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Abstract. Subspace clustering methods based on expressing each data
point as a linear combination of a few other data points (e.g., sparse sub-
space clustering) have become a popular tool for unsupervised learning
due to their empirical success and theoretical guarantees. However, their
performance can be affected by imbalanced data distributions and large-
scale datasets. This paper presents an exemplar-based subspace cluster-
ing method to tackle the problem of imbalanced and large-scale datasets.
The proposed method searches for a subset of the data that best repre-
sents all data points as measured by the ℓ1 norm of the representation
coefficients. To solve our model efficiently, we introduce a farthest first
search algorithm which iteratively selects the least well-represented point
as an exemplar. When data comes from a union of subspaces, we prove
that the computed subset contains enough exemplars from each subspace
for expressing all data points even if the data are imbalanced. Our exper-
iments demonstrate that the proposed method outperforms state-of-the-
art subspace clustering methods in two large-scale image datasets that
are imbalanced. We also demonstrate the effectiveness of our method on
unsupervised data subset selection for a face image classification task.

Keywords: Subspace Clustering, Imbalanced Data, Large-scale Data

1 Introduction

The availability of large annotated datasets in computer vision, such as Ima-
geNet, has led to many recent breakthroughs in object detection and classifi-
cation using supervised learning techniques such as deep learning. However, as
data size continues to grow, it has become increasingly difficult to annotate the
data for training fully supervised algorithms. As a consequence, the develop-
ment of unsupervised learning techniques that can learn from unlabeled datasets
has become extremely important. Existing labeled databases, such as ImageNet,
are manually organized to be class-balanced. On the other hand, the number of
data samples in unlabeled datasets varies widely for different classes. Dealing
with imbalanced data is hence a major challenge in unsupervised learning tasks.

Traditional unsupervised learning methods exploit the fact that in many com-
puter vision applications the underlying dimension of the data is much smaller
than the ambient dimension. For example, it is well-known that the images
of a face under varying illumination conditions can be well-approximated by
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(a) Clustering on imbalanced data.
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(b) Clustering on large-scale data.

Fig. 1. Subspace clustering on imbalanced data and large-scale data. (a) x and 100−x
points (x is varied in the x-axis) are drawn uniformly at random from 2 subspaces of
dimension 3 drawn uniformly at random in an ambient space of dimension 5. Note that
the clustering accuracy of SSC decreases dramatically as the dataset becomes imbal-
anced. (b) 10 subspaces of dimension 5 are drawn uniformly at random in an ambient
space of dimension 20. An equal number of points is drawn uniformly at random from
each subspace. Note that the runtime of SSC increases dramatically with data size.

a 9-dimensional subspace. In practice, computer vision datasets often contain
multiple classes, hence they can be modeled by a union of low dimensional sub-
spaces. Subspace clustering [1] is a popular approach for unsupervised learning
from such data that jointly learns the union of subspaces and assigns each data
point to its corresponding subspace.

Many recent subspace clustering methods follow a two-step approach: (1)
learn an affinity graph among data points and (2) apply spectral clustering [2]
to this graph. In particular, the state-of-the-art methods learn the affinity by
exploiting the self-expressiveness property [3], which states that each data point
in a union of subspaces can be written as a linear combination of other points
from its own subspace. That is, given data X = {x1, · · · ,xN} ⊆ IRD, there exists
{cij} such that xj =

∑
i 6=j cijxi and cij is nonzero only if xi and xj are from

the same subspace. Such representations {cij} are called subspace-preserving. In
particular, if the subspace dimensions are small, then the representations can
be taken to be sparse. Based on this observation, Sparse Subspace Clustering
(SSC) [3, 4] solves, for each j ∈ {1, 2, . . . , N}, the sparse optimization problem

min
cj∈RN

‖cj‖1 +
λ

2
· ‖xj −

∑

i 6=j

cijxi‖
2
2, (1)

where λ > 0 and cj = [c1j , · · · , cNj ]
⊤. Subsequently, the affinity between any

pair of points xi and xj is defined as |cij | + |cji|. Existing theoretical results
for noiseless as well as corrupted data show that, under certain conditions, the
solution to (1) is subspace-preserving [4–8], thus justifying the correctness of
SSC’s affinity. Beyond SSC, many methods have been proposed that use different
regularization on the coefficients {cij} [9–14].
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Despite the great success of SSC and its variants, previous experimental eval-
uations focused primarily on balanced datasets, i.e. datasets with an approxi-
mately equal number of samples from each cluster. In practice, datasets are often
imbalanced and such skewed data distributions can significantly compromise the
clustering performance of SSC, as shown in Figure 1(a). Theoretically, we con-
jecture that the solution to (1) for xj in an under-represented class is more likely
to have nonzero entries corresponding to data points in over-represented classes,
which gives false connections in the graph affinity. A proof of this conjecture
will be the subject of future work. Another issue with many self-expressiveness
based subspace clustering methods is that they are limited to small or medium
scale datasets [15]. Figure 1(b) illustrates the running time of SSC as a function
of the number of data points N , which is roughly quadratic in N .

Paper contributions. We propose an exemplar-based subspace clustering ap-
proach to address the issues of imbalanced and large-scale data. Given a dataset
X , the idea is to select a subset X0, which we call exemplars, and write each
data point as a linear combination of points in X0 (rather than X as in SSC):

min
cj∈RN

‖cj‖1 +
λ

2
‖xj −

∑

i:xi∈X0

cijxi‖
2
2. (2)

Observe that (2) is potentially more robust to imbalanced data than (1) in
finding subspace-preserving representations when X0 is balanced across classes.
Moreover, (2) can potentially be solved more efficiently than (1) when X0 is
small relative to the original data X . Thus, to achieve robustness to imbalanced
data and scalability to large datasets, we need an efficient algorithm for selecting
exemplars X0 that is more balanced across classes.

In this paper, we present a new model for selecting a set of exemplars X0

that is based on minimizing a maximum representation cost of the data X . (The
proofs for results in this paper can be found in [16].) Moreover, we introduce an
efficient algorithm for solving the optimization problem that has linear time and
memory complexity. Compared to SSC, exemplar-based subspace clustering is
less sensitive to imbalanced data and more efficient for big data (see Figure 1).
In addition, our work makes the following contributions:

– We present a geometric interpretation of our exemplar selection model and
algorithm as one of finding a subset of the data that best covers the entire
dataset as measured by the Minkowski functional of the subset.

– We prove that when the data lies in a union of independent subspaces, our
method is guaranteed to select sufficiently many data points from each sub-
space and construct correct data affinities, even when the data is imbalanced.

– We evaluate our method on two imbalanced image datasets: the EMNIST
handwritten letter dataset and the GTSRB street sign dataset. Experimental
results show that our method outperforms the state-of-the-art in terms of
clustering performance and running time.

– We demonstrate through experiments on the Extended Yale B face database
that the exemplars selected by our model can be used for unsupervised subset
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selection tasks, where the goal is to select a subset from a big data set that
may be used to train a classifier that incurs minimum performance loss.

2 Related Work

Sparse dictionary learning (SDL). Sparse representation of a given dataset
is a well studied problem in signal processing and machine learning [17, 18]. Given
a set X ⊆ IRD and an integer k, SDL computes a dictionary of atoms D ⊆ IRD

with |D| ≤ k that minimizes the sparse representation cost. Based on SDL, [19]
proposed a linear time subspace clustering algorithm that is guaranteed to be
correct if the atoms in dictionary D lie in the same union of subspaces as the
input data X . However, there is little evidence that such a condition is satisfied
in real data as the atoms of the dictionary D are not constrained to be a subset
of X . Another recent work [20], which used data-independent random matrices
as dictionaries, also suffers from this issue and lacks correctness guarantees.

Sparse dictionary selection. Three variations of the SDL model that explic-
itly constrain the dictionary atoms to be taken from X are simultaneous sparse
representation [21] and dictionary selection [22, 23], which use greedy algorithms
to solve their respective optimization problems, and group sparse representative
selection [24–29], which uses a convex optimization based approach based on
group sparsity. In particular, when the data is drawn from a union of indepen-
dent subspaces, the method in [26] is shown to select a few representatives from
each of the subspaces. However, these methods have quadratic complexity in
the number of points in X . Moreover, convex optimization based methods are
not flexible in selecting a desired number of representatives since the size of the
subset cannot be directly controlled by adjusting an algorithm parameter.

Subset selection. Selecting a representative subset of the entire data has been
studied in a wide range of contexts such as Determinantal Point Processes [30–
32], Rank Revealing QR [33], Column subset selection [34, 35], separable Nonneg-
ative Matrix Factorization [36, 37], and so on [38]. However, they do not model
data as coming from a union of subspaces and there is no evidence that they
can select good representatives from such data. Several recent works [39–41],
which use different subset selection methods for subspace clustering, also lack
justification that their selected exemplars are representative of the subspaces.

k-centers and k-medoids. The k-centers problem is a data clustering problem
studied in theoretical computer science and operations research. Given a set X
and an integer k, the goal is to find a set of centers X0 ⊆ X with |X0| ≤ k that
minimizes the quantity maxx∈X d2(x,X0), where d

2(x,X0) := minv∈X0
‖x−v‖22

is the squared distance of x to the closest point in X0. A partition of X is given by
the closest center to which each point x ∈ X belongs. The k-medoids is a variant
of k-centers that minimizes the sum of the squared distances, i.e., minimizes∑

x∈X d2(x,X0) instead of the maximum distance. However, both k-centers and
k-medoids model data as concentrating around several cluster centers, and do
not generally apply to data lying in a union of subspaces.
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3 Exemplar-based Subspace Clustering (ESC)

In this section, we present our ESC method for clustering a given set of data
points X = {x1, · · · ,xN}. We first formulate the model for selecting a subset X0

of exemplars from X . Since the model is a combinatorial optimization problem,
we present an efficient algorithm for solving it approximately. Finally, we describe
the procedure for generating the cluster assignments from the exemplars X0.

3.1 Exemplar selection via self-representation cost

Without loss of generality, we assume that all data in X are normalized to
have unit ℓ2 norm. Recall that in SSC, each data point xj ∈ X is written as
a linear combination of all other data points with coefficient vector cj . While
the nonzero entries in each cj determine a subset of X that can represent xj

with the minimum ℓ1-norm on the coefficients, the collection of all xj often
needs the whole dataset X . In ESC, the goal is to find a small subset X0 ⊆ X
that represents all data points in X . In particular, the set X0 should contain
exemplars from each subspace such that the solution cj to (2) for each data
point xj ∈ X is subspace-preserving, i.e. the nonzero entries of cj correspond to
points in the same subspace as xj . In the following, we define a cost function
from the optimization in (2) and then present our exemplar selection model.

Definition 1 (Self-representation cost function). Given X = {x1, · · · ,xN}
⊆ IRD, we define the self-representation cost function Fλ : 2X → IR as

Fλ(X0) := sup
xj∈X

fλ(xj ,X0), where (3)

fλ(xj ,X0) := min
cj∈RN

‖cj‖1 +
λ

2
‖xj −

∑

i:xi∈X0

cijxi‖
2
2, (4)

and λ ∈ (1,∞) is a parameter. By convention, we assume fλ(xj , ∅) =
λ
2 for all

xj ∈ X , where ∅ denotes empty set.

Geometrically, fλ(x,X0) measures how well data point x ∈ X is covered by
the subset X0 (see Section 4). The function fλ(x,X0) has the following properties.

Lemma 1. The function fλ(x, ·) is monotone with respect to the partial order

defined by set inclusion, i.e., fλ(x,X
′
0) ≥ fλ(x,X

′′
0 ) for any ∅ ⊆ X ′

0 ⊆ X ′′
0 ⊆ X .

Lemma 2. The value of fλ(x,X0) lies in [1− 1
2λ ,

λ
2 ]. The lower bound is achieved

if and only if x ∈ X0 or −x ∈ X0, and the upper bound is achieved when X0 = ∅.

Observe that if X0 contains enough exemplars from the subspace containing
xj and the optimal solution cj to (4) is subspace-preserving, then it is expected
that cj will be sparse and that the residual xj −X0cj will be close to zero. This
suggests that we should select the subset X0 such that the value fλ(xj ,X0) is
small. As the value Fλ(X0) is achieved by the data point xj that has the largest
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value f(xj ,X0), we propose to perform exemplar selection by searching for a
subset X ∗

0 ⊆ X that minimizes the self-representation cost function, i.e.,

X ∗
0 = argmin

|X0|≤k

Fλ(X0), (5)

where k ∈ Z is the target number of exemplars. Note that the objective function
Fλ(·) in (5) is monotone according to the following result.

Lemma 3. For any ∅ ⊆ X ′
0 ⊆ X ′′

0 ⊆ X , we have Fλ(X
′
0) ≥ Fλ(X

′′
0 ).

Solving the optimization problem (5) is NP-hard in general as it requires
evaluating Fλ(X0) for each subset X0 of size at most k. In the next section, we
present an approximate algorithm that is computationally efficient.

3.2 A Farthest First Search (FFS) algorithm for ESC

In Algorithm 1 we present an efficient algorithm for approximately solving (5).
The algorithm progressively grows a candidate subset X0 (initialized as the
empty set) until it reaches the desired size k. At each iteration i, step 3 of
the algorithm selects the point x ∈ X that is worst represented by the cur-

rent subset X
(i)
0 as measured by fλ(x,X

(i)
0 ). A geometric interpretation of this

step is presented in Section 4. In particular, it is shown in Lemma 2 that

fλ(x,X
(i)
0 ) = 1− 1

2λ for all x ∈ X
(i)
0 and fλ(x,X

(i)
0 ) > 1− 1

2λ if neither x ∈ X
(i)
0

nor −x ∈ X
(i)
0 . Thus, x /∈ X

(i)
0 during every iteration of Algorithm 1.

We also note that the FFS algorithm can be viewed as an extension of the
farthest first traversal algorithm (see, e.g. [42]), which is an approximation al-
gorithm for the k-centers problem discussed in Section 2.

Algorithm 1 Farthest first search (FFS) for exemplar selection

Input: Data X = {x1, . . . ,xN} ⊆ IRD, parameters λ > 1 and k ≪ N .

1: Select x ∈ X at random and set X
(1)
0 ← {x}.

2: for i = 1, · · · , k − 1 do

3: X
(i+1)
0 = X

(i)
0 ∪ argmax

x∈X fλ(x,X
(i)
0 )

4: end for

Output: X
(k)
0

Efficient implementation. Observe that each iteration of Algorithm 1 requires

evaluating fλ(x,X
(i)
0 ) for every x ∈ X . Therefore, the complexity of Algorithm 1

is linear in the total number of data points N assuming k is fixed and small.

However, computing fλ(x,X
(i)
0 ) itself is not easy as it requires solving a sparse

optimization problem. In the following, we introduce an efficient implementation

in which we skip the computation of fλ(x,X
(i)
0 ) for some x in each iteration.

The idea underpinning this computational savings is the monotonicity of
fλ(x, ·) as discussed in Section 3.1. That is, for any ∅ ⊆ X ′

0 ⊆ X ′′
0 ⊆ X we
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Algorithm 2 An efficient implementation of FFS

Input: Data X = {x1, . . . ,xN} ⊆ IRD, parameters λ > 1 and k.

1: Select x ∈ X at random and initialize X
(1)
0 ← {x}.

2: Compute bj = fλ(xj ,X
(1)
0 ) for j = 1, · · · , N .

3: for i = 1, · · · , k − 1 do

4: Let o1, · · · , oN be an ordering of 1, · · · , N such that bop ≥ boq when p < q.
5: Initialize max cost = 0.
6: for j = 1, · · · , N do

7: Set boj = fλ(xoj ,X
(i)
0 ).

8: if boj > max cost then

9: Set max cost = boj , new index = oj .
10: end if

11: if j = N or max cost ≥ boj+1
then

12: break

13: end if

14: end for

15: X
(i+1)
0 = X

(i)
0 ∪ {xnew index}.

16: end for

Output: X
(k)
0

have fλ(xj ,X
′
0) ≥ fλ(xj ,X

′′
0 ). In the FFS algorithm where the set X

(i)
0 is pro-

gressively increased, this implies that fλ(xj ,X
(i)
0 ) is non-increasing in i. Using

this result, our efficient implementation is outlined in Algorithm 2. In step 2 we

initialize bj = fλ(xj ,X
(1)
0 ) for each j ∈ {1, · · · , N}, which is an upper bound

for fλ(xj ,X
(i)
0 ) for i ≥ 1. In each iteration i, our goal is to find a point x ∈ X

that maximizes fλ(x,X
(i)
0 ). To do this, we first find an ordering o1, · · · , oN of

1, · · · , N such that bo1 ≥ · · · ≥ boN (step 4). We then compute fλ(·,X
(i)
0 ) se-

quentially for points in the list xo1 , · · · ,xoN (step 7) while keeping track of

the highest value of fλ(·,X
(i)
0 ) by the variable max cost (step 9). Once the

condition that max cost ≥ boj+1
is met (step 11), we can assert that for any

j′ > j the point xoj′
is not a maximizer of fλ(x,X

(i)
0 ). This can be seen from

fλ(xoj′
,X

(i)
0 ) ≤ boj′ ≤ boj+1

≤ max cost, where the first inequality follows from

the monotonicity of fλ(xoj′
,X

(i)
0 ) as a function of i. Therefore, we can break the

loop (step 12) and avoid computing fλ(xoj ,X
(i)
0 ) for the remaining j’s.

3.3 Generating cluster assignments from exemplars

After exemplars have been selected by Algorithm 2, we use them to compute a
segmentation of X . Specifically, for each xj ∈ X we compute cj as a solution
to the optimization problem (2). As we will see in Theorem 2, the vector cj is
expected to be subspace-preserving. As such, for any two points {xi,xj} ⊆ X ,
one has 〈ci, cj〉 6= 0 only if xi and xj are from the same subspace.



8 C. You, C. Li, D. Robinson, R. Vidal

Algorithm 3 Subspace clustering by ESC-FFS

Input: Data X = {x1, . . . ,xN} ⊆ IRD, parameters λ > 1, k and t.
1: Compute X0 from Algorithm 2, and then compute {cj} from (2). Let c̃j = cj/‖cj‖2.
2: Set Wij = 1 if c̃j is a t-nearest neighbor of c̃i and 0 otherwise; Set A = W +W⊤.
3: Apply spectral clustering to A to obtain a segmentation of X .
Output: Segmentation of X .

Using this observation, we use a nearest neighbor approach to compute the
segmentation of X (see Algorithm 3). First, the coefficient vectors {cj} are nor-
malized, i.e., we set c̃j = cj/‖cj‖2. Then, for each c̃j we find t-nearest neighbors
with the largest positive inner product with c̃j . (Although it is natural to use
the t largest inner-products in absolute value, that approach did not perform as
well in our numerical experiments.) Finally, we compute an affinity matrix from
the t-nearest neighbors and apply spectral clustering to get the segmentation.

4 Theoretical Analysis of ESC

In this section, we present a geometric interpretation of the exemplar selection
model from Section 3.1 and the FFS algorithm from Section 3.2, and study
their properties in the context of subspace clustering. To simplify the analysis,
we assume that the self-representation xj =

∑
i 6=j cijxi is strictly enforced by

extending (4) to λ = ∞, i.e., we let

f∞(x,X0) = min
c∈RN

‖c‖1 s.t. x =
∑

i:xi∈X0

cijxi. (6)

By convention, we let f∞(x,X0) = ∞ if the optimization problem is infeasible.

4.1 Geometric interpretation

We first provide a geometric interpretation of the exemplars selected by (5).
Given any X0, we denote the convex hull of the symmetrized data points in
X0 as K0, i.e., K0 := conv(±X0) (see an example in Figure 2). The Minkowski
functional [43] associated with a set K0 is given by the following.

Definition 2 (Minkowski functional [43]). The Minkowski functional asso-

ciated with the set K0 ⊆ IRD is a map IRD → R ∪ {+∞} given by

‖x‖K0
:= inf{t > 0 : x/t ∈ K0}. (7)

In particular, we define ‖x‖K0
:= ∞ if the set {t > 0 : x/t ∈ K0} is empty.

Our geometric interpretation is characterized by the reciprocal of ‖x‖K0
. The

Minkowski functional is a norm in span(K0), the space spanned by K0, and its
unit ball is K0. Thus, for any x ∈ span(K0), the point x/‖x‖K0

is the intersection
of the ray {tx : t ≥ 0} and the boundary of K0. The green and red dots in
Figure 2 are examples of x and x/‖x‖K0

, respectively. It follows that the quantity
1/‖x‖K0

is the length of the ray {tx : t ≥ 0} inside the convex hull K0.
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K0
x1 −x1

−x2

x2

−x3

x3

x

x

‖x‖K0

Fig. 2. A geometric illustration of the
solution to (5) with X0 = {x1,x2,x3}.
The shaded area is the convex hull K0.

Using Definition 2, one can show that
the following holds [44, 5]:

‖x‖K0
= f∞(x,X0) for all x ∈ IRD.

(8)
A combination of (8) and the interpreta-
tion of 1/‖x‖K0

above provides a geomet-
ric interpretation of f∞(x,X0). That is,
f∞(x,X0) is large if the length of the ray
{tx : t ≥ 0} inside K0 is small. In partic-
ular, f∞(x,X0) is infinity if x is not in
the span of X0, i.e., x cannot be linearly
represented by X0.

By using (8), the exemplar selection
model in (5) is equivalent to computing

X ∗
0 = argmax

|X0|≤k

inf
x∈X

1/‖x‖K0
. (9)

Therefore, the solution to (5) is the subset X0 of X that maximizes the inter-
section of K0 and the ray {tx : t ≥ 0} for every data x ∈ X (i.e., maximizes the
minimum of such intersections over all x).

Furthermore, from (8) we can see that each iteration of Algorithm 1 selects
the point x ∈ X that minimizes 1/‖x‖K0

. Therefore, each iteration of FFS adds
the point x that minimizes the intersection of the ray {tx : t > 0} with K0.

Relationship to the sphere covering problem. Let us now consider the
special case when the dataset X coincides with the unit sphere of IRD, i.e.,
X = S

D−1. In this case, we establish that (5) is related to finding the minimum
covering radius, which is defined in the following.

Definition 3 (Covering radius). The covering radius of a set of points V ⊆
S
D−1 is defined as

γ(V) := max
w∈SD−1

min
v∈V

cos−1(〈v,w〉). (10)

The covering radius of the set V can be interpreted as the minimum angle such
that the union of spherical caps centered at each point in V with this radius
covers the entire unit sphere SD−1. The following result establishes a relationship
between the covering radius and our cost function.

Lemma 4. For any finite X0 ⊆ X = S
D−1 we have F∞(X0) = 1/ cos γ(±X0).

It follows from Lemma 4 that argmin|X0|≤k F∞(X0) = argmin|X0|≤k γ(±X0)
when X = S

D−1, i.e., the exemplars X0 selected by (5) give the solution to the
problem of finding a subset with minimum covering radius. Note that the cover-
ing radius γ(±X0) of the subset X0 with |X0| ≤ k is minimized when the points
in the symmetrized set ±X0 are as uniformly distributed on the sphere S

D−1 as
possible. The problem of equally distributing points on the sphere without sym-
metrizing them, i.e. min|X0|≤k γ(X0), is known as the sphere covering problem.
This problem was first studied by [45] and remains unsolved in geometry [46].
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4.2 ESC on a union of subspaces

We now study the properties of our exemplar selection method when applied to
data from a union of subspaces. Let X be drawn from a collection of subspaces
{Sℓ}

n
ℓ=1 of dimensions {dℓ}

n
ℓ=1 with each subspace Sℓ containing at least dℓ

samples that span Sℓ. We assume that the subspaces are independent, which is
commonly used in the analysis of subspace clustering methods [47, 3, 10, 9, 48].

Assumption 1. The subspaces {Sℓ}
n
ℓ=1 are independent, i.e.,

∑n

ℓ=1 dℓ is equal

to the dimension of
∑n

ℓ=1 Sℓ.

The next result shows that the solution to (5) contains enough exemplars
from each subspace.

Theorem 1. Under Assumption 1, for all k ≥
∑n

ℓ=1 dℓ, the solution X ∗
0 to

the optimization problem in (5) contains at least dℓ linearly independent points

from each subspace Sℓ. Moreover, each point x ∈ X is expressed as a linear

combination of points in X ∗
0 that are from its own subspace.

Theorem 1 shows that when k is set to be
∑n

ℓ=1 dℓ, then dℓ points are selected
from subspace Sℓ regardless of the number of points in that subspace. Therefore,
when the data is class imbalanced, (5) is able to select a subset that is more bal-
anced provided that the dimensions of the subspaces do not differ dramatically.
This discounts the effect that, when writing a data point as a linear combination
of points from X , it is more likely to choose points from oversampled subspaces.

Theorem 1 also shows that only
∑n

ℓ=1 dℓ points are needed to correctly rep-
resent all data points in X . In other words, the required number of exemplars
for representing the dataset does not scale with the size of the dataset X .

Although the FFS algorithm in Section 3.2 is an approximation algorithm
and does not necessarily give the solution to (5), the following result shows that it
gives an approximate solution with attractive properties for subspace clustering.

Theorem 2. The conclusion of Theorem 1 holds for X
(k)
0 returned by Algo-

rithm 1 provided k ≥
∑n

ℓ=1 dℓ.

Theorem 2 shows that our algorithm FFS is able to select enough samples
from each subspace even if the dataset is imbalanced. It also shows that for each
data point in X , the representation vector computed in step 1 of Algorithm 3 is
subspace-preserving. Formally, we have established the following result.

Theorem 3. Take any k ≥
∑n

ℓ=1 dℓ. Under Assumption 1, the representation

vectors {cj}
N
j=1 in step 1 of Algorithm 3 are subspace-preserving, i.e., cij is

nonzero only if xi and xj are from the same subspace.

5 Experiments

In this section, we demonstrate the performance of ESC for subspace clustering
as well as for unsupervised subset selection tasks. The sparse optimization prob-
lem (4) in step 7 of Algorithm 2 and step 1 of Algorithm 3 are solved by the
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LASSO version of the LARS algorithm [49] implemented in the SPAMS pack-
age [50]. The nearest neighbors in step 2 of Algorithm 3 are computed by the
k-d tree algorithm implemented in the VLFeat toolbox [51].

5.1 Subspace clustering

We first demonstrate the performance of ESC for subspace clustering on large-
scale class-imbalanced databases. These databases are described next.

Databases. We use two publicly available databases. The Extended MNIST
(EMNIST) dataset [52] is an extension of the MNIST dataset that contains gray-
scale handwritten digits and letters. We take all 190,998 images corresponding
to 26 lower case letters, and use them as the data for a 26-class clustering prob-
lem. The size of each image in this dataset is 28 by 28. Following [48], each
image is represented by a feature vector computed from a scattering convolu-
tional network [53], which is translational invariant and deformation stable (i.e.
it linearizes small deformations). Therefore, these features from EMNIST ap-
proximately follow a union of subspaces model.

The German Traffic Sign Recognition Benchmark (GTSRB) [54] contains
43 categories of street sign data with over 50,000 images in total. We remove
categories associated with speed limit and triangle-shaped signs (except the yield
sign) as they are difficult to distinguish from each other, which results in a final
data set of 12,390 images in 14 categories. Each image is represented by a 1,568-
dimensional HOG feature [55] provided with the database. The major intra-class
variation in GTSRB is the illumination conditions, therefore the data can be
well-approximated by a union of subspaces [56].

For both EMNIST and GTSRB, feature vectors are mean subtracted and
projected to dimension 500 by PCA and normalized to have unit ℓ2 norm. Both
the EMNIST and GTSRB databases are imbalanced. In EMNIST, for example,
the number of images for each letter ranges from 2,213 (letter “j”) to 28,723
(letter “e”), and the number of samples for each letter is approximately equal
to their frequencies in the English language. In Figure 3 we show the number of
instances for each class in both of these databases.

Baselines. We compare our approach with SSC [4] to show the effectiveness of
exemplar selection in addressing imbalanced data. To handle large scale data, we
use the efficient algorithm in [12] for solving the sparse recovery problem in SSC.
For a fair comparison with ESC, we compute an affinity graph for SSC using the
same procedure as that used for ESC, i.e., the procedure in Algorithm 3.

We also compare our method with k-means clustering and spectral clustering
on the k-nearest neighbors graph, named “Spectral” in the following figures and
tables. It is known [57] that Spectral is a provably correct method for subspace
clustering. The k-means and k-d trees algorithms used to compute the k-nearest
neighbor graph in Spectral are implemented using the VLFeat toolbox [51]. In
addition, we compare with three other subspace clustering algorithms OMP [48],
OLRSC [58] and SBC [19] that are able to handle large-scale data.

We compare these methods with ESC-FFS (Algorithm 3) with λ set to be
150 and 15 for EMNIST and GTSRB, respectively, and t set to be 3 for both
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Fig. 3. Number of points in each class of EMNIST (left) and GTSRB (right) databases.

databases. We also report the result of ESC-Rand when the exemplars are se-
lected at random from X , i.e., we replace the exemplar selection via FFS in
step 1 of Algorithm 3 by selecting k atoms at random from X to form X0.

Evaluation metrics. The first metric we use is the clustering accuracy. It
measures the maximum proportion of points that are correctly labeled over all
possible permutations of the labels. Concretely, let {C1, · · · , Cn} be the ground-
truth partition of the data, {G1, · · · , Gn} be a clustering result of the same data,
nij = |Ci ∩Gj | be the number of common objects in Ci and Gj , and Π be the
set of all permutations of {1, · · · , n}. Clustering accuracy is defined as

Accuracy = max
π∈Π

100

N

n∑

i=1

ni,π(i). (11)

In the context of classification, accuracy has been known to be biased when
the dataset is class imbalanced [59]. For example, if a dataset is composed of 99%
of samples from one particular class, then assigning all data points to the same
label yields at least 99% accuracy. To address this issue, we also use the F-score
averaged over all classes. Let pij = nij/|Gj | be the precision and rij = nij/|Ci|
be the recall. The F-score between the clustering result Gi and the true class Cj

is defined as Fij =
2pijrij
pij+rij

. We report the average F-score given by

F-score = max
π∈Π

100

n

n∑

i=1

Fi,π(i). (12)

Results on EMNIST. Figure 4 shows the results on EMNIST. From left to
right, the sub-figures show, respectively, the accuracy, the F-score and the run-
ning time (Y axis) as a function of the number of exemplars (X axis). We can
see that ESC-FFS significantly outperforms all methods except SSC in terms of
both accuracy and F-score when the number of exemplars is greater than 70.

Recall that in SSC each data point is expressed as a linear combination of all
other points. By selecting a subset of exemplars and expressing points using these
exemplars, ESC-FFS is able to outperform SSC when the number of exemplars
reaches 200. In contrast, ESC-Rand does not outperform SSC by a significant
amount, showing the importance of exemplar selection by FFS.

In terms of running time, we see that ESC-FFS is faster than SSC by a
large margin. Specifically, ESC-FFS is almost as efficient as ESC-Rand, which
indicates that the proposed FFS Algorithm 2 is efficient.
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Fig. 4. Subspace clustering on images of 26 lower case letters from EMNIST database.

Results on GTSRB. Table 1 reports the clustering performance on the GT-
SRB database. In addition to reporting average performance, we report the stan-
dard deviations. The variation in accuracy and F-score across trials is due to 1)
random initializations of the k-means algorithm, which is used (trivially) in the
K-means method, and in the spectral clustering step of all other methods, and
2) random dictionary initialization in OLRSC, SBC, ESC-Rand and ESC-FFS.

We observe that ESC-FFS outperforms all the other methods in terms of
accuracy and F-score. In particular, ESC-FFS outperforms SSC, which in turn
outperforms ESC-Rand, thus showing the importance of finding a representative
set of exemplars and the effectiveness of FFS in achieving this. In addition, the
standard deviation of accuracy and F-score for ESC-Rand are all larger than
for ESC-FFS. This indicates that the set of exemplars given by FFS is more
robust in giving reliable clustering results than the randomly selected exemplars
in ESC-Rand. In terms of running time, ESC-FFS is also competitive.

5.2 Unsupervised subset selection

Given a large-scale unlabeled dataset, it is expensive to manually annotate all
data. One solution is to select a small subset of data for manual labeling, and
then infer the labels for the remaining data by training a model on the selected
subset. In this section, we evaluate the performance of the FFS algorithm as a
tool for selecting a subset of representatives for a given dataset. This subset is
then subsequently exploited to classify the entire data set.

We use the Extended Yale B face database, which contains images of 38 faces
and each of them is taken under 64 different illumination conditions. For this

Table 1. Subspace clustering on the GTSRB street sign database. The parameter k
is fixed to be 160 for ESC-Rand and ESC-FFS. We report the mean and standard
deviation for accuracy, F-score and running time (in sec.) from 10 trials.

K-means Spectral OMP SSC OLRSC SBC ESC-Rand ESC-FFS

Accuracy 63.7± 3.5 89.5± 1.3 82.8± 0.8 92.4± 1.1 71.6± 4.3 74.9± 5.2 89.7± 1.6 93.0± 1.3

F-score 54.4± 2.8 79.8± 2.5 67.8± 0.5 82.3± 2.8 66.7± 4.7 72.2± 8.5 75.5± 4.9 85.3± 2.5

Time (sec.) 12.2± 0.5 40.3± 0.7 22.0± 0.2 52.2± 0.7 64.9± 1.6 41.9± 0.4 21.5± 0.4 25.2± 1.2
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Table 2. Classification from subsets on the Extended Yale B face database. We report
the mean and standard deviation for classification accuracy and running time of the
subset selection from 50 trials.

Rand k-centers K-medoids kDPP SMRS FFS

NN 69.4± 3.2 69.1± 3.7 75.5± 2.8 70.5± 3.2 69.0± 3.1 67.5± 4.0

SRC 84.7± 2.2 84.9± 2.6 86.0± 2.1 88.3± 2.3 83.4± 2.3 91.4± 2.4

SVM 83.7± 2.5 83.0± 2.8 85.3± 2.3 87.8± 2.1 82.1± 2.3 91.0± 3.0

Time (sec.) < 1e− 3 0.26± 0.01 1.5± 0.1 0.57± 0.06 3.1± 0.2 0.70± 0.08

experiment, we create an imbalanced dataset by randomly selecting 10 classes
and sampling a subset from each class. The number of images we sample for
those 10 classes is 16 for the first 3 classes, 32 for the next 3 classes and 64
for the remaining 4 classes. We first apply FFS to select 100 images from this
dataset. Note that during this phase we assume that the ground truth labeling
is unknown. We then train three classifiers, the nearest neighbor (NN), sparse
representation based classification (SRC) [60] and linear support vector machine
(SVM) on the selected images, which is then used to classify all of the images.

We compare FFS with random sampling (Rand), k-centers, K-medoids [61],
SMRS [26] and kDPP [32]. For k-centers, we implement the farthest first traver-
sal algorithm (see, e.g. [42]). For K-medoids, we use the function provided by
R©Matlab, which employs a variant of the algorithm in [61]. For SMRS and
kDPP, we use the code provided by the authors. We set λ = 100 in FFS.

In Table 2 we report the classification accuracy averaged over 50 trials. We
can see that the NN classifier works the best with K-medoids, but the perfor-
mance of NN is worse than SRC and SVM. This is because images of the same
face lie approximately in a subspace, and their pairwise distances may not be
small. When SRC and SVM are used as classifiers, we can see that our method
achieves the best performance.

6 Conclusion

We presented a novel approach to subspace clustering for imbalanced and large-
scale data. Our method searches for a set of exemplars from the given dataset,
such that all data points can be well-represented by the exemplars in terms of
a sparse representation cost. Analytically, we showed that the set of exemplars
selected by our model has the property that its symmetrized convex hull covers
as much of the rays {tx : t ≥ 0} as possible for all data points x ∈ X . In
the context of subspace clustering, we proved that our method selects a set of
exemplars that is small and balanced, while being able to represent all data
points. We also introduced an algorithm for approximately solving the exemplar
selection optimization problem. Empirically we demonstrated that our method is
effective for subspace clustering and unsupervised subset selection applications.
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