimension of the sum of two subspaces is.
Then, successively spanning the subspaces from deep to shallow with supervision
increases independence of spanning sets and enlarges the sum of subspaces. It
enfores the representative capacity of convolutional features and integrates them
in a more effective way.

4 Linear Span Network

With the help of the proposed framework, the Linear Span Network (LSN) is
designed for the same targets with HED and SRN, i.e., the object skeleton de-
tection problem. Following the linear reconstruction theory, a novel architecture
named Linear Span Unit(LSU) has been defined first. Then, LSN is updated
from VGG-16 [17] with LSU and hints from Remark 1-3. VGG-16 has been cho-
sen for the purpose of fair comparison with HED and SRN. In what follows, the
implementation of LSU and LSN are introduced.

4.1 Linear Span Unit

The architecture of Linear Span Unit (LSU) is shown in Fig. 3, where each feature
map is regarded as a feature vector. The input feature vectors are unified with
a concatenation (concat for short) operation, as

C =
m

concat
k=1

(ck), (10)

where ck is the k-th feature vector. In order to compute the linear combination
of the feature vectors, a convolution operation with 1 × 1 × m convolutional
kernels is employed:

si =

m
∑

k=1

λk,i · ck, i = 1, 2, · · · , n, (11)

where λk,i is the convolutional parameter with k elements for the i-th reconstruc-
tion output. The LSU will generate n feature vectors in the subspace spanned
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Fig. 3. Linear Span Unit, which is used in both feature linear span and subspace linear
span. In LSU, the operation of linear reconstruction is implemented by a concatenation
layer and a 1× 1 convolutional layer.

by the input feature vectors. A slice layer is further utilized to separate them for
different connections, which is denoted as

n
⋃

i=1

si = slice(S). (12)

4.2 Linear Span Network Architecture

The architecture of LSN is shown in Fig. 4, which is consisted of three compo-
nents, i.e., feature linear span, resolution alignment, and subspace linear span
are illustrated. The VGG-16 network with 5 convolutional stages [19] is used as
the backbone network.

In feature linear span, LSU is used to span the convolutional feature of the
last layer of each stage according to Eq. 11. The supervision is added to the
output of LSU so that the spanned subspace approximates the ground-truth
space, following Remark 1. If only feature linear span is utilized, the LSN is
degraded to HED [24]. Nevertheless, the subspaces in HED separately fit the
ground-truth space, and thus fail to decorrelate spanning sets among subspaces.
According to Remark 2 and 3, we propose to further employ subspace linear
span to enlarge the sum of subspaces and deal with the decorrelation problem.

As the resolution of the vectors in different subspaces is with large variation,
simple up-sampling operation will cause the Mosaic effect, which generates noise
in subspace linear span. Without any doubt, the resolution alignment is necessary
for LSN. Thus, in Fig. 4, LSUs have been laid between any two adjacent layers
with supervision. As a pre-processing component to subspace linear span, it
outputs feature vectors with same resolution.

The subspace linear span is also implemented by LSUs, which further con-
catenates feature vectors from deep to shallow layers and spans the subspaces
with Eq. (5). According to Remark 3, a step-by-step strategy is utilized to ex-
plore the complementary of subspaces. With the loss layers attached on LSUs, it
not only enlarges the sum of subspaces spanned by different convolutional layers,
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Fig. 4. The architecture of the proposed Linear Span Network (LSN), which leverages
Linear Span Units (LSUs) to implement three components of the feature linear span,
the resolution alignment, and the subspace linear span. The feature linear span uses
convolutional features to build subspaces. The LSU is re-used to unify the resolution
among multi-stages in resolution alignment. The subspace linear span summarizes the
subspaces to fit the ground-truth space.

but also decorrelates the union of spanning sets of different subspaces. With this
architecture, LSN enforces the representative capacity of convolutional features
to fit complex ground-truth.

5 Experiments

5.1 Experimental setting

Datasets: We evaluate the proposed LSN on pubic skeleton datasets includ-
ing SYMMAX [21], WH-SYMMAX [15], SK-SMALL [18], SK-LARGE [17], and
Sym-PASCAL[5]. We also evaluate LSN to edge detection on the BSDS500
dataset [1] to validate its generality.

SYMMAX is derived from BSDS300 [1], which contains 200/100 training
and testing images. It is annotated with local skeleton on both foreground and
background. WH-SYMMAX is developed for object skeleton detection, but con-
tains only cropped horse images, which are not comprehensive for general ob-
ject skeleton. SK-SMALL involves skeletons about 16 classes of objects with
300/206 training and testing images. Based on SK-SMALL, SK-LARGE is ex-
tended to 746/745 training and testing images. Sym-PASCAL is derived from the
PASCAL-VOC-2011 segmentation dataset [4] which contains 14 object classes
with 648/787 images for training and testing.

The BSDS500 [1] dataset is used to evaluate LSN’s performance on edge de-
tection. This dataset is composed of 200 training images, 100 validation images,
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and 200 testing images. Each image is manually annotated by five persons on
average. For training images, we preserve their positive labels annotated by at
least three human annotators.

Evaluation protocol: Precision recall curve (PR-curve) is use to evaluate
the performance of the detection methods. With different threshold values, the
output skeleton/edge masks are binarized. By comparing the masks with the
ground-truth, the precision and recall are computed. For skeleton detection,
the F-measure is used to evaluate the performance of the different detection
approaches, which is achieved with the optimal threshold values over the whole
dataset, as

F =
2PR

P +R
. (13)

To evaluate edge detection performance, we utilize three standard measures [1]:
F-measures when choosing an optimal scale for the entire dataset (ODS) or per
image (OIS), and the average precision (AP).

Hyper-parameters: For both skeleton and edge detection, we use VGG16
[19] as the backbone network. During learning we set the mini-batch size to 1, the
loss-weight to 1 for each output layer, the momentum to 0.9, the weight decay
to 0.002, and the initial learning rate to 1e-6, which decreases one magnitude for
every 10,000 iterations.

5.2 LSN Implementation

We evaluate four LSN architectures for subspace linear span and validate the
iterative training strategy.

LSN architectures. If there is no subspace linear span, Fig. 4, LSN is sim-
plified to HED [24], which is denoted as LSN 1. The F-measure of LSN 1 is
49.53%. When the adjacent two subspaces are spanned, it is denoted as LSN 2,
which is the same as SRN [5]. LSN 2 achieve significant performance improve-
ment over HED which has feature linear span but no subspace span. We compare
LSNs with different number of subspaces to be spanned, and achieve the best
F-measure of 66.82%. When the subspace number is increased to 4, the skeleton
detection performance drops. The followings explained why LSN 3 is the best
choice.

If the subspaces to be spanned are not enough, the complementary of con-
volutional features from different layers could not be effectively explored. On
the contrary, if a LSU fuses feature layers that have large-scale resolution dif-
ference, it requires to use multiple up-sampling operations, which deteriorate
the features. Although resolution alignment significantly eases the problem, the
number of adjacent feature layers to be fused in LSU remains a practical choice.
LSN 3 reported the best performance by fusing a adjacent layer of higher resolu-
tion and a adjacent layer of lower resolution.On one hand, the group of subspaces
in LSN 3 uses more feature integration. On the other hand, there is not so much
information loss after an 2× up-sampling operation.
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Table 1. The performance of different LSN implementations on the SK-LARGE
dataset. LSN 3 that fuses an adjacent layer of higher resolution and an adjacent layer
of lower resolution reported the best performance.

Architecture F-measure(%)

LSN 1 (HED, feature linear span only) 49.53
LSN 2 (SRN, feature and 2-subspace linear span) 65.88
LSN 3 (LSN, feature and 3-subspace linear span) 66.15
LSN 4 (LSN, feature and 4-subspace linear span) 65.89

Table 2. The performance for different training strategies.

w/o RA end-to-end iter1 iter2 iter3

F-measure(%) 66.15 66.63 66.82 66.74 66.68

Training strategy.With three feature layers spanned, LSN needs up-sampling
the side-output feature layers from the deepest to the shallowest ones. We use
the supervised up-sampling to unify the resolution of feature layers.

During training, the resolution alignment is also achieved by stacking LSUs.
We propose a strategy that train the two kinds of linear span, i.e., feature linear
span with resolution alignment and subspace linear span, iteratively. In the first
iteration, we tune the LSU parameters for feature linear span and resolution
alignment using the pre-trained VGG model on ImageNet, as well as update the
convolutional parameters. Keeping the LSU parameters for resolution alignment
unchanged, we tune LSU parameters for feature linear span and subspace linear
span using the new model. In other iteration, the model is fine-tuned on the
snap-shot of the previous iteration. With this training strategy, the skeleton de-
tection performance is improved from 66.15% to 66.82%, Table 2. The detection
performance changes marginally when more iterations are used. We therefore
use the single iteration (iter1) in all experiments.

LSU effect. In Fig. 5, we use a giraffe’s skeleton from SK-LARGE as an
example to compare and analyze the learned feature vectors (bases) by HED [24],
SRN [24], and LSN. In Fig. 5(a) and (c), we respectively visualize the feature
vectors learned by HED [24] and the proposed LSN. It can be seen in the first
column that the HED’s results incorporate more background noise and mosaic
effects. This shows that the proposed LSN can better span an output feature
space. In Fig. 5(b) and (d), we respectively visualize the subspace vectors learned
by SRN [5] and the proposed LSN. It can be seen in the first column that the
SRN’s results incorporate more background noises. It requires to depress such
noises by using a residual reconstruction procedure. In contrast, the subspace
vectors of LSN is much clearer and compacter. This fully demonstrates that
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(a) Feature linear span by HED (b) Subspace linear span by SRN

a(c) Feature linear span by LSN b(d) Subspace linear span by LSN

Fig. 5. Comparison of output feature vectors of HED [24], SRN [5], and LSN(From left
to right results are listed in a deep-to-shallow manner). By comparing (a) and (c), (b)
and (d), one can see that LSN can learn better feature vectors and subspaces(basis) to
span the output space. It enforces the representative capacity of convolutional features
to fit complex outputs with limited convolutional layers.

LSN can better span the output space and enforce the representative capacity of
convolutional features, which will ease the problems of fitting complex outputs
with limited convolutional layers.

5.3 Performance and Comparison
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Fig. 6. The PR-curve on SK-LARGE.

Table 3. Performance comparison on SK-
LARGE dataset. † GPU time.

Mehods F-measure Runtime/s

Lindeberg [11] 0.270 4.05
Levinshtein [9] 0.243 146.21
Lee [7] 0.255 609.10
MIL [21] 0.293 42.40
HED [24] 0.495 0.05 †
SRN [5] 0.655 0.08 †
LMSDS [17] 0.649 0.05 †
LSN (ours) 0.668 0.09 †
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Skeleton detection.

The proposed LSN is evaluated and compared with the state-of-the-art ap-
proaches, and the performance is shown in Fig. 5 and Table 3. The result of SRN
[5] is obtained by running authors’ source code on a Tesla K80 GPU, and the
other results are provided by [17].

The conventional approaches including Lindeberg [11], Levinshtein [9], and
Lee [7], produce the skeleton masks without using any learning strategy. They are
time consuming and achieve very low F-measure of 27.0%, 24.3%, and 25.5%, re-
spectively. The typical learning approach, i.e., multiple instance learning (MIL)
[21], achieves F-measure of 29.3%. It extractes pixel-wised feature with multi-
orientation and multi-scale, and averagely uses 42.40 seconds to distinguish skele-
ton pixels from the backgrounds in a single image.

The CNN based approaches achieve huge performance gain compared with
the conventional approaches. HED [24] achieves the F-measure of 49.5% and
uses 0.05 seconds to process an images, while SRN [5] achieves 64.9% and uses
0.08 seconds. The scale-associated multi-task method, LMSDS [17], achieves the
performance of 64.9%, which is built on HED with the pixel-level scale annota-
tions. Our proposed LSN reportes the best detection performance of 66.8% with
a little more runtime cost compared with HED and SRN.

The results show that feature linear span is efficient for skeleton detection.
As discussed above, HED and SRN are two special case of LSN. LSN that used
three spanned layers in each span unit is a better choice than the state-of-the art
SRN. Some skeleton detection results are shown in Fig. 7. It is illustrated that
HED produces lots of noise while the FSDS is not smooth. Comparing SRN with
LSN, one can see that LSN rectifies some false positives as shown in column one
and column three and reconstruct the dismiss as shown in column six.

Table 4. Performance comparison of the state-of-the-art approaches on the public
WH-SYMMAX [15], SK-SMALL [18], SYMMAX [21], and Sym-PASCAL [5] datasets.

WH-SYMMAX SK-SMALL SYMMAX Sym-PASCAL

Levinshtein [9] 0.174 0.217 – 0.134
Lee [7] 0.223 0.252 – 0.135
Lindeberg [11] 0.277 0.227 0.360 0.138
Particle Filter [23] 0.334 0.226 – 0.129
MIL [21] 0.365 0.392 0.362 0.174

HED [24] 0.743 0.542 0.427 0.369
FSDS [18] 0.769 0.623 0.467 0.418
SRN [5] 0.780 0.632 0.446 0.443
LSN (ours) 0.797 0.633 0.480 0.425

The proposed LSN is also evaluated on other four commonly used datasets,
includingWH-SYMMAX [15], SK-SMALL [18], SYMMAX [21], and Sym-PASCAL
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FSDS

GT

HED

LSN
(ours)

SRN

Fig. 7. Skeleton detection examples by state-of-the-art approaches including HED [24],
FSDS [18], SRN [5], and LSN. The red boxes are false positive or dismiss in SRN, while
the blue ones are correct reconstruction skeletons in LSN at the same position. (Best
viewed in color with zoon-in.)

[5]. The F-measure are shown in Table 4. Similar with SK-LARGE, LSN achieves
the best detection performance on WH-SYMMAX, SK-SMALL, and SYMMAX,
with the F-measure 79.7%, 63.3% and 48.0%. It achieves 5.4%, 8.1%, and 5.3%
performance gain compared with HED, and 1.7%, 0.1%, and 2.4% gain com-
pared with SRN. On Sym-PASCAL, LSN achieves comparable performance of
42.5% vs. 44.3% with the state-of-the art SRN.

Edge detection. Edge detection task has similar implementation with skele-
ton that discriminate whether a pixel belongs to an edge. It also can be recon-
structed by the convolutional feature maps. In this section, we compare the edge
detection result of the proposed LSN with some other state-of-the-art meth-
ods, such as Canny [2], Sketech Tokens [10], Structured Edge (SE) [3], gPb [1],
DeepContour [16], HED [24], and SRN [5], Fig. 8 and Table 5.

In Fig. 8, it is illustrated that the best conventional approach is SE with
F-measure (ODS) of 0.739 and all the CNN based approaches achieve much
better detection performance. HED is one of the baseline deep learning method,
which achieved 0.780. The proposed LSN reportes the highest F-measure of
0.790, which has a very small gap (0.01) to human performance. The F-measure
with an optimal scale for the per image (OIS) was 0.806, which was even higher
than human performance, Table 5. The good performance of the proposed LSN
demonstrates its general applicability to image-to-mask tasks.
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Fig. 8. The PR-curve on the BSDS500
edge deteciton dataset.

Table 5. Performance comparison on the
BSDS500 edge detection dataset. † GPU
time.

Mehods ODS OIS AP FPS

Canny [2] 0.590 0.620 00578 15
ST [10] 0.721 0.739 0.768 1
gPb [1] 0.726 0.760 0.727 1/240
SE [16] 0.739 0.759 0.792 2.5
DC [16] 0.757 0.776 0.790 1/30 †
HED [24] 0.780 0.797 0.814 2.5 †
SRN [5] 0.782 0.800 0.779 2.3 †
LSN (ours) 0.790 0.806 0.618 2.0 †
Human 0.800 0.800 – –

6 Conclusion

Skeleton is one of the most representative visual properties, which describes ob-
jects with compact but informative curves. In this paper, the skeleton detection
problem is formulated as a linear reconstruction problem. Consequently, a gen-
eralized linear span framework for skeleton detection has been presented with
formal mathematical definition. We explore the Linear Span Units (LSUs) to
learn a CNN based mask reconstruction model. With LSUs we implement three
components including feature linear span, resolution alignment, and subspace
linear span, and update the Holistically-nested Edge Detection (HED) network
to Linear Span Network (LSN). With feature linear span, the ground truth space
can be approximated by the linear spanned output space. With subspace linear
span, not only the independence among spanning sets of subspaces can be in-
creased, but also the spanned output space can be enlarged. As a result, LSN
will have better capability to approximate the ground truth space, i.e., against
the cluttered background and scales. Experimental results validate the state-of-
the-art performance of the proposed LSN, while we provide a principled way to
learn more representative convolutional features.
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