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Abstract. The predominant approach to Visual Question Answering
(VQA) demands that the model represents within its weights all of the
information required to answer any question about any image. Learning
this information from any real training set seems unlikely, and represent-
ing it in a reasonable number of weights doubly so. We propose instead to
approach VQA as a meta learning task, thus separating the question an-
swering method from the information required. At test time, the method
is provided with a support set of example questions/answers, over which
it reasons to resolve the given question. The support set is not fixed
and can be extended without retraining, thereby expanding the capa-
bilities of the model. To exploit this dynamically provided information,
we adapt a state-of-the-art VQA model with two techniques from the
recent meta learning literature, namely prototypical networks and meta
networks. Experiments demonstrate the capability of the system to learn
to produce completely novel answers (i.e. never seen during training)
from examples provided at test time. In comparison to the existing state
of the art, the proposed method produces qualitatively distinct results
with higher recall of rare answers, and a better sample efficiency that
allows training with little initial data. More importantly, it represents
an important step towards vision-and-language methods that can learn
and reason on-the-fly.

The task of Visual Question Answering (VQA) demands that an agent cor-
rectly answer a previously unseen question about a previously unseen image. The
fact that neither the question nor the image is specified until test time means
that the agent must embody most of the achievements of Computer Vision and
Natural Language Processing, and many of those of Artificial Intelligence.

VQA is typically framed in a purely supervised learning setting. A large
training set of example questions, images, and their correct answers is used to
train a method to map a question and image to scores over a predetermined,
fixed vocabulary of possible answers using the maximum likelihood [39]. This
approach has inherent scalability issues, as it attempts to represent all world
knowledge within the finite set of parameters of a model such as deep neural
network. Consequently, a trained VQA system can only be expected to produce
correct answers to questions from a very similar distribution to those in the
training set. Extending the model knowledge or expanding its domain coverage
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Fig. 1. This paper considers visual question answering in a meta learning setting. The
model is initially trained on a small set of questions/answers, and is provided with a,
possibly large, additional support set of examples at test time. The model must learn

to learn, or to exploit the additional data on-the-fly, without the need for retraining
the model. Notably, performance improves as additional and more relevant examples
are included.

is only possible by retraining it from scratch, which is computationally costly,
at best. This approach is thus fundamentally incapable of fulfilling the ultimate
promise of VQA, which is answering general questions about general images.

As a solution to these issues we propose a meta-learning approach to the
problem. The meta learning approach implies that the model learns to learn,
i.e. it learns to use a set of examples provided at test time to answer the given
question (Fig. 1). Those examples are questions and images, each with their
correct answer, such as might form part of the training set in a traditional setting.
They are referred to here as the support set. Importantly, the support set is not
fixed. Note also that the support set may be large, and that the majority of its
elements may have no relevance to the current question. It is provided to the
model at test time, and can be expanded with additional examples to increase the
capabilities of the model. The model we propose ‘learns to learn’ in that it is able
to identify and exploit the relevant examples within a potentially large support
set dynamically, at test time. Providing the model with more information thus
does not require retraining, and the ability to exploit such a support set greatly
improves the practicality and scalability of the system. Indeed, it is ultimately
desirable for a practical VQA system to be adaptable to new domains and to
continuously improve as more data becomes available. That vision is a long term
objective and this work takes only a small step in that direction.

There is significant practical interest to the meta-learning approach to VQA.
It can ultimately allow the following scenarios, which are well outside the reach
of traditional approaches:
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– models using constantly expanding support (e.g . from knowledge bases,
surveillance imagery, medical data, etc..) with no need for constant retrain-
ing;

– models using support data too large to be captured within the weights of
the model e.g . from web searches;

– models trained and distributed without encapsulating sensitive data, for pri-
vacy or security reasons; after training the model on sanitized data, it is
provided at test time only with the sensitive information.

Our central technical contribution is to adapt a state-of-the-art VQAmodel [34]
to the meta learning setting. The resulting model is a deep neural network that
uses sets of dynamic parameters – also known as fast weights – determined at
test time depending on the provided support set. The dynamic parameters allow
to modify adaptively the computations performed by the network and adapt its
behaviour depending on the support set. We perform a detailed study to eval-
uate the effectiveness of those techniques under various regimes of training and
support set sizes. Those experiments are based on the VQA v2 benchmark, for
which we propose data splits appropriate to study a meta learning setting.

A completely new capability demonstrated by the resulting system is to learn
to produce completely novel answers (i.e. answers not seen during training).
Those new answers are only demonstrated by instances of the support set pro-
vided at test time. In addition to these new capabilities, the system exhibits a
qualitatively distinct behaviour to existing VQA systems in its improved han-
dling of rare answers. Since datasets for VQA exhibit a heavy class imbalance,
with a small number of answers being much more frequent than most others,
models optimized for current benchmarks are prone to fall back on frequent
“safe” answers. In contrast, the proposed model is inherently less likely to fall
victim to dataset biases, and exhibits a higher recall over rare answers. The
proposed model does not surpass existing methods on the common aggregate
accuracy metric, as is to be expected given that it does not overfit to the dataset
bias, but it nonetheless exhibits desirable traits overall.
The contributions of this paper are summarized as follows.
1. We re-frame VQA as a meta learning task, in which the model is provided

a test time with a support set of supervised examples (questions and images
with their correct answers).

2. We describe a neural network architecture and training procedure able to
leverage the meta learning scenario. The model is based on a state-of-the-art
VQA system and takes inspiration in techniques from the recent meta learning
literature, namely prototypical networks [33] and meta networks [24].

3. We provide an experimental evaluation of the proposed model in different
regimes of training and support set sizes and across variations in design
choices.

4. Our results demonstrate the unique capability of the model to produce novel
answers, i.e. answers never seen during training, by learning from support
instances, an improved recall of rare answers, and a better sample efficiency
than existing models.
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1 Related Work

Visual question answering Visual question answering has gathered signifi-
cant interest from the computer vision community [6], as it constitutes a practi-
cal setting to evaluate deep visual understanding. In addition to visual parsing,
VQA requires the comprehension of a text question, and combined reasoning
over vision and language, sometimes on the basis of external or common-sense
knowledge. See [39] for a recent survey of methods and datasets.

VQA is always approached in a supervised setting, using large datasets [6,
15, 22, 44] of human-proposed questions with their correct answers to train a ma-
chine learning model. The VQA-real and VQA v2 datasets [6, 15] have served
as popular benchmarks by which to evaluate and compare methods. Despite the
large scale of those datasets, e.g . more than 650,000 questions in VQA v2, several
limitations have been recognized. These relate to the dataset bias (i.e. the non-
uniform, long-tailed distribution of answers) and the question-conditioned bias
(making answers easy to guess given a question without the image). For example,
the answer Yes is particularly prominent in [6] compared to no, and questions
starting with How many can be answered correctly with the answer two more
than 30% of the time [15]. These issues plague development in the field by encour-
aging methods which fare well on common questions and concepts, rather than
on rare answers or more complicated questions. The aggregate accuracy metric
used to compare methods is thus a poor indication of method capabilities for
visual understanding. Improvements to datasets have been introduced [1, 15, 43],
including the VQA v2, but they only partially solve the evaluation problems. An
increased interest has appeared in the handling of rare words and answers [29,
35]. The model proposed in this paper is inherently less prone to incorporate
dataset biases than existing methods, and shows superior performance for han-
dling rare answers. It accomplishes this by keeping a memory made up of explicit
representations of training and support instances.

VQA with additional data In the classical supervised setting, a fixed set
of questions and answers is used to train a model once and for all. With few
exceptions, the performance of such a model is fixed as it cannot use additional
information at test time. Among those exceptions, [40, 38] use an external knowl-
edge base to gather non-visual information related to the input question. In [35],
the authors use visual information from web searches in the form of exemplar
images of question words, and better handle rare and novel words appearing
in questions as a result. In [34], the same authors use similar images from web
searches to obtain visual representations of candidate answers.

Those methods use ad-hoc engineered techniques to incorporate external
knowledge in the VQA model. In comparison, this paper presents a much more
general approach. We expands the model knowledge with data provided in the
form of additional supervised examples (questions and images with their correct
answer). A demonstration of the broader generality of our framework over the
works above is its ability to produce novel answers, i.e. never observed during
initial training and learned only from test-time examples.
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Recent works on text-based question answering have investigated the retrieval
of external information with reinforcement learning [8, 25, 26]. Those works are
tangentially related and complementary to the approach explored in this paper.

Meta learning and few shot learning The term meta learning broadly
refers to methods that learn to learn, i.e. that train models to make better
use of training data. It applies to approaches including the learning of gradient
descent-like algorithms such as [5, 13, 17, 30] for faster training or fine-tuning of
neural networks, and the learning of models that can be directly fed training
examples at test time [7, 33, 36]. The method we propose falls into the latter
category. Most works on meta learning are motivated by the challenge of one-
shot and few-shot visual recognition, where the task is to classify an image into
categories defined by a few examples each. Our meta learning setting for VQA
bears many similarities. VQA is treated as a classification task, and we are pro-
vided, at test time, with examples that illustrate the possible answers – possibly
a small number per answer. Most few-shot learning methods are, however, not
directly applicable to our setting, due to the large number of classes (i.e. possible
answers), the heavy class imbalance, and the need to integrate into an architec-
ture suitable to VQA. For example, recent works such as [36] propose efficient
training procedures that are only suitable for a small number of classes.

Our model uses a set of memories within a neural network to store the ac-
tivations computed over the support set. Similarly, Kaiser et al . [19] store past
activations to remember “rare events”, which was notably evaluated on ma-
chine translation. Our model also uses network layers parametrized by dynamic
weights, also known as fast weights. Those are determined at test time depending
on the actual input to the network. Dynamic parameters have a long history in
neural networks [32] and have been used previously for few-shot recognition [7]
and for VQA [27]. One of the memories within our network stores the gradient
of the loss with respect to static weights of the network, which is similar to the
Meta Networks model proposed by Munkhdalai et al . [24]. Finally, our output
stage produces scores over possible answers by similarity to prototypes represent-
ing the output classes (answers). This follows a similar idea to the Prototypical
Networks [33].

Continuum learning An important outcome of framing VQA in a meta
learning setting is to develop models capable of improving as more data be-
comes available. This touches the fields of incremental [12, 31] and continuum
learning [2, 23, 42]. Those works focus on the fine-tuning of a network with new
training data, output classes and/or tasks. In comparison, our model does not
modify itself over time and cannot experience negative domain shift or catas-
trophic forgetting, which are a central concern of continuum learning [21]. Our
approach is rather to use such additional data on-the-fly, at test time, i.e. with-
out an iterative retraining. An important motivation for our framework is its
potential to apply to support data of a different nature than question/answer
examples. We consider this to be an important direction for future work. This
would allow to leverage general, non VQA-specific data, e.g . from knowledge
bases or web searches.
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Fig. 2. Overview of the proposed model. We obtain an embedding the input question
and image following [34] and our contributions concern the mapping of this embedding
to scores over a set of candidate answers. First, a non-linear transformation (im-
plemented as a gated hyperbolic tangent layer) is parametrized by static and dynamic
weights. Static ones are learned like traditional weights by gradient descent, while
dynamic ones are determined based on the actual input and a memory of candidate
dynamic weights filled by processing the support set. Second, a similarity measure

compares the resulting feature vector to a set of prototypes, each representing a specific
candidate answer. Static prototypes are learned like traditional weights, while dynamic
prototypes are determined by processing the support set. Dashed lines indicate data
flow during the processing of the support set. See Section 3 for details.

2 VQA in a Meta Learning Setting

The traditional approach to VQA is in a supervised setting described as follows.
A model is trained to map an input question Q and image I to scores over
candidate answers [39]. The model is trained to maximize the likelihood of correct
answers over a training set T of triplets (Q, I, ŝ), where ŝ ∈ [0, 1]A represents the
vector of ground truth scores of the predefined set of A possible answers. At test
time, the model is evaluated on another triplet (Q′, I′, ŝ′) from an evaluation or
test set E . The model predicts scores s′ over the set of candidate answers, which
can be compared to the ground truth ŝ

′ for evaluation purposes.

We extend the formulation above to a meta learning setting by introducing
an additional support set S of similar triplets (Q′′, I′′, ŝ′′). These are provided to
the model at test time. At a minimum, we define the support set to include the
training examples themselves, i.e. S = T , but more interestingly, the support set
can include novel examples S ′ provided at test time. They constitute additional
data to learn from, such that S = T ∪ S ′. The triplets (Q, I, ŝ) in the support
set can also include novel answers, never seen in the training set. In that case,
the ground truth score vectors ŝ of the other elements in the support are simply
padded with zeros to match the larger size A′ of the extended set of answers.

The following sections describe a deep neural network that can take advan-
tage of the support set at test time. To leverage the information contained in
the support set, the model must learn to utilize these examples on-the-fly at test
time, without retraining of the whole model.
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3 Proposed Model

The proposed model (Fig. 2) is a deep neural network that extends the state-
of-art VQA system of Teney et al . [34]. Their system implements the joint em-
bedding approach common to most modern VQA models [39, 41, 18, 20], which
is followed by a multi-label classifier over candidate answers. Conceptually, we
separate the architecture into (1) the embedding part that encodes the input
question and image, and (2) the classifier part that handles the reasoning and
actual question answering1. The contributions of this paper address only the sec-
ond part. Our contributions are orthogonal to developments on the embedding
part, which could also benefit e.g . from advanced attention mechanisms or other
computer vision techniques [3, 37, 39]. We follow the implementation of [34] for
the embedding part. For concreteness, let us mention that the question embed-
ding uses GloVe word vectors [28] and a Recurrent Gated Unit (GRU [10]). The
image embedding uses features from a CNN (Convolutional Neural Network)
with bottom-up attention [3] and question-guided attention over those features.
See [34] for details.

For the remainder of this paper, we abstract the embedding to modules that
produce respectively the question and image vectors q and v ∈ R

D. They are
combined with a Hadamard (element-wise) product into h = q ◦ v, which forms
the input to the classifier on which we now focus on. The role of the classifier is
to map h to a vector of scores s ∈ [0, 1]A over the candidate answers. We propose
a definition of the classifier that generalizes the implementation of traditional
models such as [34]. The input to the classifier h ∈ R

D is first passed through
a non-linear transformation fθ : RD → R

D, then through a mapping to scores
over the set of candidate answers gΦ : RD → [0, 1]A. This produces a vector
of predicted scores s = gΦ(fθ(h)). In traditional models, the two functions
correspond to a stack of non-linear layers for fθ, and a linear layer followed by
a softmax or sigmoid for gΦ . We now show how to extend fθ and gΦ to take
advantage of the meta learning setting.

3.1 Non-linear Transformation fθ(·)

The role of the non-linear transformation fθ(h) is to map the embedding of the
question/image h to a representation suitable for the following (typically linear)
classifier. This transformation can be implemented in a neural network with any
type of non-linear layers. Our contributions are agnostic to this implementation
choice. We follow [34] and use a gated hyperbolic tangent layer [11], defined as

fθ(h) = σ(Wh+ b) ◦ tanh (W ′h+ b′) (1)

where σ is the logistic activation function, W,W ′ ∈ R
D×D are learned weights,

b, b′ ∈ R
D are learned biases, and ◦ is the Hadamard (element-wise) product.

1 The separation of the network into an embedding and a classifier parts is concep-
tual. The division is arbitrarily placed after the fusion of the question and image
embeddings. Computational requirements aside, the concept of dynamic parameters
is in principle applicable to earlier layers as in [7].
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We define the parameters θ as the concatenation of the vectorized weights and
biases, i.e. θ = [W:;W

′
: ; b; b

′], where colons denote the vectorization of matri-
ces. The vector θ thus contains all weights and biases used by the non-linear
transformation. A traditional model would learn the weights θ by backpropa-
gation and gradient descent on the training set, and they would be held static
during test time. We propose instead to adaptively adjust the weights at test
time, depending on the input h and the available support set. Concretely, we
use a combination of static parameters θs learned in the traditional manner, and
dynamic ones θd determined at test time. They are combined as θ = θs + wθd,
with w ∈ R

D a vector of learned weights. The dynamic weights can therefore be
seen as an adjustment made to the static ones depending on the input h.

A set of candidate dynamic weights are maintained in an associative memory
M. This memory is a large set (as large as the support set, see Section 3.2) of

key/value pairs M = {(h̃i, θ̃
d

i )}i∈1...|S|. The interpretation for θ̃
d

i is of dynamic

weights suited to an input similar to h̃i. Therefore, at test time, we retrieve
appropriate dynamic weights θd by soft key matching:

θd =
∑

i

θ̃
d

i softmax
i

(

dcos(h, h̃i)
)

(2)

where dcos(·, ·) is the cosine similarity function. We therefore retrieve a weighted
sum, in which the similarity of h with the memory keys h̃i serves to weight

the memory values θ̃
d

i . In practice and for computational reasons, the softmax
function cuts off after the top k largest values, with k in the order of a thousand
elements (see Section 4). We detail in Section 3.2 how the memory is filled
by processing the support set. Note that the above formulation can be made
equivalent to the original model in [34] by using only static weights (θ = θs).
This serves as a baseline in our experiments (see Section 4).

Mapping to Candidate Answers gΦ(·) The function gΦ(h) maps the out-
put of the non-linear transformation to a vector of scores s ∈ [0, 1]A over the
set of candidate answers. It is traditionally implemented as a simple affine or
linear transformation (i.e. a matrix multiplication). We generalize the definition
of gΦ(h) by interpreting it as a similarity measure between its input h and pro-
totypes Φ = {φa

i }i,a representing the possible answers. In traditional models,
each prototype corresponds to one row of the weight matrix. Our general formu-
lation allows one or several prototypes per possible answer a as {φa

i }
Na

i=1 (where
a is an index over candidate answers and i indexes the Na support examples
having a as a correct answer). Intuitively, the prototypes represent the typical
expected feature vector when a is a correct answer. The score for a is therefore
obtained as the similarity between the provided h′ and the corresponding proto-
types of a. When multiple prototypes are available, the similarities are averaged.
Concretely, we define

ga
Φ
(h′) = σ

( 1

Na

Na

∑

i=1

d(h′,φa
i ) + b′′

)

(3)
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where d(·, ·) is a similarity measure, σ is a sigmoid (logistic) activation function
to map the similarities to [0, 1], and b′′ is a learned bias term. The traditional
models that use a matrix multiplication [18, 34, 35] correspond to gΦ(·) that
uses a dot product as the similarity function. In comparison, our definition gen-
eralizes to multiple prototypes per answer and to different similarity measures.
Our experiments evaluate the dot product and the weighted L-p norm of vector
differences:

ddot(h,θ) = h⊺ θ (4)

dL1(h,θ) = w′′′⊺ |h− θ| (5)

dL2(h,θ) = w′′′⊺ (h− θ)2 (6)

where w′′′ ∈ R
D is a vector of learned weights applied coordinate-wise.

Our model uses two sets of prototypes, the static Φs and the dynamic Φd.
The static ones are learned during training as traditional weights by backprop-
agation and gradient descent, and held fixed at test time. The dynamic ones are
determined at test time by processing the provided support set (see Section 3.2).
Thereafter, all prototypes Φ = Φs ∪ Φd are used indistinctively. Note that our
formulation of gΦ(·) can be made equivalent to the original model of [34] by
using only static prototypes (Φ = Φd) and the dot-product similarity measure
ddot(·, ·). This will serve as a baseline in our experiments (Section 4).

Finally, the output of the network is attached to a cross-entropy loss L (s, ŝ)
between the predicted and ground truth for training the model end-to-end [34].

3.2 Processing of Support Set

Both functions fθ(·) and gΦ(·) defined above use dynamic parameters that are
dependent on the support set. Our model processes the entire support set in a
forward and backward pass through the network as described below. This step is
to be carried out once at test time, prior to making predictions on any instance
of the test set. At training time, it is repeated before every epoch to account
for the evolving static parameters of the network as training progresses (see the
algorithm in the supplementary material).

We pass all elements of the support set S through the network in mini-batches
for both a forward and backward pass. The evaluation of fθ(·) and gΦ(·) use only
static weights and prototypes, i.e. θ = θs and φ = φs. To fill the memory M,
we collect, for every element of the support set, its feature vector h and the
gradient ∇θsL of the final loss relative to the static weights θ. This effectively
captures the adjustments that would be made by a gradient descent algorithm
to those weights for that particular example. The pair (h,∇θsL ) is added to
the memory M, which thus holds |S| elements at the end of the process.

To determine the set of dynamic prototypes φd, we collect the feature vec-
tors h′ = fθ(h) over all instances of the support set. We then compute their
average over instances having the same correct answer. Concretely, the dynamic

prototype for answer a is obtained as φa = 1
Na

∑Na

i:ŝa
i
=1 h

′
i.
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During training, we must balance the need for data to train the static pa-
rameters of the network, and the need for an “example” support set, such that
the network can learn to use novel data. If the network is provided with a fixed,
constant support set, it will overfit to that input and be unable to make use of
novel examples at test time. Our training procedure uses all available data as the
training set T , and we form a different support set S at each training epoch as
a random subset of T . The procedure is summarized in the algorithm provided
in the supplementary material. Note that in practice, it is parallelized to process
instances in mini-batches rather than individually.

4 Experiments

We perform a series of experiments to evaluate (1) how effectively the proposed
model and its different components can use the support set, (2) how useful novel
support instances are for VQA, (3) whether the model learns different aspects
of a dataset from classical VQA methods trained in the classical setting.

Datasets The VQA v2 dataset [15] serves as the principal current benchmark
for VQA. The heavy class imbalance among answers makes it very difficult to
draw meaningful conclusions or perform a qualitative evaluation, however. We
additionally propose a series of experiments on a subset referred to as VQA-

Numbers. It includes all questions marked in VQA v2 as a “number” question,
which are further cleaned up to remove answers appearing less than 1,000 times
in the training set, and to remove questions that do not have an unambiguous
answer (we keep only those with ground truth scores containing a single element
equal to 1.0). Questions from the original validation set of VQA v2 are used for
evaluation, and the original training set (45,965 questions after clean up) is used
for training, support, and validation. The precise data splits will be available
publicly. Most importantly, the resulting set of candidate answers corresponds
to the seven numbers from 0 to 6. See details in the supplementary material.

Metrics The standard metric for evaluation on VQA v2 is the accuracy de-

fined, using the notations of Section 2, as 1
|E |

∑

i ŝ
a⋆

i

i with ground truth scores

ŝi and a⋆i the answer of highest predicted score, argmaxa s
a
i . We also define the

recall of an answer a as
∑

i s
a⋆

i /
∑

i ŝ
a
i . We look at the recall averaged (uni-

formly) over all possible answers to better reflect performance across a variety
of answers, rather than on the most common ones.

Implementation Our implementation is based on the code provided by the
authors of [34]. Details non-specific to our contributions can be found there. We
initialize all parameters, in particular static weights and static prototypes as if
they were those of a linear layer in a traditional architecture, following Glorot and
Bengio [14]. During training, the support set is subsampled (Section 3.2) to yield
a set of 1,000 elements. We use, per answer, one or two static prototypes, and zero
or one dynamic prototype (as noted in the experiments). All experiments use an
embedding dimension D=128 and a mini-batches of 256 instances. Experiments
with VQA v2 use a set of candidate answers capped to a minimum number of
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Average answer recall

(1a) Chance 14.28
(1b) State-of-the-art model [34] 29.72
Equivalent to 1 static prototype per answer, dot prod. similarity, no dynamic param.

(2b) 1 Static prot./ans., L1 similarity 29.97
(2c) 1 Static prot./ans., L2 similarity 27.80
(2d) 2 Static prot./ans., dot prod. similarity 30.28
(2e) 2 Static prot./ans., L1 similarity 28.34
(2f) 2 Static prot./ans., L2 similarity 31.48
(3a) Dynamic Weights (+2f) 31.81
(3b) Proposed: dynamic weights and prototypes (+2f) 32.32

Table 1. On VQA-Numbers, ablative evaluation, trained and evaluated on all answers.
See discussion in Section 4.1.

training occurrences of 16, giving 1,960 possible answers [34]. Past works have
shown that small differences in implementation can have noticeable impact on
performance. Therefore, to ensure fair comparisons, we repeated all evaluations
of the baseline [34] with our code and preprocessing. Results are therefore not
directly comparable with those reported in [34]. In particular, we do not use the
Visual Genome dataset [22] for training.

4.1 VQA-Numbers

Ablative evaluation We first evaluate the components of the proposed model
in comparison to the state-of-the-art of [34] which serves as a baseline, being
equivalent to our model with 1 static prototype per answer, the dot product
similarity, and no dynamic parameters. We train and evaluate on all 7 answers.
To provide the baseline with a fair chance2, we train all models with standard
supersampling [9, 16], i.e. selecting training examples with equal probability with
respect to their correct answer. In these experiments, the support set is equal to
the training set.

As reported in Table 1, the proposed dynamic weights improve over the base-
line, and the dynamic prototypes bring an additional improvement. We compare
different choices for the similarity function. Interestingly, swapping the dot prod-
uct in the baseline for an L2 distance has a negative impact. When using two
static prototypes however, the L2 distances proves superior to the L1 or to the
dot product. This is consistent with [33] where a prototypes network also per-
formed best with an L2 distance.

Additional Support Set and Novel answers We now evaluate the ability
of the model to exploit support data never seen until test time (see Fig. 3). We
train the same models designed for 7 candidate answers, but only provide them
with training data for a subset of them. The proposed model is additionally

2 The VQA-Numbers data is still heavily imbalanced, “1” and “2” making up almost
60% of correct answers in equal parts.
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Fig. 3. On VQA-Numbers, performance of the proposed model and ablations, with
training data for subsets of the 7 answers. (Left) Performance on all answers.
(Right) Performance on answers not seen in training. Only the model with dynamic
prototypes makes this setting possible. Remarkably, a model trained on two answers
(2/7) maintains a capacity to learn about all others. Chance baseline shown as hori-
zontal dashes.

provided with a complete support set, covering all 7 answers. Each reported
result is averaged over 10 runs. The set of k answers excluded from training is
randomized across runs but identical to all models for a given k.

The proposed model proves superior than the baseline and all other ablations
(Fig. 3, top). The dynamic prototypes are particularly beneficial. With very little
training data, the use of dynamic weights is less effective and sometimes even
detrimental. We hypothesize that the model may then suffer from overfitting
due to the additional learned parameters. When evaluated on novel answers (not
seen during training and only present in the test-time support set), the dynamic
prototypes provide a remarkable ability to learn those from the support set alone
(Fig. 3, bottom). Their efficacy is particularly strong when only a single novel
answer has to be learned. Remarkably, a model trained on only two answers
maintains some capacity to learn about all others (average recall of 17.05%,
versus the chance baseline of 14.28%). Note that we cannot claim the ability
of the model to count to those novel numbers, but at the very least it is able
to associate those answers with particular images/questions (possibly utilizing
question-conditioned biases).

4.2 VQA v2

We performed experiments on the complete VQA v2 dataset. We report results
of different ablations, trained with 50% or 100% of the official training set, eval-
uated on the validation set as in [34]. The proposed model uses the remaining of
the official training set as additional support data at test time. The complexity
and varying quality of this dataset do not lead to clear-cut conclusions from
the standard accuracy metric (see Table 2). The answer recall leads to more
consistent observations that align with those made on VQA-Numbers. Both dy-
namic weights and dynamic parameters provide a consistent advantage (Fig. 4).
Each technique is beneficial in isolation, but their combination performs gener-
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ally best. Individually, the dynamic prototypes appear more impactful than the
dynamic weights. Note that our experiments on VQA v2 aimed at quantifying
the effect of the contributions in the meta learning setting, and we did not seek
to maximize absolute performance in the traditional benchmark setting.

To obtain a better insight into the predictions of the model, we examine
the individual recall of possible answers. We compare the values with those
obtained by the baseline. The difference (Fig. 5) indicates which of the two
models provides the best predictions for every answer. We observe a qualitatively
different behaviour between the models. While the baseline is most effective with
frequent answers, the proposed model fares better (mostly positive values) in
the long tail of rare answers. This corroborates previous discussions on dataset
biases [15, 18, 43] which classical models are prone to overfit to. The proposed
model is inherently more robust to such behaviour.

5 Conclusions and Future Work

We have devised a new approach to VQA through framing it as a meta learning
task. This approach enables us to provide the model with supervised data at
test time, thereby allowing the model to adapt or improve as more data is made
available. We believe this view could lead to the development of scalable VQA
systems better suited to practical applications. We proposed a deep learning
model that takes advantage of the meta learning scenario, and demonstrated a
range of benefits: improved recall of rare answers, better sample efficiency, and
a unique capability of to learn to produce novel answers, i.e. those never seen
during training, and learned only from support instances.

The learning-to-learn approach we propose here enables a far greater sep-
aration of the questions answering method from the information used in the
process than has previously been possible. Our contention is that this separa-
tion is essential if vision-and-language methods are to move beyond benchmarks
to tackle real problems, because embedding all of the information a method
needs to answer real questions in the model weights is impractical.

Even though the proposed model is able to use novel support data, the ex-
periments showed room for improvement, since a model trained initially from
the same amount of data still shows superior performance. Practical considera-
tions should also be addressed to apply this model to a larger scale, in particular
for handling the memory of dynamic weights that currently grows linearly with
the support set. Clustering schemes could be envisioned to reduce its size [33]
and hashing methods [4, 19] could improve the efficiency of the content-based
retrieval.

Generally, the handling of additional data at test time opens the door to VQA
systems that interact with other sources of information. While the proposed
model was demonstrated with a support set of questions/answers, the principles
extend to any type of data obtained at test time e.g . from knowledge bases or
web searches. This would drastically enhance the scalability of VQA systems.
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Fig. 4. On VQA v2, performance using varying amounts of training data. See Sec-
tion 4.2.
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Fig. 5. On VQA v2, difference in answer recall between the proposed model (Table 2,
last row, last column) and the baseline (Table 2, first row, last column). Each blue bar
corresponds to one of the candidate answers, sorted decreasing number of occurrences
in the training set (gray background, units not displayed). The two models show qual-
itatively different behaviour: the baseline is effective with frequent answers, but the
proposed model fares better (mostly positive values) in the long tail of rare answers.

Trained on 50% Trained on 100%

Baseline [34] 57.6 / 14.0 59.8 / 15.8

Proposed model
With dynamic weights, no dynamic prototypes 57.6 / 14.1 60.0 / 16.3
No dynamic weights, with dynamic prototypes 57.6 / 15.2 59.7 / 18.0

Same, no static prototypes, only dyn. ones 57.2 / 3.6 58.6 / 4.29
With dyn. weights and dyn. prototypes 57.5 / 15.5 59.9 / 18.0

Table 2. On VQA v2, evaluation of the proposed model and ablations (question accu-
racy/answer recall). The full proposed model exhibits qualitatively different strengths
than the classical approach [34], producing a generally higher recall (averaged over
possible answers) and lower accuracy (averaged over questions). In these experiments,
the objective for a “perfect” metalearning model would be to match the performance of
the baseline trained with 100% of data (row 1, right column), while using less training
data and the remaining as support (last row, left column).
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