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Abstract. Image-to-image translation has been made much progress
with embracing Generative Adversarial Networks (GANs). However, it’s
still very challenging for translation tasks that require high quality, espe-
cially at high-resolution and photorealism. In this paper, we present Dis-
criminative Region Proposal Adversarial Networks (DRPAN) for high-
quality image-to-image translation. We decompose the procedure of image-
to-image translation task into three iterated steps, first is to generate an
image with global structure but some local artifacts (via GAN), second
is using our DRPnet to propose the most fake region from the gener-
ated image, and third is to implement “image inpainting” on the most
fake region for more realistic result through a reviser, so that the sys-
tem (DRPAN) can be gradually optimized to synthesize images with
more attention on the most artifact local part. Experiments on a vari-
ety of image-to-image translation tasks and datasets validate that our
method outperforms state-of-the-arts for producing high-quality trans-
lation results in terms of both human perceptual studies and automatic
quantitative measures.

Keywords: GAN · DRPAN · Image-to-image translation.

1 Introduction

From the aspect of human visual perception, why we consider a synthesized
image as fake is often because it contains local artifacts. Although it looks like
real at the first glance, we can still easily distinguish the fake from the real
by gazing for only about 1000ms [5]. Human being has the ability to draw a
realistic scene from coarse structure to fine detail, that is, we usually get the
global structure of a scene while focus on the detail of an object and understand
how it is associated with surroundings. Under this intuition, our goal of this
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work is to develop an image-to-image translation system for high-quality image
synthesis with clear structure and vivid details.

Many efforts have been made to develop an automatic image-to-image trans-
lation system. The straightforward approach was to optimize on pixel-wise space
with L1 or L2 loss [9,23]. However, both of them suffer from blur problem. So
some works added adversarial loss for generating more sharp images in both
spatial and spectral dimensions [14]. Except for the GAN loss, perceptual loss
has been used in image-to-image translation tasks, but it was limited to a pre-
training deep model and the training datasets [37]. Although we have a variety
of losses to evaluate the discrepancy between real image and generated image,
using GAN for image-to-image translation still encounters with the artifacts
and unsmooth color distribution problems, and it is even hard to generate high-
resolution photo-realistic images because of the high dimension distribution [26].
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Fig. 1. Left: Our Discriminative Region Proposal network (DRPnet). Right: Synthe-
sized samples compared with previous works on Cityscapes validation dataset [6]. The
regions within red window show obvious artifacts or deformation. Our method can
synthesize images with clear structure and vivid details.

So, how could we solve this problem intuitively? We decompose the procedure
of image-to-image translation task into three iterated steps, first is to generate
an image with global structure but some local artifacts (via GAN), second is
to propose the most fake region from the generated image (using our DRPnet
shown in Fig. 1), and third is to implement “image inpainting” on the most
fake region for more realistic result, so that the system (our DRPAN) can be
gradually optimized to synthesize images with more attention on the most ar-
tifact local part. Inspired by this motivation, we develop a framework based on
patch-wise discriminator to predict the discriminative score map and use sliding
windows to find the most artificial region. Then the proposed discriminative re-
gion will be used to mask the corresponding real sample and output as “masked
fake”. Finally, we propose a reviser to distinguish the real from the masked fake
for producing realistic details and serve as auxiliaries for generator to synthe-
size high-quality translation results. The reviser will critic on the fake image
iteratively with different regions. We provide a weighted parameter to balance
the contribution of the patch discriminator and our reviser for different levels of
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translation tasks. Using this proposed DRPAN, we can synthesize high-quality
images with high-resolution and photo-reality details but less artifacts.

The main contribution of the study is threefold: first, we design the mech-
anism to explore patch-based discriminators for producing discriminative re-
gion; second, we propose the reviser for GANs to provide constructive revi-
sions for generator which usually are missed by patch discriminator; third, we
build a DRPAN model as a general-purpose solution for high-quality image-to-
image translation tasks on different levels. The code of this paper is available at
https://github.com/godisboy/DRPAN.

2 Related works

Feed-forward based approach. Deep Convolutional Neural Networks (CNNs)
have been performed well on many computer vision tasks. For style transform
problems [15], many studies were mainly based on VGG-16 network architec-
ture [20] and used perceptual losses for style translation [10]. Network architec-
tures that work well on object recognition tasks have been proved to work well on
generative models, e.g., some computer vision translation and editing tasks used
residual block as a strong feature learning representation architecture [19,22].
Feed-forward CNNs accompanied with per-pixel loss have been presented for
image super-resolution [9,16,34,15], image colorization [8,44], and semantic seg-
mentation [23,4,31]. A recent work for photo realistic image synthesis system,
called CRN [5], can synthesize images with high resolution. However, the images
synthesized by feed-forward based approach usually become smooth too much
rather than realistic, i.e., not sharp enough in details. Besides, these methods
are limited to be applied to other image-to-image translation tasks.

GAN based approach. GANs [11] introduced an unsupervised method
to learn real data distribution. And DCGAN [29] firstly used CNNs to train
generative adversarial networks which was hard to be deployed in other tasks
before. Then, CNNs were extensively used for designing GAN architectures. To-
wards stable training of GAN, WGAN [1] replaced Jensen-Shannon divergence
by Wasserstein distance as the optimization metric, and recently a variety of
more stable alternatives have been proposed [28,18,12]. Wang and Gupta [38]
combined structured GAN with style GAN to learn to generate natural indoor
scenes. Reed et al. [30] used text as conditional input to synthesize images with
semantic variation. Pathak et al. [27] proposed context encoders for image in-
painting accompanied by adversarial loss. Li et al. [21] trained GANs with a
combination of reconstruction loss, two adversarial losses and a semantic parsing
loss for face completion. Nguyen et al. [25] presented Plus and Play Generative
Networks for high-resolution and photo-realistic image generation with the res-
olution of 227 × 227 images. Isola et al. explored [14] conditional GANs for a
variety of image-to-image translation problems. ID-CGAN [43] combined con-
ditional GANs with perceptual loss for single image de-raining and de-snowing.
Considering that the paired images are less and hard to collect, some works pro-
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posed unpaired or unsupervised translation frameworks [46,17,40]. But it limits
to the similarity of translation between source domain A and target domain B.

PatchGAN was firstly used in neural style transfer with CNNs based on patch
feature inputs [20]. Pix2pix [14] showed that a full ImageGAN does not show
quality improvement compared with a low 70 × 70 patch discriminator which
has less parameters and needs low computing resource. SimGAN [35] used patch
based score map for real image synthesis tasks and mapped a full image to a
probability map. Our method explores PatchGAN to a unified discriminative
region proposal network model for deciding where and how to synthesize via a
reviser. We show that this approach can improve translation results on high-
quality, especially at high-resolution and photo-reality.

3 Method

Our image-to-image translation model, called Discriminative Region Proposal
Adversarial Networks (DRPAN), is composed of three components: a genera-
tor, a discriminator, and a reviser. The discriminator explores PatchGAN to
construct Discriminative Region Proposal network (DRPnet, see Fig. 1) to find
and extract the discriminative region for producing masked fake sample, while
the reviser adopts CNN to distinguish the real from the masked fake to provide
constructive revisions for generator. The overall network architecture and data
flow are illustrated in Fig. 2.
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Fig. 2. The overall network architecture and data flow of our proposed Discrimina-
tive Region Proposal Adversarial Networks (DRPAN), which is composed of three
components: a generator, a discriminator, and a reviser, and is a unified model for
image-to-image translation tasks.
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Fig. 3 shows our process of how to improve the quality of synthesized image.
It can be seen that, as our DRPAN continues to train, the discriminative region
for masked fake images (right) varies so that the quality of synthesized images
(left) are improved with brighter score map (the first and the last). Besides,
although it is hard to distinguish the synthesized sample from the real sample
after many epochs, our DRPAN can still revise the generator to optimize the
synthesized result in the details for high quality.

Synthesized image

Masked fake

Fig. 3. The training process of DRPAN on facades dataset [36]. Left: The plotting
curve shows mean value of score map on synthesized samples. Right: Step by step
synthesis on different discriminative regions.

3.1 DRPAN

We first suggest that patch-based discriminators produce meaningful score maps,
which may have applications beyond image synthesis. Fig. 4 shows the output
results of score map on different quality levels (fake and real) of images by a
pre-trained PatchGAN. It can be seen that, the score maps of the fake samples,
which have obvious artifacts and shape deformation on some regions, are almost
dark with lower score on the corresponding regions; in contrast, the score maps
of the real samples are brightest with the highest scores. From the visualization
of score maps, we can find the darkest region for proposing the discriminative
region that indicates the remarkable fake region.

Based on the observation shown in Fig. 4, we explore patch discriminator to
DRPnet for producing discriminative region. Given an input image with resolu-
tion wi × wi, and it is processed by the patch discriminator to be a probability
score map with size ws×ws. Suppose we want to obtain the discriminative region
at w∗ × w∗, the size of sliding window w for score map can be calculated by

w = w∗ × ws/wi. (1)

Then our DRPnet will find the discriminative square patch on score map with
the center coordinates (xc, yc) and length w, so the scale τ between the input
image and output score map is

τ =
wi − w∗

ws − w
. (2)
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Fig. 4. The output results of score map on different quality levels (fake and real) of
images by a pre-trained PatchGAN. The darkest regions on score maps mean the lowest
quality, indicating that patch-based discriminators can be explored for discriminative
region proposal.

The center coordinates (x∗

c , y
∗

c ) of discriminative region will be calculated by
{

x∗

c = τ × xc,

y∗c = τ × yc.
(3)

Finally, the discriminative region dr produced by DRPnet can be expressed as

dr = FDRPnet(x
∗

c , y
∗

c , w
∗). (4)

Instead of only optimizing the independent local regions, we consider the
relationship between fake discriminative region and real surrounding influence
regions, so that it can connect the fake to the real for providing constructive
revisions to generator. The influence region is defined as the region which is
connected to the most fake regions and has semantic and spatial relationship
with the content in it (e.g., the wheel is often below the car window). For this
purpose, we mask the corresponding real sample using the fake discriminative
region to make masked fake sample, and then design a reviser using CNN to
distinguish real from masked fake to optimize the generator for synthesizing
high-quality images. The reviser we proposed can also be used for other GANs
to improve the quality of generated samples.

3.2 Objective

For image-to-image translation tasks, we not only want to generate the realistic
samples, but also desire diversity with different conditional inputs. The original
GANs suffer from unstability and mode collapse problems [1,2]. So some recent
works [1,28,12] improved the training of GAN. To stably train our DRPAN with
high-diversity synthesis ability, we modify DRAGAN [18] as the loss of our reviser
R, and use the original objective function for training Patch Discriminator.

LD(G,Dp) = Ey[logDp(x, y)] + Ex,z[log(1−Dp(x,G(x, z)))]. (5)
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For reviser R, to distinguish between the very similar real and masked fake
ymask = M(G(x, z)) (M(·) represents the mask operation), we add a regulariza-
tion to the loss of reviser as the penalty, which is expressed as

LR(G,R) = Ey[logR(x, y)]+Ex,z[log(1−R(x, ymask))]+αEx,δ[‖∇xR(x+ δ)‖−1]2,
(6)

where α is hyper parameter, δ is random noise on x, and ∇ indicates gradient.
Previous studies have found it beneficial to mix the GAN objective with

a more traditional loss, such as L2 and L1 distance [14,35]. Considering that
L1 distance encourages less blurring than L2 [14], we provide extra L1 loss for
regularization on the whole input image and the local discriminative region to
generator, which is defined as

LL1
(G) = βEx,y,z[‖y −G(x, z)‖1] + γEdr,yr,z[‖yr − FDRPnet(G(x, z))‖1], (7)

where β and γ are hyper parameters, dr is the discriminative region, and yr
represents the region on the real image corresponding to the discriminative region
on the synthesized image. Then the total loss of generator can be expressed as

LG(G,Dp, R) = −Ex,z[log(1−Dp(x,G(x, z)))]−Ex,z[log(1−R(x, ymask))]+LL1
(G).
(8)

Our proposed model totally contains a generator G, a patch discriminator
Dp for DRPnet, and a reviser R. G will be optimized by Dp, R and L1. And our
full objective function is

L(G,Dp, R) = (1− λ)LD(G,Dp) + λLR(G,R) + LL1
(G), (9)

where λ is a hyper parameter to balance LD and LR.

3.3 Network architecture

For our generator, we use architecture based on [19] which has convincing power
for single image super-resolution. We adopt convolution and fractionally convolu-
tion blocks for down and up sampling respectively, and 9 residual blocks [46] for
task learning. Each layer uses Batch Normalization [13] and ReLU [24] as activa-
tion function. For patch discriminator, we mainly implement with 70×70 Patch-
GAN [20,14]. The DRPAN reviser is a discriminator modified on DCGAN [29]
that has a global view on the whole input. At the end of both discriminator and
reviser, we adopt Sigmoid as activation function to output probability.

4 Experiments

To evaluate the performance of our proposed method on image-to-image transla-
tion tasks, we deploy a variety of experiments about different levels of translation
tasks to compare our method with state-of-the-arts. And for different tasks, we
also use different evaluation metrics including human perceptual studies and
automatic quantitative measures.
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4.1 Evaluation metrics

Image quality evaluation. PSNR, SSIM [39] and VIF [33] are some of the most
popular evaluation metrics in low-level computer vision tasks such as deblurring,
dehazing and image restoration. So for de-raining and aerial to maps tasks, we
adopt PSNR, SSIM, VIF and RECO [3] to qualify the performance of results.

Image segmentation evaluation metrics. We use standard metrics from
Cityscapes benchmark [6] to evaluate real to semantic labels task on Cityscapes
dataset, including per-pixel accuracy, per-class accuracy, and Class IOU.

Amazon Mechanical Turk (AMT). AMT [14,46,40] is adopted in many
tasks as a gold metric to evaluate how real the synthesized images, and we use
it as evaluation metric for semantic labels to photo and maps to aerial tasks.

FCN-8s score. The intuition of using an off-the-shelf classifiers for auto-
matic quantitative measurement is that if the generated images are realistic,
classifiers trained on real images will be able to classify the synthesized image
correctly as well [14]. We use the FCN-8s score [23] to evaluate semantic labels
to real task on Cityscapes dataset. The FCN-8s model trained on Cityscapes
segmentation tasks is taken from [14].

4.2 Why DRPAN?

To study the influence of DRPAN for revising synthesis and different situations
of loss between proposed region and real region. We set an experiments which
start from a pre-trained PatchGAN and continue for several training pipelines:
continue training with PatchGAN; continue training with PatchGAN and L1
loss of discirminative and real region; continue training with PatchGAN and
reviser.

We argue that the PatchD is efficient to discover the most fake or real region
(Fig 4) from the image but is limited to improve these regions with fine details
for that PatchD is hard to capture the high dimension distribution. In this case,
we propose a DRPnet (explore the strength of PatchD) for discriminative region
proposal and design a reviser to gradually remove visual artifacts, and thus re-
duce it to lower dimension estimation problem. This can be seen as a “top-down”
procedure which is different from other gradually “bottom-up” image generation
method [42]. Fig 5 shows the necessity of our proposed DRPAN for high-quality
image-to-image translation, which illustrates that continue training PatchD is no
help to reduce artifacts even with a L1 loss for balance, and DRPAN with only
L1 loss can smooth the artifacts but not very sharp in details, while DRPAN
with reviser exceeds the PatchD’s performance with less visual artifacts. The
combination of reviser and L1 loss can reduce these artifacts ignored by PatchD.
We also find that fake-mask operation can improve the fluency of whole image in
certain samples (e.g., the connection between door and wall). So DRPAN with
fake-mask is implemented in the following experiments.
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Input PatchD PatchD Fake region
L1 loss

Fake region
Reviser

Fake region
Reviser+L1 loss

Fake-mask
Reviser+L1 loss

Continue training for 40 epochs‘Start point’

Fig. 5. Different methods with various losses produce different quality of results. The
second column is the start point of comparison trained by PatchD, and all other models
are continued trained for 40 epochs more. These experiments validate the necessary of
our DRPnet for discriminative region proposal, our reviser for optimizing generator,
and our fake-mask operation for improving synthesis.

4.3 Low level translation

We first apply our model on two low level translation tasks which are only related
to the appearance translation of images, for example, in de-raining task we don’t
need change the content and texture of the input sample. So we set λ = 1 in
Eqn. 9 for image synthesis using only reviser.

Single image de-raining. We trained and tested our DRPAN model on sin-
gle image de-raining task using the procedure as same as [43], and evaluated the
results by both qualitative and quantitative metrics. Fig. 6 shows the qualitative
results of our DRPAN with different sizes of discriminative region compared to
ID-CGAN [43], and DRPAN outperforms ID-CGAN with not only more effec-
tive de-raining but also more vivid color and clear details. Tab. 1 reports the
corresponding quantitative results evaluated by PSNR, SSIM, VIF, and RECO
metrics, and the best results (in bold font) are achieved all by our DRPAN.

Bw to color. We trained our DRPAN model for image colorization task
on ImageNet [7], and tested on ImageNet val dataset with an example shown
in Fig. 7. Our DRPAN can produce compelling colorization results compared
with classification with class rebalancing [44]. In addition, we run AMT evalua-
tion for colorization(Tab. 2). Our method fooled participants on 27.8% which is
competitive with the full method from [44].



10 C. Wang, H. Zheng, Z. Yu, Z. Zheng, Z. Gu and B. Zheng

Input DRPAN(16) DRPAN(32) DRPAN(64) DRPAN(128)ID-CGAN

Fig. 6. Example results of our DRPAN with different sizes of discriminative region
compared to ID-CGAN [43] on single image de-raining task.

Table 1. Quantitative comparison of our DRPAN (with different sizes of discriminative
region) with ID-CGAN [43] and PAN [37] on image de-raining. DRPAN performs best
(in bold font) evaluated by PSNR, SSIM, VIF, and RECO metrics

Method
Metrics

L2+
CGAN

ID-
CGAN[43]

PAN[37]DRPAN
(w/o mask)

DRPAN
(128)

DRPAN
(64)

DRPAN
(32)

DRPAN
(16)

PSNR 22.19 22.91 23.35 25.51 25.87 25.76 25.92 26.20

SSIM 0.8083 0.8198 0.8303 0.8688 0.8714 0.8765 0.8788 0.8712
VIF 0.3640 0.3885 0.4050 0.4923 0.4818 0.4962 0.5001 0.4783
RECO – – – 0.9670 1.0770 1.1072 1.1067 1.0875

Input L2
Classification

(rebal.) DRPAN Ground truth

Fig. 7. Example results of our DRPAN compared to L2 regression [44] and Classifica-
tion (rebal.) [44] on image colorization task.

4.4 Real to abstract translation

We then implement our proposed DRPAN on two tasks of real to abstract trans-
lation which requires many-to-one abstraction ability.

Real to semantic labels. For real to semantic labels task, we tested our
DRPAN model on two of the most used datasets: Cityscapes and facades. Fig. 8
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Table 2. AMT “real vs fake” test on corlorization

Method % Turkers labeled real

L2 regression 23.4%
Classification 29.7%

DRPAN 27.8%

shows the qualitative results of our DRPAN compared to Pix2pix [14] on Cityscapes
dataset for translating real to semantic labels, and DRPAN can synthesize more
realistic results that are closer to ground truth than Pix2pix, meanwhile, the
quantitative results in Tab. 3 can also tell this in terms of per-pixel accuracy,
per-class accuracy, and Class IOU.

Input Pix2pix DRPAN Ground truth

Fig. 8. Example results of our DRPAN compared to Pix2pix [14] on real to semantic
labels task.

Aerial to maps. We also applied our DRPAN on aerial photo to maps
task, and the experiment was implemented using paired images with 512× 512
resolution [14]. The top row of Fig. 9 shows the qualitative results of our DRPAN
compared to Pix2pix [14], indicating that our DRPAN can correctly translate
the motorway on aerial photo into the orange line on the map while Pix2pix
can’t.

4.5 Abstract to real translation

Besides, we also demonstrate our proposed DRPAN on several abstract to real
tasks that can translate one to many: semantic labels to photo, maps to aerial,
edge to real, and sketch to real.

Semantic labels to real. For semantic labels to real task, the translation
model aims to synthesize real world images from semantic labels. CGAN based
works fail to capture the details in the real world and suffer from deformation and
blur problems. CNN based methods such as CRN can synthesize high-resolution
but smooth rather than realistic results. Fig. 10 shows qualitative comparison
of results, from which it can be seen that our DRPAN can synthesize the most
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Input Pix2pix DRPAN Ground truth

Fig. 9. Example results of our DRPAN compared to Pix2pix [14] on aerial to maps
(top) and maps to aerial (bottom) tasks.

realistic results with high-quality (more clear and less distorted while high res-
olution) compared to Pix2pix [14] and CRN [5].

The evaluation of GAN is still a challenging problem. Many works [32,38,44,14]
used off-the-shelf classifiers as automatic measures of synthesized images. Tab. 4
reports performance evaluation on segmentation of FCN-8s model, and our DR-
PAN exceeds Pix2pix [14] by 10% on per-pixel accuracy and also achieves highest
performance on per-class accuracy and Class IOU.

Table 3. Quantitative comparison of our
DRPAN with Pix2pix [14] on real to se-
mantic labels task (Cityscapes dataset)

Model Per-pixel
acc.

Per-class
acc.

Class
IOU

L1+U-Net [14] 0.86 0.42 0.35
Pix2pix [14] 0.83 0.36 0.29
DRPAN(w/o fake-
mask)

0.86 0.48 0.39

DRPAN 0.88 0.52 0.43

Table 4. Quantitative comparison of our
DRPAN with other models on semantic
labels to real task (Cityscapes dataset) by
FCN-8s score

Model Per-pixel
acc.

Per-class
acc.

Class
IOU

L1+CGAN [14] 0.63 0.21 0.16
CRN 0.69 0.21 0.20

DRPAN(w/o fake-
mask)

0.72 0.22 0.19

DRPAN 0.73 0.24 0.19
Ground truth 0.80 0.26 0.21

Maps to aerial. As opposed to aerial to maps task, we also tested our
DRPAN on maps to aerial task, and the qualitative results are shown in the
bottom row of Fig. 9, which clearly demonstrates that our DRPAN can synthesize
higher quality aerial photos than Pix2pix [14].
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Fig. 10. Example results of our DRPAN compared to Pix2pix [14] and CRN [5] on
semantic labels to real task with 512× 512 resolution.

Table 5. AMT real vs. fake results test on
Cityscapes semantic labels to photo task

Model % Turkers labeled real

Pix2pix [14] 5.3%
StackGAN-like [42] 6.8%
CRN [5] 9.4%
DRPAN(w/o fake-mask) 14.3%

DRPAN 18.2%

% Turkers labeled more
realistic

DRPAN vs. Pix2pix [14] 91.2%

DRPAN vs. StackGAN-
like

84.6%

DRPAN vs. CRN [5] 75.7%

Table 6. AMT real vs. fake results test
on maps to aerial task

Model % Turkers labeled
real

Pix2pix [14] 25.2%
DRPAN(w/o fake-
mask)

31.7%

DRPAN 33.4%

Human perceptual validation. We assess the performance of abstract to
real on semantic labels to photo and maps to aerial by AMT. For fake against real
study, we followed the perceptual study protocol from [14], and collected data of
each algorithm from 30 participants. Each participant has 1000ms to look one
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sample. We also compared how realistic the synthesized images between different
algorithms. Tab. 5 illustrates that images synthesized by DRPAN are ranked
more realistic than state-of-the-arts (DRPAN 18.2% > CRN 9.4% > StackGAN-
like 6.8% > Pix2pix 5.3%), moreover, compared to Pix2pix [14], StackGAN-
like [42] and CRN [5], images synthesized by DRPAN are ranked more realistic
by 91.2%, 84.6% and 75.7% respectively. Tab. 6 reports the comparison on maps
to aerial task and our DRPAN fooled participants on 39.0% over 18.7% of Pix2pix
and 26.8% of CycleGAN [46] respectively.

Edges to real and sketch to real. For the edge to real and sketch to real
tasks, previous works often encounter with two problems [14]: one is that it’s
easy to generate artifacts and artificial color distribution in regions when the
input such as edge is sparse; the other is that it’s difficult to deal with unusual
inputs like sketch. We tested our DRPAN model on UT Zappos50k dataset [41]
and edge to handbag dataset [45]. Fig. 11 shows that our model can also handle
these two problems well.

Input Pix2pix DRPANPix2pix DRPAN Ground truthInput

Edge to real Sketch to real

Fig. 11. Example results of our DRPAN compared to Pix2pix [14] on edge to real (left)
and sketch to real (right) tasks.

5 Conclusions

We propose Discriminative Region Proposal Adversarial Networks (DRPAN) to-
wards high-resolution and photo-reality image-to-image translation. Human per-
ceptual studies and automatic quantitative measures validate the performance of
our proposed DRPAN against the state-of-the-arts for synthesizing high-quality
results. We hope it can be explored for discriminative feature learning and other
computer vision tasks in the future.
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