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Abstract. Deep neural network compression has the potential to bring
modern resource-hungry deep networks to resource-limited devices. How-
ever, in many of the most compelling deployment scenarios of compressed
deep networks, the operational constraints matter: for example, a pedes-
trian detection network on a self-driving car may have to satisfy a latency
constraint for safe operation. We propose the first principled treatment of
deep network compression under operational constraints. We formulate
the compression learning problem from the perspective of constrained
Bayesian optimization, and introduce a cooling (annealing) strategy to
guide the network compression towards the target constraints. Experi-
ments on ImageNet demonstrate the value of modelling constraints di-
rectly in network compression.

1 Introduction

Modern deep neural networks contain millions of parameters over dozens or even
hundreds of layers [1, 2]. Standard benchmarks such as ImageNet [3] have incen-
tivized the design of increasingly expensive networks, as the additional expres-
siveness seems necessary to correctly handle the remaining hard test samples
[4]. However, the deployment of deep networks in real-world systems requires
consideration of the computation cost. The issue of computation cost has led to
a natural surge in interest in deep network compression [5–22].

Constraints matter in many of the most compelling deployment scenarios for
compressed deep neural networks. For example, deep neural network compression
enables us to deploy powerful networks in systems such as self-driving vehicles
with real-time operation requirements. A self-driving vehicle may have latency
constraints for executing a scene segmentation routine: if the network cannot
return predictions within 50 ms on average, for instance, the safe operation of
the vehicle may be compromised. As another example, deep network compression
enables us to deploy compact networks on embedded platforms with limited
computing power. A drone may have fixed memory constraints and only be able
to run a 12 MB network on-board.

Previous work on deep network compression has focused on achieving the
highest compression rate while maintaining an acceptable level of accuracy (e.g.
within 1-2% of the uncompressed network’s accuracy). We refer to this general
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Fig. 1. We propose a framework for deep network compression under operational con-
straints (e.g. latency). The one-step model takes an uncompressed network F0 and
employs constrained Bayesian optimization to explore the space of compression hyper-
parameters φ such that the task objective (e.g. classification accuracy) is maximized
and all constraints are satisfied. F ′ denotes a “proposed” compressed network. The
cooling model guides network compression gradually towards the constraints via a se-
quence of easier intermediate targets.

approach to network compression as unconstrained network compression because
operational constraints are not considered in the training of the compressed
network. In this paper, we propose constraint-aware network compression, in
which we incorporate operational constraints directly in the compression process.
This framework allows us to ensure that the compressed network satisfies the
operational constraints of the system on which the network will be deployed.
Fig. 1 shows an overview of our approach.

For some types of operational constraints, such as latency, ensuring that a
system always meets hard constraints requires verification on domain specific
hardware. A wide range of systems design issues often need to be addressed
to guarantee correct performance. For example, WCET (worst case execution
times) analysis on multi-core processors is notoriously difficult and remains an
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open research challenge [23–25]. Verification on domain specific hardware is be-
yond the scope of this paper. Instead, we focus on ensuring that all constraints
are satisfied in expectation. In computer vision, this regime is similar to that of
budgeted batch classification, in which a fixed time budget is available to clas-
sify a set of images and the model is trained to ensure that the time budget is
satisfied in expectation [4].

To the best of our knowledge, this paper presents the first principled frame-
work for deep network compression under operational constraints. Experiments
on Describable Textures [26] and ImageNet [3] demonstrate the value of mod-
elling constraints directly in network compression.

2 Constraint-Aware Network Compression

The problem of deep network compression with constraints can be expressed
as follows. Given a pre-trained deep neural network, we would like to obtain a
compressed network that satisfies a fixed set of constraints C, while preserving
the original task performance of the network as closely as possible.

Suppose we have a network compression algorithm Φ(F, φ) that takes as input
a deep network F and a set of tunable compression-related hyperparameters φ,
and outputs a compressed network. For example, φ might be a vector specifying
magnitude thresholds for pruning each layer in the network [8].

In an unconstrained compression setting, it is difficult to compress the net-
work using Φ while ensuring that the operational constraints C are satisfied. A
straightforward approach would be to repeatedly try different compression con-
figurations until a compressed network is found that satisfies C; however, the
configuration space might be very large and each compression attempt may be
computationally expensive. Even if the repeated trials are feasible, the final com-
pressed network may not provide satisfactory performance because its training
does not directly take C into account during optimization.

We propose a principled framework for deep network compression under op-
erational constraints. Let A : F → R map a network F to a performance metric
specific to the network’s task; for example, if F is a network for image classifi-
cation, then A could be the top-1 classification accuracy. Let ρi : F → R map
a network to a measurement of the ith constraint condition, such as latency,
energy consumption, or memory, i = {1, ..., |C|}. Let c ∈ R

|C| be a vector of
constraint values. We define the constraint-aware network compression problem
as

F = argmax
F

A(F ) (1)

subject to ∀i ρi(F ) ≤ ci

F = Φ(F0, φ)

where F0 is the original network to compress. For example, suppose we wish
to compress a semantic segmentation network and ensure that the compressed
network satisfies a maximum latency constraint of 100 ms at inference time. A
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would be a semantic segmentation performance metric such as per-pixel accu-
racy, |C| = 1, ρ1 measures the latency of the network at inference time, and
c1 = 100 ms.

To approach this difficult non-convex optimization problem, we employ con-
strained Bayesian optimization [27–29]. Bayesian optimization provides a general
framework for optimizing black-box objective functions that are typically expen-
sive to evaluate, non-convex, may not be expressible in closed form, and may not
be easily differentiable [30]. Bayesian optimization iteratively constructs a prob-
abilistic model of the objective function based on the outcomes of evaluating the
function at various points in the input parameter space. In each iteration, the
candidate point to evaluate next is determined by an acquisition function that
trades off exploration (preferring regions of the input space with high model un-
certainty) and exploitation (preferring regions of the input space that the model
predicts will result in a high objective value). Constrained Bayesian optimization
additionally models feasibility with respect to constraints.

In problem (1), we employ constrained Bayesian optimization to obtain com-
pression hyperparameters φ that produce a compressed network F satisfying
the constraints. We model the objective function as a Gaussian process [31]. A
Gaussian process is an uncountable set of random variables, any finite subset of
which is jointly Gaussian. Gaussian processes are commonly used in Bayesian
optimization as they enable efficient computation of the posterior. For a more
comprehensive treatment of Gaussian processes and Bayesian optimization, we
refer the interested reader to [27, 29, 31]. In each iteration of our optimization,
the next input φ is chosen using an expected improvement based acquisition
function, the input network F0 (or Ft−1 if using a cooling schedule, discussed
later) is compressed using Φ with hyperparameters φ, and the model is updated
with the objective value and whether the constraints are satisfied. Fig. 1 (top)
illustrates the basic compression process.

Running the compression algorithm Φ to completion over a large number of
Bayesian optimization iterations may be prohibitively expensive. In practice, we
substitute Φ with a fast approximation of Φ that skips fine-tuning the network
after compression. We also estimate the objective value using a small subset of
images. After Bayesian optimization determines the most promising hyperpa-
rameters φ, we run the full compression algorithm Φ using φ to produce the
compressed network F .

As described so far, the Bayesian optimization attempts to find a compres-
sion configuration that immediately satisfies the operational constraints; we will
refer to this strategy as one-step constraint-aware compression. However, we
find that pursuing a gradual trajectory towards the constraints leads to better
performance, especially when the constraints are aggressive. This gradual tra-
jectory provides a sequence of easier targets that approach the constraints, and
is governed by a cooling schedule. We write the constraint-aware network com-
pression problem with cooling as a sequence of problems indexed by cooling step
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Algorithm 1 Constraint-aware network compression with cooling

Input: Network compression algorithm Φ, constraints C (implemented as measurement
functions ρi and values ci for i = 1, 2, ..., |C|), uncompressed network F0, number
of cooling steps T , cooling function g

Output: Compressed network F

1: F[0] = F0

2: for t = 1 to T do

3: Update cooled constraint values gi(t)
4: repeat

5: Determine most promising compression hyperparameters φ to evaluate next
based on expected improvement

6: Compress F[t-1] with Φ using hyperparameters φ
7: Update Gaussian process model based on objective and constraints evaluation
8: until maximum iterations of constrained Bayesian optimization reached
9: Compress F[t-1] with best hyperparameters φ discovered to obtain F[t]
10: Fine-tune F[t]
11: end for

12: F := F[T ]

t = 1, 2, ..., T :

Ft = argmax
Ft

A(Ft) (2)

subject to ∀i ρi(Ft) ≤ gi(t)

Ft = Φ(Ft−1, φt)

where T is the total number of cooling steps, and gi is a cooling function that
depends on T , the ith target constraint value ci, and ρi(F0), the initial value of
the ith constraint variable (for the original uncompressed network). We require
gi(T ) = ci and return FT as the final compressed network. Fig. 1 (bottom)
illustrates constraint-aware network compression with cooling. In each cooling
step t = 1, 2, ..., T , constrained Bayesian optimization is used to compress the
network while ensuring that the target constraints are satisfied. At the end
of a cooling iteration, we have a compressed network that satisfies the target
constraints, and the target constraints are updated according to the cooling
function. In the final cooling iteration T , the target constraints are equal to the
operational constraints ci. We consider two cooling functions in this paper. For
linear cooling, we define

gi,linear(t) = ρi(F0) + t/T · (ci − ρi(F0)) (3)

This cooling schedule sets the intermediate targets by linearly interpolating from
the value of the uncompressed network ρi(F0) to the constraint ci. For exponen-
tial cooling, we define

gi,exp(t) = ci + (ρi(F0)− ci) · e
−αt + (ci − ρi(F0)) · e

−αT (4)
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The exponential cooling schedule sets more aggressive intermediate targets at
first and cools more slowly when approaching the final constraint ci. The in-
tuition is that the network may be initially easy to compress, but after several
iterations of constrained compression it may become more difficult to make fur-
ther progress. For exponential cooling, there is one parameter α, which controls
the degree of cooling in each iteration. The process for constraint-aware network
compression with cooling is summarized in Algorithm 1.

3 Experiments

We performed an initial set of experiments on the Describable Textures Dataset
(DTD) [26] to explore a range of alternatives for performing network compression
under operational constraints; we then performed final experiments on ImageNet
(ILSVRC-2012) [3] to show the generalization of our technique to large-scale
data. For concreteness, we used inference latency as a typical operational con-
straint in real-world systems. The performance of the classification networks is
measured by top-1 accuracy.

3.1 Implementation details

We used magnitude-based pruning [6, 8, 15, 17] followed by fine-tuning as our
compression strategy Φ. Magnitude-based pruning removes the weights in each
layer with the lowest absolute value, with the intuition that these will have the
least impact on the computation result. The compression hyperparameters φ are
the pruning percentages for each layer. We used an ImageNet-pretrained Caf-
feNet (a variation of AlexNet [32]) as the original network. During constrained
Bayesian optimization, the accuracy of a compressed network was measured on
a subset of the training set. Fine-tuning was performed on the whole training
set.

We implemented our networks in the open source library SkimCaffe [15],
which can speed up sparse deep neural networks via direct convolution operation
and sparse matrix multiplication on CPU. For constrained Bayesian optimiza-
tion, we used the official Matlab implementation.

Latency is measured as stabilized (after model is loaded into memory) average
forwarding time of one batch in SkimCaffe over 100 timing trials. As discussed
in the introduction, we focus on satisfying the latency constraint in expectation,
i.e. we assume an NHRT (Non Hard Real-Time) system [23, 24] for testing. Since
conv1 is memory bandwidth dominant, pruning this layer gives low speedup but
makes it harder to preserve the accuracy [15]; by default, we do not prune conv1
in the latency experiments.

3.2 Methods evaluated

We considered four approaches: an unconstrained baseline and three constraint-
aware alternatives:
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Latency Accuracy

Original network 207.3 ± 8.1 ms 60.7%
Unconstrained compression 59.7 ± 0.2 ms 56.3 ± 0.0%
Constraint-aware compression, one-step 57.1 ± 1.6 ms 53.9 ± 6.0%
Constraint-aware compression, linear cooling 58.4 ± 0.6 ms 57.8 ± 1.0%
Constraint-aware compression, exponential cooling 58.2 ± 0.5 ms 59.0 ± 0.4%

Table 1. Compression results for AlexNet on DTD with a latency constraint of 60 ms.
Accuracy is top-1 classification accuracy. Results are averaged over five trials.

1. Unconstrained compression. This baseline repeatedly tries different compres-
sion configurations and returns the best compressed network found that sat-
isfies the operational constraints. Starting from a compression rate of 50%,
we discard half the weights in each layer, until the operational constraints
are satisfied; we then iteratively increase and decrease the compression rate
by binary search to satisfy the constraints as closely as possible, until the
binary search interval is smaller than 0.001. We then prune the model using
the found compression rate and fine-tune the whole model.

2. Constraint-aware compression with one step. This constraint-aware variation
is illustrated in Fig. 1 (top), in which we do not use a cooling schedule and
attempt to meet the operational constraint directly in a single step (T = 1).

3. Constraint-aware compression with linear cooling. This method is Fig. 1
(bottom) with a linear cooling schedule to gradually and uniformly approach
the operational constraint.

4. Constraint-aware compression with exponential cooling. This method is Fig.
1 (bottom) with an exponential cooling schedule to gradually approach the
operational constraint with more aggressive targets at the beginning.

3.3 Exploratory Experiments (DTD)

Our initial experiments for exploring alternatives were performed on the first
train-validation-test split of the Describable Textures Dataset [26]. We performed
multiple trials on a single split instead of single trials on multiple splits so that
any variation in outcomes would be due to the stochastic elements of the algo-
rithm instead of differences in the data split. The hardware platform for latency
measurement was Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz. At a batch size
of 32 and 4 threads, the inference latency of the original uncompressed net-
work was 207 ms. We set the learning rate to 0.001, the number of constrained
Bayesian optimization iterations to 100, the number of fine-tuning iterations in
each cooling step to 1500, the number of cooling steps T to 5, and the exponen-
tial coefficient for exponential cooling to 0.5. The unconstrained and one-step
baselines were fine-tuned to 3000 iterations, which was enough for convergence.

Method comparisons. Table 1 shows the final latency and top-1 accuracy
results under a latency constraint of 60 ms for all methods. Means and standard
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Pruning rate Latency before Latency after

conv2 95.06 ± 1.85 % 52.9 ± 2.7 ms 7.8 ± 1.8 ms
conv3 92.19 ± 4.25 % 30.2 ± 1.6 ms 4.9 ± 2.3 ms
conv4 85.29 ± 4.26 % 25.6 ± 1.4 ms 6.5 ± 1.7 ms
conv5 77.61 ± 4.02 % 19.1 ± 1.2 ms 8.3 ± 1.0 ms
fc6 96.03 ± 2.33 % 15.6 ± 0.3 ms 2.4 ± 0.7 ms
fc7 90.05 ± 6.42 % 6.3 ± 0.2 ms 1.8 ± 0.8 ms
fc8 82.07 ± 8.35 % 0.1 ± 0.01 ms 0.07 ± 0.02 ms

Table 2. Layer-wise compression results for the constraint-aware compression with
exponential cooling method in Table 1.

deviations were computed over five independent runs to account for stochastic
elements of the algorithm. For a given run, the latency of the compressed net-
work was obtained via 100 timing measurements to account for variance from the
CPU environment; the standard deviation of the timing measurements was 0.3
ms on average. Compared to the unconstrained compression baseline, constraint-
aware compression with cooling obtained 2.7% higher accuracy. The exponential
cooling schedule led to a higher final accuracy than the linear cooling sched-
ule, suggesting that rapid initial cooling followed by a more conservative final
approach was an effective strategy in this case.

Why does cooling provide better performance?One might ask whether
a better hyperparameter sweep would suffice for the unconstrained or one-step
baselines to match the performance of linear or exponential cooling. Why is
cooling valuable? The cooling schedule induces a series of easier compression
problems and allows the compression to adapt to the network structure as it
changes over time [16]. Since the network is fine-tuned at the end of each cool-
ing step, each round of Bayesian optimization starts from an initial network
Ft−1 with structure that is closer to the final compressed network. A one-step
or unconstrained approach does not benefit from these intermediate network
structures. We performed an additional experiment in which we ran the one-
step baseline using the compression hyperparameters found in the final cooling
step of exponential cooling. This resulted in an accuracy of 52.6 ± 2.4%, which
is worse than the result of the normal exponential cooling method, with com-
pression performed over multiple steps. Interestingly, if instead of transferring
only the compression hyperparameters from exponential cooling to the one-step
baseline, we also transferred the network structure (i.e. the sparsity structure),
then the accuracy improved to 58.3 ± 1.2%. This suggests that the exponential
cooling approach does not perform better simply because of a better hyperpa-
rameter search, but that the setting of progressive targets and the intermediate
fine-tuning are helpful in evolving the network to the highest performing com-
pressed structure.
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(a) conv2 (b) conv3 (c) fc7

Fig. 2. Visualization of the pruning rates proposed by constrained Bayesian optimiza-
tion for the first cooling step of a single trial in Table 2.

Fig. 3. Compression results for AlexNet on DTD for latency constraints of 50 ms, 60
ms, and 70 ms. Constraint-aware compression with exponential cooling provides the
best overall performance for all three tested constraint values.

Layer-wise results. Table 2 shows the average latency and pruning rate for
each layer obtained by the constraint-aware compression with exponential cool-
ing method in Table 1. Fig. 2 shows the evolution of the individual pruning rates
proposed by Bayesian optimization for the conv2, conv3, and fc7 layers, for the
first cooling step of a single trial with exponential cooling. Bayesian optimiza-
tion quickly clusters around an effective pruning rate range for conv2 and conv3,
while the rates proposed for fc7 are more scattered, even at the maximum num-
ber of iterations. This suggests that the quality of the compressed solutions is
more dependent on how conv2 and conv3 are pruned than on how fc7 is pruned,
which is expected since convolution layers contribute more to the overall latency
than fully connected layers. Likewise, we can observe from Table 2 that the
variance in pruning rate is higher for fc7 and fc8 than for the convolution layers.

Generalization to different constraint values. Fig. 3 shows compression
performance over a range of latency constraint values. Our observations about
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(a) (b) (c)

(d) (e) (f)

Fig. 4. A visualization of the compression solutions proposed by constrained Bayesian
optimization for the 70 ms experiment in Fig. 3. Deeper saturation corresponds to a
later iteration in the Bayesian optimization. (a) Single-step compression failure case.
(b-f) Compression with exponential cooling. See text for discussion.

the importance of cooling generalize to other latency targets. The large variance
in the one-step baseline in both the 50 ms and 70 ms experiments is due to
failures in a single trial in the respective experiments. To explain these failures,
Fig. 4(a) visualizes the compressed networks proposed by constrained Bayesian
optimization for the 70 ms trial in which the single-step baseline failed. The
saturation of the data points indicates the Bayesian optimization iteration in
which that compressed network was proposed; deeper saturation corresponds to
a later iteration. We can see that the feasible solutions proposed by Bayesian
optimization (data points under the dotted line) are almost equally poor in
terms of accuracy. In this case, the model is unable to distinguish between com-
pressed networks that can be improved with sufficient fine-tuning and networks
that cannot be improved with any amount of fine-tuning. Fig. 4(b-f) visualize
the compressed networks proposed by constrained Bayesian optimization for a
trial of the exponential cooling method. In the case of exponential cooling, since
compression is performed gradually with intermediate targets over several it-
erations, constrained Bayesian optimization is able to consistently converge to
high-accuracy solutions that respect the operational constraint.

One way to mitigate this failure mode for the one-step baseline is to perform a
look ahead step during constrained Bayesian optimization: for every compressed
network proposed by Bayesian optimization, we partially fine-tune the proposed
network (e.g. we look ahead one epoch) to obtain a better estimate of the final
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Latency Accuracy

Original network 237.0 ± 2.9 ms 57.41%
Unconstrained compression 69.2 ± 1.3 ms 50.62 ± 0.50%
Constraint-aware compression, one-step 62.2 ± 4.3 ms 47.27 ± 3.31%
Constraint-aware compression, exponential cooling 69.7 ± 0.7 ms 53.70 ± 0.15%

Table 3. Compression results for AlexNet on ImageNet with a latency constraint of
70 ms. Accuracy is top-1 classification accuracy. Results are averaged over three trials.

accuracy. We implemented this variation and found that looking ahead improves
the average accuracy from 53.9% to 55.9% and reduces the standard deviation
from 6.0% to 1.1%. However, fine-tuning each proposed network increases the
computation overhead of Bayesian optimization and may not be suitable for
large-scale datasets such as ImageNet.

Limitations. In our experiments, we have assumed that the operational con-
straint value is feasible given the selected network F and compression method
Φ. If the constraint cannot be satisfied even if the network is maximally com-
pressed using Φ (e.g. in our case, if the layers are pruned to the extent of leaving
a single non-zero weight in each layer), then our framework cannot propose a
feasible solution. The lower bound on the operational constraint depends on Φ:
for instance, in knowledge distillation [9, 14] the architecture of the compressed
(student) network is typically different from that of the original (teacher) net-
work, so it may be able to achieve more extreme latency targets than a method
that keeps the original network architecture.

3.4 Large-Scale Experiments (ImageNet)

To demonstrate that our framework generalizes to large-scale data, we performed
experiments on ImageNet (ILSVRC-2012). We performed three independent tri-
als on the standard training and validation split. The hardware platform for
latency measurement was Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz. We set
the learning rate to 0.001, the number of constrained Bayesian optimization it-
erations to 200, the number of fine-tuning iterations in each cooling step to 10K,
the number of cooling steps T to 10, and the exponential coefficient for expo-
nential cooling to 0.5. We matched the total number of fine-tuning iterations to
be 150K for all baselines.

Method comparisons. Table 3 shows the averaged results for unconstrained
compression, constraint-aware compression in one-step, and constraint-aware
compression with exponential cooling, under an operational constraint of 70 ms
latency. Compared to unconstrained compression, constraint-aware compression
with exponential cooling obtains 3.1% higher top-1 accuracy while satisfying the
operational constraint.
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Pruning rate Storage before Storage after

conv1 27.37 % 0.13 MB 0.10 MB
conv2 35.39 % 1.17 MB 0.76 MB
conv3 50.12 % 3.38 MB 1.68 MB
conv4 55.85 % 2.53 MB 1.12 MB
conv5 55.41 % 1.69 MB 0.75 MB
fc6 98.29 % 144.02 MB 2.46 MB
fc7 96.79 % 64.02 MB 2.05 MB
fc8 84.61 % 15.63 MB 2.41 MB

overall 95.13 % 232.56 MB 11.33 MB

Table 4. Layer-wise compression results for constraint-aware compression with a stor-
age constraint of 5% of the original storage costs, AlexNet on ImageNet.

Layer-wise results. Detailed layer-wise results can be found in the supplemen-
tary material. Similar to the DTD experiments, Bayesian optimization quickly
clusters around an effective pruning rate range for conv2 and conv3, while the
rates proposed for fc7 are more scattered, even at the maximum number of it-
erations. The highest variances in pruning rate are for fc7 and fc8. Similar to
DTD, the quality of the compressed solutions depends more on how the convo-
lution layers are pruned than on how the fc7 and fc8 layers are pruned, which is
expected given the constraint on inference latency.

Time requirements. In one step of the cooling schedule, constrained Bayesian
optimization is first used to search for the hyperparameters and then fine-tuning
is performed. The constrained Bayesian optimization takes 1.5 hours for 200
iterations. One iteration is roughly 30 s, and consists of 17 s of accuracy mea-
surement, 10 s of latency test, and 3 s of Bayesian optimization calculation. We
perform 150K fine-tuning iterations, which requires 30 hours on a 1080Ti.

Generalization to other constraint types. To demonstrate that our frame-
work generalizes to different types of operational constraints, we performed a pre-
liminary experiment on ImageNet with a constraint on the storage requirements
of the network. We set the maximum storage cost to be 5% of the original cost
and ran a single trial of constraint-aware compression with exponential cooling.
We set the learning rate to 0.001, the number of constrained Bayesian optimiza-
tion iterations to 200, the number of fine-tuning iterations in each cooling step
to 10K, the number of cooling steps T to 10, and the exponential coefficient to
0.4. After the final cooling step, we fine-tuned for an additional 350K iterations
in which we started with a learning rate of 0.001 and reduced the learning rate
by a factor of 10 after every 150K iterations.

The storage cost of the original network is 232.56 MB. Constraint-aware com-
pression with exponential cooling produces a compressed network with storage
cost 11.33 MB (5% of the original cost) and top-1 accuracy of 54.84%. Table 4



Constraint-Aware Deep Neural Network Compression 13

(a) conv2 (b) fc6 (c) fc7

Fig. 5. Visualization of the pruning rates proposed by constrained Bayesian optimiza-
tion for the first cooling step of the storage-constraint experiment in Table 4.

shows the storage cost and pruning rate for each layer, and Fig. 5 visualizes the
individual pruning rates proposed by Bayesian optimization for the conv2, fc6,
and fc7 layers. In contrast to the previous experiments with latency constraints,
given a storage constraint, our framework learns a policy that prioritizes the fully
connected layers: Bayesian optimization quickly converges for fc6 and fc7, while
the proposed pruning rates for conv2 are more scattered, even at the maximum
number of iterations; in Table 4, the fully connected layers are pruned more
aggressively than the convolution layers. This contrasting behavior is expected
because fully connected layers contribute more to the storage costs (they have
more weights to store) than convolution layers. We can see that the compression
behavior of constraint-aware compression automatically adapts to the type of
operational constraint that the system is required to satisfy.

3.5 Comparison to Guided Sparsity Learning

The timing performance of compression algorithms is dependent on the hardware
platform and software libraries used to implement key network operations such as
convolution. We draw a comparison with Guided Sparsity Learning (GSL) [12] in
SkimCaffe as our implementation is in SkimCaffe. GSL is specifically optimized
for inference speed: compression is guided by a performance model that pre-
dicts the speedup potential of each layer, tuned to hardware characteristics (e.g.
compute capability in FLOP/s, memory bandwidth). On DTD, GSL achieves a
latency of 74.2 ms with a top-1 accuracy of 60.9%. This result motivated us to
set successively harder latency targets of 70 ms, 60 ms, and 50 ms in our DTD
experiments. Despite being hardware agnostic, and not specifically optimized for
speed, our method obtains competitive performance at these aggressive targets:
60.1% at 70 ms and 59.0% at 60 ms. We also performed an additional com-
parison on ImageNet. On ImageNet, GSL achieves a latency of 78.2 ms with a
top-1 accuracy of 57.5%. For a direct comparison, we set a latency target of 78.2
ms for constraint-aware compression. At 78.2 ms, constraint-aware compression
achieves a top-1 accuracy of 57.4%. The results show that, in a fair comparison
with the same hardware and software platforms, our method obtains compara-
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ble latency performance to optimized GSL, while requiring no hardware-specific
tuning and providing generality to other constraint types besides latency.

4 Related Work

Network pruning methods sparsify the connections in a pre-trained network and
then fine-tune the sparsified network to restore accuracy. The earliest prun-
ing methods removed connections based on the second-order derivatives of the
network loss [33, 34]. A recent common pruning strategy removes the connec-
tions with the lowest magnitude weights, with the intuition that low-magnitude
weights are likely to have less impact on the computation result if set to zero [6,
8, 15, 17]. Structured pruning methods remove entire filters instead of invidid-
ual connections [11, 19, 35]; this produces a speed-up in deep learning frameworks
that implement convolutions as large matrix multiplications, at the possible cost
of lower compression rates [15].

Weight quantization methods represent connections using a small set of per-
mitted weight values, reducing the number of bits required to store each connec-
tion [12, 18]. For example, if 64 unique values are permitted, then each connection
can be represented using 6 bits. At the extreme, weights can be quantized to a
single bit [7, 13, 20]. Weight quantization and pruning are complementary and
can be combined sequentially or jointly [8, 17].

Knowledge distillation uses a more expensive teacher network to guide the
training of a smaller student network [9, 14]. Low-rank approximation methods
exploit the redundancy in filters and feature maps [5, 10].

Any of these methods can in principle be plugged into our constraint-aware
compression framework as the module Φ (see Fig. 1), provided that it exposes
a set of tunable compression hyperparameters, accepts an uncompressed or par-
tially compressed deep network as input, and outputs a compressed deep net-
work. To the best of our knowledge, our study is the first principled treatment
of deep network compression under operational constraints.

5 Conclusion

Advances in deep neural network compression have the potential to bring pow-
erful networks to limited-compute platforms such as drones, mobile robots, and
self-driving vehicles. We argue that our network compression algorithms should
be constraint-aware, because in the real world, computation is not free and the
operational constraints matter. In this paper, we have presented a general frame-
work for training compressed networks that satisfy operational constraints in ex-
pectation. Our framework is complementary to specific compression techniques
(e.g. distillation, pruning, quantization) and can accommodate any of these as
its compression module Φ. In future, we plan to study whether the constraint
cooling schedule can be learned, for example by using reinforcement learning.
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